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Editorial
Artemisinin Resistance Outside of Southeast Asia

Philip J. Rosenthal*
Department of Medicine, University of California, San Francisco, San Francisco, California

Drug resistance has challenged malaria control since the
development of chloroquine resistance in the 1950s. Over
about the last decade, resistanceofPlasmodium falciparum to
artemisinins, presenting as delayed clearance after therapy
with an artemisinin or artemisinin-based combination therapy
(ACT), emerged in Southeast Asia.1 Potential spread of arte-
misinin resistance to other areas is of great concern because
if resistance migrates to areas with very high malaria burdens,
in particular sub-Saharan Africa, the consequences may
be devastating.
Artemisinin resistance in Southeast Asia is now well-

characterized, recognized clinically by delays in clearance of
parasites after treatment with artemisinin-based regimens,
molecularly by nonsynonymous mutations in the propeller
domain of the K13 gene (K13PD), and parasitologically by
decreased clearance in the ring survival assay.1 By all these
measures, artemisinin resistance is prevalent in the Greater
Mekong Subregion, which extends from the epicenter in
Cambodia to parts of Vietnam, Laos, Thailand, Myanmar, and
China.2 The easiest means of surveillance for artemisinin re-
sistance is sequencing to assess K13PD mutations, and
broad characterization ofK13PD sequences has been carried
out in recent years.3,4 K13PD mutations have been seen in
parasites frommany areas, but it appears that only a subset of
these impact on drug sensitivity. Onemutation,C580Y, is now
the dominant K13PD mutation mediating artemisinin re-
sistance in much of the Greater Mekong Subregion.5 How-
ever, multiple other mutations are also associated with
delayed clearance after therapy; a recent pooled analysis
extended the number of K13PD mutations associated with
delayed clearance to 20.6 With this improved understanding,
andwithmany recent surveys ofK13PD sequences, it is useful
to review our understanding of artemisinin resistance in other
regions of the world.
Two new articles in the AJTMH offer updated insights into

the status of artemisinin resistance in Brazil7 and India.8 Other
recent reports offer information on Africa and other areas.
Overall, there remains scanty evidence for artemisinin re-
sistance outside of Southeast Asia. For the moment, we can
breathe sighs of relief. Or can we? As yet unpublished reports
suggest the migration of artemisinin resistance to eastern In-
dia, and recent publications offer hints of resistance else-
where. Whether or not resistance has already spread beyond
Southeast Asia, past experience with other antimalarials
suggests that artemisinin resistance is likely to spread around
the world over time. But what do recent articles show about
the present situation?
South America is an area of relatively low malaria trans-

mission intensity. Low transmission areas may be particularly

prone to the emergence of drug resistance, due to low an-
timalarial immunity in the population and low incidence of
polyclonal infections, both facilitating the establishment of
relatively unfit drug-resistant infections. Indeed, resistance
to most available antimalarials first emerged in Southeast
Asia and/or South America, but not Africa. A new report in
the AJTMH identified complete absence of K13PD muta-
tions among 152 P. falciparum isolates collected from the
Amazon region of Brazil, mostly before the introduction of
ACTs, but including 34 isolates collected after the change in
treatment policy, mostly collected in 2010–2011. These
results are consistent with other recent reports from Brazil,
including identification of only one K13PDmutation among
237 P. falciparum isolates collected in Amazonas state in
2014,3 no K13PD mutations among 162 samples collected
in Acre state in 2010–2013,9 noK13PDmutations among 69
isolates collected in four different regions in 2010–2017,10

and no K13PD mutations among 31 isolates collected in
Acre state up to 2005.4 Elsewhere in South America, none of
the 163 P. falciparum isolates collected from patients with
uncomplicated malaria in Colombia in 2014–201511 and
none of 40 isolates collected in Suriname in 2013–2014 had
K13PD mutations.12 By contrast, K13PD mutations were
identified in Guyana, with five of 98 P. falciparum isolates
collected in 2010 containing the C580Y mutation that is
commonly associated with resistance in Southeast Asia;
molecular data suggested emergence independent from
that of Asian parasites.13

India has varied malaria transmission intensity, but overall
one of the highest malaria burdens in the world. Its location
suggests that it may serve as a portal for the spread of arte-
misinin resistance from Southeast Asia. However, K13PD
mutations have remained uncommon in most studies of
P. falciparum from India. A new report in the AJTMH showed
that none of 112 isolates collected in Mangaluru, in south-
western India, in 2015, contained K13PD mutations.8 Other
studies from India found K13PD mutations in none of 51 iso-
lates collected in Kolkata in 201414; three of 186 isolates
collected from four districts in 2014–2015; and two of 254
isolates collected in northeastern India in 2014–2015.15 One
study showed quite different results, with 50 of 135 isolates
with two K13PD mutations, although these mutations were
not associated with delayed clearance after therapy with an
ACT16; the findingofmore thanonepropeller domainmutation
in a single isolate is unusual, and the reason for discrepancies
in results between this report and others is unknown. Con-
sidering P. falciparum from other countries in Asia outside of
the Greater Mekong Subregion,K13PDmutations were found
in one of 253 isolates collected in seven districts of Bangla-
desh in 2009–201317; none of 61 isolates collected in Papua,
Indonesia, in 2015–201618; none of 50 isolates collected in
Malaysia in 2011 and 201419; and two of 60 isolates collected
in Afghanistan in 2012–2014.20
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Extensive data are available to consider the spread of
artemisinin resistance to Africa. Clinical trials have shown
consistently strong efficacy of ACTs to treat uncomplicated
malaria in Africa, with clearance of parasites after therapy
almost always seen within 2–3 days.2,21 The in vitro ring
survival assay has also shown rapid clearance of African
parasites after incubation with artemisinins.22 Sequencing
studies have shown low but varied prevalence of K13PD
mutations, with prevalence < 5% at nearly all sites, but
identification of a large number of different mutations.3,23,24

Most of these mutations, including A578S, the most com-
mon K13PD mutation identified in Africa, have not been
associated with delayed clearance in Asia.6 However, in
Uganda, among 78 children diagnosed with severe malaria,
three had isolates with the A578S K13PD mutation, and
parasite clearance was delayed in these children compared
with that in the full cohort.25 Another mutation, A675V,
which has been associated with delayed clearance in Asia,6

was seen in one isolate from northern Uganda with in vitro
delayed clearance.26 This mutation was seen in about 5%
of isolates from nearby regions of northern Uganda,27 but
its clinical relevance is unclear.
The available data lead to the following conclusions.

First, artemisinin resistance, defined as delayed clearance
after treatment with artemisinin-based therapies, is
entrenched in the Greater Mekong Subregion. With de-
velopment of resistance to some artemisinin partner
drugs, in particular piperaquine, failures of ACT therapy for
falciparum malaria are now common in parts of this region,
an alarming development. Second, we do not see clear
evidence of artemisinin resistance outside of Southeast
Asia, although there are hints suggesting emergence of
P. falciparum with characteristics of resistant parasites in
some areas. Third, considering the enormous potential con-
sequences of the spread of artemisinin resistance, continued
surveillance for resistant parasites, in particular taking advan-
tage of the ease of K13 characterization, is warranted.
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