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A B S T R A C T   

Background: The global incidence of traumatic brain injuries is rising, with at least 80% being classified as mild. 
These mild injuries are not visible on routine clinical imaging. The potential clinical role of a specific imaging 
biomarker be it diagnostic, prognostic or directing and monitoring progress of personalised treatment and 
rehabilitation has driven the exploration of several new neuroimaging modalities. This systematic review 
examined the evidence for magnetoencephalography (MEG) to provide an imaging biomarker in mild traumatic 
brain injury (mTBI). 
Methods: Our review was prospectively registered on PROSPERO: CRD42019151387. We searched EMBASE, 
MEDLINE, trial registers, PsycINFO, Cochrane Library and conference abstracts and identified 37 papers 
describing MEG changes in mTBI eligible for inclusion. Since meta-analysis was not possible, based on the het-
erogeneity of reported outcomes, we provide a narrative synthesis of results. 
Results: The two most promising MEG biomarkers are excess resting state low frequency power, and widespread 
connectivity changes in all frequency bands. These may represent biomarkers with potential for diagnostic 
application, which reflect time sensitive changes, or may be capable of offering clinically relevant prognostic 
information. In addition, the rich data that MEG produces are well-suited to new methods of machine learning 
analysis, which is now being actively explored. 
Interpretation: MEG reveals several promising biomarkers, in the absence of structural abnormalities demon-
strable with either computerised tomography or magnetic resonance imaging. This review has not identified 
sufficient evidence to support routine clinical use of MEG in mTBI currently. However, verifying MEG’s potential 
would help meet an urgent clinical need within civilian, sports and military medicine.   

1. Introduction 

Traumatic brain injury has an estimated worldwide incidence of 27 
million cases annually and causes a substantial healthcare burden 
(James et al., 2019). At least 80% of injuries presenting to hospital are 
currently classified as mild traumatic brain injury (mTBI) (Excellence 
NIfHaC. Head injury: assessment and early management. Clinical 

guideline [CG176]., 2017). The global incidence of TBI is increasing, 
possibly due to increases in population density, population ageing, and 
increasing use of motor vehicles. The American Congress of Rehabili-
tation Medicine and later the World Health Organisation produced 
definitions of mTBI that are in widespread use (Head, 1993; Carroll 
et al., 2001). Common features include symptoms suggesting disruption 
of brain function following transfer of mechanical energy to the head by 
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external forces. The severity is limited by post-traumatic amnesia of <
24 h, loss of consciousness < 30 min, and Glasgow Coma Score of 13–15 
on assessment in hospital. The commonest causes of mTBI worldwide 
are falls and road traffic injuries (James et al., 2019). Additional causes 
that have attracted increasing interest in the research literature include 
military deployment-related blast or non-blast injuries, and sports 
related injuries – commonly known as concussion. The acute patho-
physiology of mTBI has been shown to include axonal injury and clusters 
of microglial proliferation (Oppenheimer, 1968). The resultant 
biochemical and immunological cascade is hypothesised to leave the 
brain vulnerable to additional insults, pending physiological recovery 
(Giza and Hovda, 2014). 

Post-concussion symptoms (PCS) include headache, dizziness or 
balance disorders, and cognitive impairments including attention, con-
centration, memory and speed of information processing problems. 
Symptoms can also include sleep disturbances, blurred vision, photo-
sensitivity, tinnitus and neuropsychiatric symptoms including person-
ality change, irritability, anxiety, and depression that can develop 
following mTBI (Bazarian et al., 1999). Whether these symptoms 
comprise a specific syndrome is questionable, because of their subjective 
nature, and that individually, some of the symptoms can occur in the 
healthy population or overlap with other conditions. These include 
anxiety, depression, and post-traumatic stress disorder (PTSD). Sys-
tematic reviews suggest group level neuropsychological cognitive 
testing differences disappear by three months post-mTBI (Belanger et al., 
2005). This contrasts with large, prospective cohort studies, that report 
50% of participants were still symptomatic on subjective measures 
(including cognitive complaints) at one year post-mTBI (Nelson et al., 
2019; McInnes et al., 2017; Wilson et al., 2021). 

Magnetoencephalography (MEG) is a functional neuroimaging 
technique that measures the magnetic induction produced by electro-
chemical current flows within the brain (Proudfoot et al., 2014). 
Currently sensory arrays must be cooled by liquid helium to operate, 
representing a significant cost; therefore, only around 200 MEG scanners 
were operational worldwide as of 2017 (Hari et al., 2018). However, 
technical innovations have allowed the development of prototype MEG 
sensory arrays that can operate at room temperature (Boto et al., 2018). 
The advantage of MEG lies in a much higher temporal resolution than 
functional MRI, with technical developments aimed at matching the 
former’s spatial resolution. The key components of the MEG signal are 
its amplitude and frequency. Frequency bands with clinical relevance, 
first defined by electroencephalography (EEG) studies are: delta 0.2 – 3 
Hz, theta 4 – 7 Hz, alpha 8 – 13 Hz, beta 14 – 31 Hz, and gamma 32 – 100 
Hz (Mandal et al., 2018;12:60-.). There are numerous analysis methods 
for interpreting MEG data, which can be recorded with the participant at 
rest, or performing a task. Reviewing the recorded data constitutes 
sensor space analysis. The overall brain signal has a peak spectral power, 
which at rest falls in the high alpha band over the occiput for the healthy 
population. Mapping the recorded signals on to an anatomical image of 
the brain requires inverse modelling, called source space analysis. 
Connectivity analysis can then be performed. This is based on the theory 
that spatially separate brain regions use synchronous firing of neuronal 
assemblies to facilitate long-range communication and the creation of a 
transient and dynamic task-specific network, or communication through 
coherence (Fries, 2005). Oscillatory amplitude envelope connectivity 
analysis can be used to establish the location and strength of synchro-
nously firing neuronal populations, within and between brain regions 
(Brookes et al., 2016). Other network metrics seek to measure global 
network properties using graph theory to monitor for changes in health 
and disease states (van Straaten and Stam, 2013). Given the complexity 
of the recorded MEG data, a novel approach is to use machine-learning 
algorithms to classify participants, without having prior knowledge of 
the key discriminatory components of the MEG data (Zubarev et al., 
2019). Consensus guidelines on methodology and reporting of MEG 
studies exist (Hari et al., 2018; Gross et al., 2013), alongside guidelines 
for research concerning mTBI (Carroll et al., 2001; Thompson et al., 

2015). 
Earlier neurophysiological research in mTBI comes from EEG 

studies. They demonstrated focal abnormalities in the delta and theta 
frequency bands as well as posterior alpha peak slowing; however, there 
is little evidence for correlation of either routine or quantitative EEG 
with clinical features of mTBI (Nuwer et al., 2005). There is an 
increasing incidence of civilian mTBI, growing awareness of the possible 
long-term consequences of sports-related concussion, and focus on op-
timum treatment of mTBI in the military services. Biomarkers visible on 
CT and standard structural MRI that can aid diagnosis or prognostication 
in moderate and severe injury are absent or infrequent in mTBI. 
Therefore, this review will focus on: 1. What changes are evident on 
MEG in adult mTBI? 2. Are MEG changes related to PCS in mTBI? 3. Are 
MEG changes related to neuropsychological test abnormalities in mTBI? 
4. Are any changes related to time post-injury? 5. Do MEG changes differ 
according to the injury mechanism in mTBI? 

2. Methodology 

A systematic review of the literature was conducted with planned 
narrative synthesis, and possible meta-analysis dependent on data 
availability. The protocol was prospectively registered on PROSPERO 
CRD42019151387. A literature search of the electronic databases 
EMBASE, MEDLINE and PsycINFO via Ovid was conducted on 4th 
December 2020. The complete search strategies are listed in the sup-
plementary material. All relevant papers published prior to the search 
date were included. References were screened for additional papers and 
searches of grey literature were conducted on Web of Science, ProQuest, 
World Health Organisation clinical trials registry, ISCRTN clinical trials 
registry and the US National Library of Medicine clinical trials registry. 

After de-duplication two authors screened the 466 abstracts inde-
pendently. The inclusion criteria were human research, in adults aged 
over 16 years, who were clinically diagnosed with mTBI according to 
recognised criteria with post-traumatic amnesia ≤ 24 h, Glasgow Coma 
Scale ≥ 13, and loss of consciousness ≤ 30 min. MEG was used as an 
imaging modality and comparison was made between the mTBI partic-
ipants and either a normative database or a case control design was 
used. Outcome assessments included symptom scores, neuropsycho-
logical test scores, or clinical diagnosis. The exclusion criteria were 
papers not available in English, mTBI was not diagnosed by recognised 
criteria, paper examining pharmacological interventions, mixed di-
agnoses with mTBI results not published as a subgroup analysis, mixed 
ages with adult results not published as a subgroup analysis, and review 
articles, single case reports, and duplicate papers. All disagreements 
were resolved by discussion and 383 abstracts were rejected, leaving 83 
remaining. Two authors then conducted a full text screen independently, 
46 papers were rejected, leaving 37 for final inclusion in the narrative 
synthesis. The Scottish Intercollegiate Guidelines Network critical 
appraisal checklists for either case-control or cohort study designs were 
used to appraise risk of bias and quality of individual studies (Scotland, 
2020). After review of the available data meta-analyses were not 
performed. 

3. Results 

3.1. Characteristics of included papers 

In total, 37 papers were identified through text searching, detailed in 
Fig. 1. A summary of extracted study characteristics is shown in Table 1. 
Thirty-three papers reported a case-control design and four a cohort 
design. Five of the 33 case-control papers featured longitudinal MEG 
assessment, 13 matched participants and controls for handedness, only 
one reported a consecutive recruitment strategy, and none reported 
being prospectively registered. Orthopaedic controls were used in two of 
the papers, veterans or active-duty military personnel in six, healthy 
controls in 25, and a mix in three studies. Fifteen papers reported 
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baseline clinical measures and 16 reported baseline years of education 
or estimated pre-morbid IQ. 

Twenty-five papers examined a civilian population with mixed 
mechanisms of injury, in five papers the population recruited from was 
unclear. Five papers examined a military population with two of these 
specifically focussed on blast injury. Two papers include both military 
personnel and civilians. Ten of the papers recruited only patients with 
mTBI and persisting PCS. The study sizes ranged from six to 84 partic-
ipants with mTBI. Mean time between injury and MEG assessment 
ranged from six days to 13 years but was unreported in nine papers. 
There was a male bias in the mTBI population of all included papers, 
with 17 reporting exclusively male participants. The mean mTBI sample 
age ranged from 25 to 42 years. Year of publication spanned 1999 to 
2020. 

Ten papers reported sensor space analyses while the remaining 27 
reported findings after source reconstruction. Fourteen papers presented 
analysis of resting state spectral power. Seventeen papers presented 
connectivity analyses or report network metrics. Nine papers presented 
analyses of task-based MEG recordings. Symptom severity was corre-
lated with MEG findings in twelve papers, and neuropsychological test 

scores in five papers. Thirteen papers attempted classification metrics, 
most of these being machine-learning algorithms. Several papers re-
ported multi-modal imaging, but only two presented associations be-
tween MRI abnormalities and their MEG findings. 

3.2. Spectral power analysis 

MEG demonstrated improved ability to detect spectral power dif-
ferences over EEG when utilising multimodal imaging (Li et al., 2015). 
The most common finding was increased power in the delta frequency 
band of the MEG signal in mTBI participants relative to controls, re-
ported in eight of the 14 papers that described spectral power analysis, 
as shown in Table 2 (Li et al., 2015; Dunkley et al., 2015; Robb Swan 
et al., 2015; Huang et al., 2012, 2014, 2009; Lewine et al., 2007, 1999). 
The location of this abnormal delta frequency band activity was vari-
able. The most likely sites were within the temporal, frontal, and parietal 
lobes. Huang et al. used a voxel-based analysis to show that any indi-
vidual cortical voxel had a low (5–15%) likelihood of abnormal delta 
generation, but the commonest areas affected in their study were 
bilateral dorsolateral and ventral pre-frontal cortices, frontal poles, 

Fig. 1. PRISMA flowchart of systematic review process.  
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Table 1 
Characteristics of 37 papers included in review.  

Reference Country and 
study design 

Study mTBI 
population 

Mechanism of 
mTBI 

Number of 
mTBI 
participants 

Mean time 
post-injury 
(Days) 

Mean age of 
mTBI 
participants 
(Years) 

Sex of mTBI 
participants 
(% male) 

Control type Analysis type Risk of bias 

Delayed and disorganised brain activation 
detected with magnetoencephalography 
after mild traumatic brain injury (da Costa 
et al., 2015) 

Canada, case- 
control 

ED department, 
non-consecutive 

Not specified 16 33 31 100 16 HC Task-based source 
analysis 

Highest 

Low-frequency connectivity is associated 
with mild traumatic brain injury (Dunkley 
et al., 2015) 

Canada, case- 
control 

ED department, 
non-consecutive 

7 Sports, 13 
Civilian 

20 32 31 100 21 HC RS source analysis, 
RS connectivity 
analysis 

Intermediate 

Default mode network oscillatory coupling is 
increased following concussion (Dunkley 
et al., 2018) 

Canada, case- 
control 

ED department, 
non-consecutive 

Not specified 26 32 31 100 24 HC RS connectivity 
analysis 

Lowest 

Post-Traumatic stress constrains the dynamic 
repertoire of neural activity (Mišić et al., 
2016) 

Canada, case- 
control 

ED department, 
non-consecutive 

Not specified 20 32 31 100 20 control 
soldiers, 20 
civilian HC, 23 
soldiers with 
PTSD 

RS source analysis, 
RS connectivity 
analysis. 

Intermediate 

Reduced brain connectivity and mental 
flexibility in mild traumatic brain injury ( 
Pang et al., 2016) 

Canada, case- 
control 

ED department, 
non-consecutive 

Not specified 16 33 31 100 16 HC Task-based 
connectivity 
analysis (sensor 
space)  

Detecting Mild Traumatic Brain Injury Using 
Resting State Magnetoencephalographic 
Connectivity (Vakorin et al., 2016) 

Canada, case- 
control 

ED department, 
non-consecutive 

Not specified 20 32 31 100 21 HC RS connectivity 
analysis, machine 
learning algorithm. 

Lowest 

Concussion Alters the Functional Brain 
Processes of Visual Attention and Working 
Memory (Shah-Basak et al., 2018) 

Canada, case- 
control 

ED department, 
non-consecutive 

4 Sports, 14 
Civilian 

18 36 30 100 19 HC Task-based source 
analysis 

Intermediate 

Activation of dominant hemisphere 
association cortex during naming as a 
function of cognitive performance in mild 
traumatic brain injury: Insights into 
mechanisms of lexical access (Popescu 
et al., 2017) 

USA, cohort PCS outpatient 
programme 

Not specified 57 1920 39 99 None Task-based source 
analysis 

Highest 

Reduced prefrontal MEG alpha-band power 
in mild traumatic brain injury with 
associated posttraumatic stress disorder 
symptoms (Popescu et al., 2016) 

USA, cohort PCS outpatient 
programme 

Not specified 32 1590 40 100 None RS source analysis Highest 

Post-traumatic stress disorder is associated 
with altered modulation of prefrontal 
alpha band oscillations during working 
memory (Popescu et al., 2019) 

USA, cohort PCS outpatient 
programme 

Not specified 35 Not specified 42 100 None Task-based source 
analysis 

Highest 

Altered cross-frequency coupling in resting- 
state MEG after mild traumatic brain injury 
(Antonakakis et al., 2016) 

USA, case- 
control 

Texas trauma 
centres 

2 Sports, 28 
Civilian 

30 Not specified 29 60 50 HC Connectivity 
analysis (sensor 
space), machine 
learning algorithm 

Highest 

Altered rich-club and frequency-dependent 
subnetwork organization in mild traumatic 
brain injury: A MEG resting-state study ( 
Antonakakis et al., 2017) 

USA, case- 
control 

Texas trauma 
centres 

2 Sports, 28 
Civilian 

30 Not specified 29 60 50 HC Connectivity 
analysis (sensor 
space), network 
metrics, machine 
learning algorithm 

Highest 

Reconfiguration of dominant coupling modes 
in mild traumatic brain injury mediated by 

USA, case- 
control 

Texas trauma 
centres 

2 Sports, 28 
Civilian 

30 Not specified 29 60 50 HC Connectivity 
analysis (sensor 
space), network 

Highest 

(continued on next page) 
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Table 1 (continued ) 

Reference Country and 
study design 

Study mTBI 
population 

Mechanism of 
mTBI 

Number of 
mTBI 
participants 

Mean time 
post-injury 
(Days) 

Mean age of 
mTBI 
participants 
(Years) 

Sex of mTBI 
participants 
(% male) 

Control type Analysis type Risk of bias 

delta-band activity: A resting state MEG 
study (Antonakakis et al., 2017) 

metrics, machine 
learning algorithm 

Data-Driven Topological Filtering Based on 
Orthogonal Minimal Spanning Trees: 
Application to Multigroup 
Magnetoencephalography Resting-State 
Connectivity (Dimitriadis et al., 2017) 

USA, case- 
control 

Texas trauma 
centres 

2 Sports, 28 
Civilian 

30 Not specified 29 60 50 HC Network metrics, 
machine learning 
algorithms 

Highest 

Functional connectivity changes detected 
with magnetoencephalography after mild 
traumatic brain injury (Dimitriadis et al., 
2015) 

USA, case- 
control 

Texas trauma 
centres 

2 Sports, 29 
Civilian 

31 Not specified 29 58 50 HC Connectivity 
analysis (sensor 
space), network 
metrics, machine 
learning algorithm 

Highest 

Improving the Detection of mTBI Via 
Complexity Analysis in Resting - State 
Magnetoencephalography (Antonakakis 
et al., 2016) 

USA, case- 
control 

Texas trauma 
centres 

2 Sports, 28 
Civilian 

30 Not specified 29 60 50 HC Network metrics, 
machine learning 
algorithm 

Highest 

Functional connectivity changes in mild 
traumatic brain injury assessed using 
magnetoencephalography (Zouridakis 
et al., 2012) 

USA, case- 
control 

Texas trauma 
centres 

Not specified 10 Not specified 31 70 50 HC Connectivity 
analysis (sensor 
space), machine 
learning algorithm 

Highest 

Magnetoencephalography slow-wave 
detection in patients with mild traumatic 
brain injury and ongoing symptoms 
correlated with long-term 
neuropsychological outcome (Robb Swan 
et al., 2015) 

USA, case- 
control 

TBI clinics with 
persistent PCS >
3 months 

6 Sports, 20 
Blast related, 
5 Civilian 

31 97 27 90 33 HC RS source analysis Intermediate 

An automatic MEG low-frequency source 
imaging approach for detecting injuries in 
mild and moderate TBI patients with blast 
and non-blast causes (Huang et al., 2012) 

USA, case- 
control 

Veterans brain 
injury centre with 
persistent PCS 

23 Military, 
22 Civilian 

45 250 28 84 44 HC RS source analysis Intermediate 

Theta-Band Oscillations as an Indicator of 
Mild Traumatic Brain Injury (Kaltiainen 
et al., 2018) 

Finland, case- 
control 

Not specified Not specified 26 Longitudinal 41 58 139 HC from 
previous study 
dataset 

RS source analysis Highest 

Mild traumatic brain injury affects cognitive 
processing and modifies oscillatory brain 
activity during attentional tasks ( 
Kaltiainen et al., 2019) 

Finland, case- 
control 

Not specified 4 Sports, 21 
Civilian 

25 Longitudinal 42 56 20 HC Task-based sensor 
space and source 
analyses 

Intermediate 

Source Connectivity Analysis Can Assess 
Recovery of Acute Mild Traumatic Brain 
Injury Patients (Li et al., 2018) 

USA, case- 
control 

Not specified Not specified 13 Longitudinal 26 54 8 orthopaedic 
trauma controls 

RS connectivity 
analysis 

Highest 

Brain Activation Profiles in mTBI: Evidence 
from Combined Resting-State EEG and 
MEG Activity (Li et al., 2015) 

USA, case- 
control 

Not specified Not specified 6 Not specified 28 66 5 orthopaedic 
trauma controls 

RS analysis (sensor 
space) 

Highest 

Contrasting Effects of Posttraumatic Stress 
Disorder and Mild Traumatic Brain Injury 
on the Whole-Brain Resting-State Network: 
A Magnetoencephalography Study ( 
Rowland et al., 2017) 

USA, case- 
control 

Veterans Military 12 2265 39 100 10 HC Network metrics Highest 

Increased Small-World Network Topology 
Following Deployment-Acquired 
Traumatic Brain Injury Associated with the 

USA, cohort Veterans Military 16 4138 40 100 None Network metrics Highest 

(continued on next page) 
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Table 1 (continued ) 

Reference Country and 
study design 

Study mTBI 
population 

Mechanism of 
mTBI 

Number of 
mTBI 
participants 

Mean time 
post-injury 
(Days) 

Mean age of 
mTBI 
participants 
(Years) 

Sex of mTBI 
participants 
(% male) 

Control type Analysis type Risk of bias 

Development of Post-Traumatic Stress 
Disorder (Rowland et al., 2018) 

MEG Working Memory N-Back Task Reveals 
Functional Deficits in Combat-Related 
Mild Traumatic Brain Injury (Huang et al., 
2019) 

USA, case- 
control 

Veterans or 
active-duty 
military 
personnel with 
persistent PCS 

Military 25 315 27 100 20 veterans or 
active-duty 
military 
personnel 

Task-based source 
analysis 

Lowest 

Marked Increases in Resting-State MEG 
Gamma-Band Activity in Combat-Related 
Mild Traumatic Brain Injury (Huang et al., 
2019) 

USA, case- 
control 

Veterans or 
active-duty 
military 
personnel with 
persistent PCS 

Military 25 594 28 100 35 veterans or 
active-duty 
military 
personnel 

RS source analysis Highest 

Single-subject-based whole-brain MEG slow- 
wave imaging approach for detecting 
abnormality in patients with mild 
traumatic brain injury (Huang et al., 2014) 

USA, case- 
control 

Persistent PCS 36 Military, 
48 Civilian 

84 265 29 83 11 veterans or 
active-duty 
military 
personnel 68 
civilian HC 

RS source analysis Highest 

Resting-State Magnetoencephalography 
Reveals Different Patterns of Aberrant 
Functional Connectivity in Combat- 
Related Mild Traumatic Brain Injury ( 
Huang et al., 2017) 

USA, case- 
control 

Veterans or 
active-duty 
military 
personnel 

26 Military 26 508 28 100 22 veterans or 
active-duty 
military 
personnel 

RS connectivity 
analysis 

Highest 

Integrated imaging approach with MEG and 
DTI to detect mild traumatic brain injury in 
military and civilian patients (Huang et al., 
2009) 

USA, case- 
control 

Persistent PCS 4 Sports, 4 
Military, 2 
Civilian 

10 353 25 90 14 HC RS source analysis. Highest 

Attentional dysfunction and recovery in 
concussion: effects on the P300m and 
contingent magnetic variation (Petley 
et al., 2018) 

Canada, case- 
control 

Consecutive ED 
mTBI patients 

2 Sports, 11 
Civilian 

13 Longitudinal 26 31 13 HC Task-based ERFs Highest 

Complexity analysis of resting state 
magnetoencephalography activity in 
traumatic brain injury patients (Luo et al., 
2013) 

USA, case- 
control 

Not specified 15 Military, 3 
Civilian 

18 1859 29 100 18 HC Network metrics Highest 

Filling in the gaps: Anticipatory control of 
eye movements in chronic mild traumatic 
brain injury (Diwakar et al., 2015) 

USA, case- 
control 

mTBI clinic or 
neurology 
referrals with 
persistent PCS 

13 Sports, 12 
Civilian 

25 968 33 84 25 HC including 
from other 
studies 

Task-based source 
analysis 

Highest 

Objective documentation of traumatic brain 
injury subsequent to mild head trauma: 
Multimodal brain imaging with MEG, 
SPECT, and MRI (Lewine et al., 2007) 

USA, cohort Outpatient clinics 
with persistent 
PCS > 1 year 

30 Civilian 30 1011 38 53 None RS source analysis Highest 

Neuromagnetic assessment of 
pathophysiologic brain activity induced by 
minor head trauma (Lewine et al., 1999) 

USA, case- 
control, 
longitudinal 

mTBI with or 
without PCS 

Not specified 30 345 36 60 20 HC RS source analysis Highest 

Aberrant Whole-Brain Transitions and 
Dynamics of Spontaneous Network 
Microstates in Mild Traumatic Brain Injury 
(Antonakakis et al., 2020) 

USA, case- 
control 

Texas trauma 
centres 

2 Sports, 28 
various 

30 Not specified 29 60 50 HC Network metrics Highest 

Local and large-scale beta oscillatory 
dysfunction in males with mild traumatic 
brain injury (Zhang et al., 2020) 

Canada, case- 
control 

Non-consecutive 
ED mTBI patients 

12 Sports, 15 
Civilian 

27 39 30 100 23 HC RS source analysis, 
RS connectivity 
analysis 

Intermediate  
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inferior temporal lobes, and the cerebellum (Huang et al., 2014). The 
occipital lobes were noted to be least likely to have excess delta power in 
mTBI participants compared to controls in three papers (Li et al., 2015; 
Huang et al., 2014; Lewine et al., 2007). Antonakakis et al. was the only 
paper to report that controls had increased power in the delta frequency 
band over the frontal region compared to mTBI participants (Antona-
kakis et al., 2016). They calculated relative power in sensor space, and 
instead showed that theta and alpha frequency bands had higher power 
in mTBI participants compared to controls over the frontal region. Four 
papers reported mTBI participants had an increased power in the theta 
frequency band relative to controls (Li et al., 2015; Dunkley et al., 2015; 
Antonakakis et al., 2016; Kaltiainen et al., 2018), and the most likely 
sites were the temporal lobes and subcortical areas. Some studies com-
bined delta and theta to assess for excess low frequency activity (LFA) in 
mTBI (Kaltiainen et al., 2018). This review did not assess the specificity 
of these changes; there is evidence that other conditions, e.g. Alz-
heimer’s disease demonstrate excess LFA on EEG (Hamm et al., 2015). 

The alpha frequency band was reported to show increased power in 
mTBI participants compared to controls in three papers (Li et al., 2015; 
Antonakakis et al., 2016; Mǐsić et al., 2016)and the opposite relationship 
in two papers (Dunkley et al., 2015; Popescu et al., 2016). The latter two 
papers suggest that an increased power in LFA and a decrease in alpha 

frequency band power represents a slowing of alpha activity in mTBI. 
However, Mǐsić et al. noted an increased power in the alpha frequency 
band and decreased power in the gamma frequency band in civilian 
mTBI versus both civilian controls and military personnel, some of 
whom had PTSD (Mǐsić et al., 2016). Only one paper reported significant 
differences in the beta frequency band. Dunkley et al. found beta power 
to be significantly reduced in mTBI compared to controls in the frontal 
and temporal lobes (Zhang et al., 2020). Huang et al. reported that in 
military mTBI participants with chronic PCS there was widespread 
increased power in the gamma frequency band relative to military 
controls (Huang et al., 1991). 

Kaltiainen et al. noted that only MRI T2 hyperintense lesions within 
3 cm of the cortex were associated with aberrant theta frequency band 
activity (Kaltiainen et al., 2018). Similarly, Huang et al. showed in 10 
mTBI patients with persistent post-concussive symptoms that aberrant 
gamma frequency band activity was associated with nearby non-major 
white matter tract damage, identified by decreased fractional anisot-
ropy with DTI (Huang et al., 2009). 

3.3. Connectivity analysis 

Combining both intra and cross-frequency analyses the most 
frequently reported band specific connectivity analysis was in the delta 
frequency band, in nine of the 17 papers. Of these, three reported an 
increase in delta frequency band connectivity in participants with mTBI 
relative to controls (Dunkley et al., 2015; Li et al., 2018; Huang et al., 
2017), and two reported a decrease (Antonakakis et al., 2016; Vakorin 
et al., 2016). Four papers reported their findings using an alternative 
network metric, such as complexity and these will be discussed at the 
end of this section (Antonakakis et al., 2017a, 2017b, 2016c; Dimitriadis 
et al., 2017). The three papers reporting a relative increase in mTBI 
participants each noted this change in different regions of the frontal 
and temporal lobes. The putamen was noted to be implicated in two of 
the papers. None reported an increased connectivity in the occipital 
lobes. Of the two papers reporting decreased delta frequency band 
connectivity, one reported this over bilateral frontal areas in sensor 
space (Antonakakis et al., 2016). The other reported decreased con-
nectivity to and from the occipital lobe in mTBI participants relative to 
controls (Vakorin et al., 2016). Four papers reported an increase in the 
theta frequency band connectivity (Dunkley et al., 2015; Li et al., 2018; 
Rowland et al., 2017; Luo et al., 2013), while none reported a decrease. 
This includes three papers that also reported an increase in the delta 
frequency band connectivity, with similar brain locations found to be 
responsible for both. 

Alpha frequency band connectivity analysis was reported in seven 
papers. Four papers from the same group reported an increase in mTBI 
participants relative to controls (Dunkley et al., 2015, 2018; Mǐsić et al., 
2016; Vakorin et al., 2016). One paper showed a non-significant 
decrease (Li et al., 2018), and two used alternative network metrics 
(Antonakakis et al., 2017; Dimitriadis et al., 2015). The most frequent 
locations to detect an increased connectivity were the frontal and then 
temporal lobes. Dunkley et al. examined both the default mode and 
motor networks in the resting state and found an increased connectivity 
in these networks in mTBI participants (Dunkley et al., 2018). 

Beta frequency band connectivity was reported in five papers. Three 
reported an increase (Antonakakis et al., 2016; Huang et al., 2017; 
Dunkley et al., 2018), in the frontal and temporal lobes of mTBI par-
ticipants relative to controls and one paper noted this was due to sig-
nificant cross frequency coupling between the beta and high gamma 
frequency bands (Antonakakis et al., 2016). One paper reported a 
reduction in beta frequency band connectivity in mTBI participants 
relative to controls, with the most marked reduction in the bilateral 
somatosensory and motor cortices (Zhang et al., 2020). One paper re-
ported alternative network metrics (Antonakakis et al., 2017). Gamma 
frequency band connectivity was reported in six papers, with three 
reporting an increased connectivity, mostly in the frontal lobes in mTBI 

Table 2 
Summary of spectral power analysis, with number of mTBI participants (n), and 
risk of bias assessment.  

Frequency 
band 

Reduced in 
mTBIrelative to 
controls 

Neutral Increased in 
mTBIrelative to 
controls 

Delta (Antonakakis, 
Dimitriadis et al. 
2016) (30 – highest) 

(Zhang, Safar 
et al. 2020)(27 – 
intermediate) 

(Lewine, Davis et al. 
1999)(30 – highest)( 
Lewine, Davis et al. 
2007)(30 – highest)( 
Huang, Theilmann 
et al. 2009)(10 – 
highest)(Huang, 
Nichols et al. 2012) 
(45 – intermediate)( 
Huang, Nichols et al. 
2014)(84 – highest)( 
Dunkley, Da Costa 
et al., 2015)(45 – 
intermediate)(Li, 
Pagnotta et al. 2015) 
(31 – intermediate)( 
Swan, Nichols et al. 
2015)(31 – 
intermediate) 

Theta  (Zhang, Safar 
et al. 2020)(27 – 
intermediate) 

(Antonakakis, 
Dimitriadis et al. 
2016)(30 – highest)( 
Dunkley, Da Costa 
et al., 2015)(45 – 
intermediate)( 
Kaltiainen, Helle et al. 
2018)(26 – highest)( 
Li, Pagnotta et al. 
2015)(31 – 
intermediate) 

Alpha (Dunkley, Da Costa 
et al., 2015)(45 – 
intermediate)( 
Popescu, Hughes 
et al. 2016)(32 – 
highest)  

(Antonakakis, 
Dimitriadis et al. 
2016)(30 – highest)( 
Li, Pagnotta et al. 
2015)(31 – 
intermediate)(Misic, 
Dunkley et al. 2016) 
(20 – intermediate) 

Beta (Zhang, Safar et al. 
2020)(27 – 
intermediate)   

Gamma (Misic, Dunkley et al. 
2016)(20 – 
intermediate)  

(Huang, Huang et al. 
2019)(25 – highest)  
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participants relative to controls (Antonakakis et al., 2016; Huang et al., 
2017; Dunkley et al., 2018). Two papers reported the opposite, with one 
finding that it was an increased high gamma functional network that 
most accurately distinguished mTBI participants from both controls and 
participants with PTSD (Mǐsić et al., 2016; Vakorin et al., 2016). One 
paper reported alternative network metrics in isolation (Antonakakis 
et al., 2017). 

Alternative network metrics included calculating coefficients of: 
small-worldness (Antonakakis et al., 2017; Rowland et al., 2017), rich 
club nodes (Antonakakis et al., 2017a, 2017b; Dimitriadis et al., 2017), 
efficiency (Antonakakis et al., 2016; Dimitriadis et al., 2017, 2015; 
Zouridakis et al., 2012), and complexity (Antonakakis et al., 2016; Luo 
et al., 2013). Summarising these results is challenging, given the vari-
ability of analysis methods, and given few findings were replicated. 
Many used a data driven machine-learning approach to define differ-
ences between participants with mTBI and controls and quoted high 
precision within their own training datasets. Three papers from the same 
research group described a hypersynchronised delta frequency band 
modulated rich club network and lower global efficiency in mTBI par-
ticipants relative to controls (Antonakakis et al., 2017a, 2017b; Dimi-
triadis et al., 2017). 

3.4. Task-based analysis 

Of the nine papers that included task-based analyses; three assessed 
working memory (Shah-Basak et al., 2018; Popescu et al., 2019; Huang 
et al., 2019), two set-shifting (da Costa et al., 2015; Pang et al., 2016), 
and one visual attention (Petley et al., 2018), visual tracking (Diwakar 
et al., 2015), picture naming (Popescu et al., 2017), and auditory in-
formation processing (Kaltiainen et al., 2019). These tasks were per-
formed during the MEG recording, while the analyses above only used 
resting state data. Only one paper performed a connectivity analysis 
(Pang et al., 2016), while the rest performed spectral power analyses. 
The working memory tasks showed left lingual gyrus hyperactivation, as 
well as asymmetry of hippocampal activation (Shah-Basak et al., 2018), 
and bilateral frontal pole hyperactivation, in all frequency bands in 
mTBI participants relative to controls (Huang et al., 2019). However, 
Popescu et al. found a relative reduction in alpha frequency band power 
in the left rostral middle frontal region was correlated with task per-
formance (Popescu et al., 2019). This was more strongly associated with 
PTSD symptom severity evaluated using the Post Traumatic Stress Dis-
order Checklist-Military (PCL-M), than the severity of mTBI in their 
cohort study. 

In the set-shifting tasks, mTBI participants had longer reaction times 
and poorer performance in the extradimensional shift condition 
compared to controls. However, both set-shifting conditions showed 
mTBI participants had an aberrant sequence of brain area activation. 
This was significant in the right frontal and bilateral parietal lobes (da 
Costa et al., 2015). The same group showed that connectivity between 
the occipital lobes and the rest of the brain in the alpha frequency band 
was reduced in mTBI participants compared to controls (Pang et al., 
2016). Petley et al. showed reduced global field strength and delayed 
reaction times in a small sample of mTBI participants compared to 
controls during a visual attention task (Petley et al., 2018). Visual 
tracking of an intermittently obscured target showed lower performance 
in mTBI participants and was associated with widespread relative 
changes in beta frequency band power compared to controls (Diwakar 
et al., 2015). During picture naming there was a reduction in the 
amplitude of the event-related MEG signal in the dominant hemisphere 
association areas in those of the cohort whose memory test results were 
poorest (Popescu et al., 2017). Kaltiainen et al. found altered activation 
globally in the alpha frequency band during a paced auditory serial 
addition test in mTBI participants compared to controls (Kaltiainen 
et al., 2019). 

3.5. Clinical outcome and MEG results 

Five papers reported the correlation between their MEG results and 
clinical interview results or symptom questionnaire scores, as a surro-
gate for clinical outcome. Two papers reported the sum of all regions 
with excess LFA positively correlated with symptom score on the Head 
Injury Symptom Checklist and symptom severity in a structured clinical 
interview, respectively (Huang et al., 2012; Lewine et al., 1999). On the 
contrary, two papers commented specifically that they did not find a 
significant correlation between MEG abnormalities and mTBI symp-
toms. This included resting state LFA not correlating with symptoms as 
recorded by the European Brain Injury Questionnaire (Lewine et al., 
2007), and theta frequency band activity not correlating with symptom 
score on the Rivermead Post-Concussion Symptom Questionnaire (Kal-
tiainen et al., 2018). Dunkley et al. reported increased connectivity in 
the alpha and gamma frequency bands within the default mode network 
positively correlated with symptom score on the Sports Concussion 
Assessment Tool 2 (Dunkley et al., 2018). 

There can be diagnostic uncertainty when attempting to differentiate 
PCS and PTSD. While not the focus of this review, four of the included 
papers reported correlations between their MEG results, predominantly 
in the alpha frequency band and co-morbid PTSD symptoms (Huang 
et al., 2014; Popescu et al., 2016, 2019; Rowland et al., 2018). Popescu 
et al. reported lower power frontally in the resting state alpha frequency 
band, in those who screened positive for PTSD with the PCL-M, 
compared to those who did not, as well as those who had loss of con-
sciousness associated with their mTBI (Popescu et al., 2016). During a 
working memory task frontal alpha frequency band power negatively 
correlated with symptom score (Popescu et al., 2019). Rowland et al. did 
not find a correlation with symptom scores; however, they did show a 
shift in connectivity from the alpha to theta frequency bands in both 
mTBI and PTSD (Rowland et al., 2017). There were few network-level 
differences between the mTBI, PTSD and dual diagnosis groups in this 
study in the alpha frequency band, however when considering all fre-
quency bands, the mTBI group had increased small-worldness and the 
PTSD group had reduced small-worldness. The same group replicated 
their findings of increased small-worldness when participants had PTSD 
detected using the Clinician-Administered PTSD Scale 5 in addition to 
mTBI (Rowland et al., 2018). 

Three of the included papers reported on the correlation between 
MEG findings and symptoms of depression or anxiety (Dunkley et al., 
2015; Huang et al., 2014; Popescu et al., 2017). Huang et al. reported 
that delta frequency power in the anterior cingulate cortex correlated 
with depressive symptoms recorded using a modified Head Injury 
Symptoms Checklist (Huang et al., 2014). Dunkley et al. reported alpha 
frequency connectivity between left occipital and bilateral temporal and 
subcortical regions was positively correlated with Patient Health 
Questionnaire 9 and Generalised Anxiety Disorder 7 score (Dunkley 
et al., 2015). Yet, Popescu et al. reported no correlation between global 
spectral power and either of these scores (Popescu et al., 2017). Major 
depressive disorder, independent of mTBI, has been associated with a 
global excess of LFA in EEG studies (Alamian et al., 2017; Newson and 
Thiagarajan, 2019). Huang et al. reported trouble concentrating was 
associated with increased delta frequency power in the right orbito-
frontal cortex and Dunkley et al. reported a positive correlation between 
low frequency connectivity and inattention scores on Conner’s 
Comprehensive Behaviour Rating Scale (Dunkley et al., 2015; Huang 
et al., 2014). 

3.6. Neuropsychological testing and MEG results 

There was marked variability in approach when correlating MEG 
data with neuropsychological testing data. Some papers used resting 
state data, while others used task specific data, e.g., from an N-back 
working memory task and both spectral power and connectivity ana-
lyses were used. The most reported neuropsychological assessments 
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were the Trail Making Test Part B within the Delis Kaplan Executive 
Function Score (DKEFS), and the Digit Symbol Coding task within the 
Weschler Adult Intelligence Scale. Four papers reported correlations 
between these test scores and either power or connectivity of specific 
frequency bands in the frontal MEG results (Robb Swan et al., 2015; 
Huang et al., 2019a, 2017b, 2019c). For the Trail Making Test Part B the 
right dorsolateral prefrontal cortex power in all frequency bands (Huang 
et al., 2019), and left ventrolateral prefrontal cortex beta frequency 
band functional connectivity (Huang et al., 2017), were negatively 
correlated with test performance. LFA power in the frontal poles and 
right precentral gyrus were also reported to be negatively correlated 
with test performance (Robb Swan et al., 2015). Finally, power in the 
gamma frequency band in the right supplementary motor area was 
negatively correlated with test performance and distinguished between 
mTBI participants and controls (Huang et al., 2019). 

For the Digit Symbol Coding task, the right prefrontal cortex power 
in all frequency bands and low frequency power in right temporal gyri 
were negatively correlated with test performance (Robb Swan et al., 
2015; Huang et al., 2019). Huang et al. found widespread negative 
correlations between gamma frequency band power and test perfor-
mance (Huang et al., 2019). While the left superior parietal lobe, right 
precentral gyrus and left frontal pole LFA were positively correlated 
with test performance (Robb Swan et al., 2015). Left ventrolateral pre-
frontal cortex beta band connectivity was also positively correlated with 
test performance (Huang et al., 2017). Spectral power in the frontal 
poles, left superior parietal lobe gamma frequency band power and 
functional connectivity of the beta frequency band in the left ventro-
lateral prefrontal cortex were negatively correlated with performance of 
the letter fluency subtest within the DKEFS by the same author (Huang 
et al., 2019a, 2017b, 2019c). 

3.7. Diagnostic application 

Fifteen papers described methods to determine participant classifi-
cation between mTBI participants and controls. From the reports, it is 
unclear if any of these used methods that were set prospectively, prior to 
data collection. Four of these used resting state LFA (Lewine et al., 1999; 
Kaltiainen et al., 2018; Huang et al., 2012, 2014). Lewine et al. 
demonstrated the potential role of MEG in 1999 when they reported a 
sensitivity of 65% for excess LFA in mTBI participants with persistent 
PCS. This test had a false positive rate of 5% in healthy controls, and 
10% of mTBI participants without persistent PCS tested positive (Lewine 
et al., 1999). Kaltiainen et al more recently showed a sensitivity of 30% 
in a symptomatic subacute mTBI sample, with a false positive rate in 
healthy controls of 1% (Kaltiainen et al., 2018). Huang et al. reported a 
significant increase in sensitivity by considering normalised power on an 
individual voxel, not whole brain basis. They reported sensitivities of 
85% and 87% in symptomatic mTBI participants with specificities of 
100% (Huang et al., 2012, 2014). The cut-off threshold was set after data 
processing to achieve this maximum specificity for both papers. 

Ten papers applied a machine learning approach to distinguish the 
connectivity analysis of mTBI participants from controls (Antonakakis 
et al., 2016e, 2017f, 2017g, 2016h; Zhang et al., 2020; Dimitriadis et al., 
2015, 2017; Zouridakis et al., 2012; Vakorin et al., 2016). Most papers 
did not split their data into model training and test sets, and subse-
quently reported extremely high, possibly over-fitted performance. 
Diwakar et al. used a novel approach, combining MEG features with task 
performance and neuropsychological testing results to achieve a 94% 
classification accuracy in a chronic symptomatic mTBI cohort compared 
to healthy controls (Diwakar et al., 2015). 

3.8. Time post-injury and MEG results 

While the mean time between MEG assessment and injury ranged 
from six days to 11 years in the papers incorporated in this systematic 
review, five papers included repeat MEG imaging sessions (Lewine et al., 

1999; Kaltiainen et al., 2018, 2019; Li et al., 2018; Petley et al., 2018). 
Three papers showed the incidence of abnormal LFA dropped as the 
interval between MEG imaging and injury increased, suggesting this 
represents an acute to subacute marker of injury that may also be linked 
to recovery (Lewine et al., 1999; Kaltiainen et al., 2018; Li et al., 2018). 
However, when considering all papers that reported LFA as able to 
differentiate mTBI participants from controls, the mean time to scanning 
ranges from one week to 33 months. Given this discrepancy between 
longitudinal and cross-sectional study designs, it is not possible to 
ascertain whether excess LFA resolution is associated with symptomatic 
recovery from mTBI. Two of the papers with serial MEG imaging found 
that differences in task-based alpha frequency band power and event 
related potentials differentiated mTBI participants and controls acutely 
and 3–6 months later, suggesting the MEG abnormalities persist (Petley 
et al., 2018; Kaltiainen et al., 2019). Both papers noted that only small 
subsets of their samples returned for serial MEG sessions, which may 
have biased their results. 

3.9. Mechanism of injury and MEG results 

Individual studies did not report the ability to detect differing MEG 
abnormalities dependant on the mechanism of injury. The mechanisms 
were divided into sports-related concussion, any other civilian injury, or 
those suffered by military personnel, which could be further split into 
blast (from explosive blast waves) and non-blast trauma. In total 16 
papers reported mTBI participants from more than one of these groups, 
though small sample sizes may have led to underpowered comparison. 

3.10. Risk of bias 

Three papers were sufficiently detailed to complete at least two 
thirds of the relevant Scottish Intercollegiate Guidelines Network critical 
appraisal checklist and judged to be at the lowest risk of bias (Vakorin 
et al., 2016; Dunkley et al., 2018; Huang et al., 2019). Seven papers were 
judged at intermediate risk of bias (Mǐsić et al., 2016; Zhang et al., 2020; 
Shah-Basak et al., 2018; Kaltiainen et al., 2019; Dunkley et al., 2015; 
Robb Swan et al., 2015; Huang et al., 2012), and the remaining 18 at 
high risk of bias. Frequent concerns for potential bias in the 32 case 
control studies were lack of clinical description of participants and 
adequate screening of controls to avoid inclusion of cases with many 
papers not reporting exclusion criteria. In addition, there was often 
inadequate controlling for potential confounders, and lack of a clearly 
defined prospective research question. Within the five cohort studies, 
areas of potential bias included a lack of clearly defined pre-specified 
outcomes and not reporting on blinding when performing the analysis. 
Another potential concern is the possibility of overlapping clinical 
samples, or unacknowledged re-analysis of previous datasets, which 
may lessen the impact of the entire field. 

4. Discussion 

This review has identified that while MEG has demonstrated clear 
promise as a functional neuroimaging modality, it is not yet a diagnostic 
or prognostic clinical tool in mTBI of sufficient sensitivity and speci-
ficity. However, MEG is one of the most sensitive imaging modalities for 
the evaluation of mTBI, considering the very low sensitivity of CT, 
structural MRI and EEG. There is growing consensus around key features 
such as an increase in LFA power and widespread connectivity changes 
following mTBI. The consistently high prevalence of MEG abnormalities 
across several studies, and the initial successes of AI algorithms to 
classify participants, implies that MEG is one of the most sensitive 
neuroimaging modalities to investigate this condition. Future work 
should concentrate on harmonising biomarkers and data analysis 
methods, so that different groups can generate a robust evidence base 
quickly. Harmonisation should also aim to build on the current pub-
lished longitudinal studies to establish the natural history of these 
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changes in the weeks, months and years following injury. Current evi-
dence indicates that task-based MEG data, with cognitive loading, are 
also an important tool to improve our understanding of the impact of 
mTBI on neural activity and could possibly play a role in guiding ther-
apeutic interventions. 

Increases in LFA power have been reported with a frontal predilec-
tion. This correlates with acute changes in mTBI in the corpus callosum 
seen using DTI. In addition, when abnormal LFA and MRI lesions appear 
to co-localise, it suggests that LFA may arise from partial cortical deaf-
ferentation (Gloor et al., 1977). Despite this, LFA is known to be non- 
specific, occurring in other conditions such as depression or secondary 
to medication use (Newson and Thiagarajan, 2019). Differences in 
measurement techniques may explain the variation in reported preva-
lence of the abnormal LFA, so despite two studies suggesting it can 
resolve with time, and some evidence of association with symptoms or 
neuropsychology test results, its role as a diagnostic or prognostic 
marker is yet to be determined. The heterogeneity of available neuro-
psychological tests and symptom scoring tools additionally limits the 
robustness of this conclusion. The findings reported in this systematic 
review are often the result of group level comparisons, but two papers of 
intermediate risk of bias differentiated between their chronic PCS par-
ticipants and controls on a single participant level with high accuracy. 
However, none of the included studies met the criteria of a high quality 
prospective clinical diagnostic test accuracy study. 

Many papers have examined the role of network metrics, connec-
tivity, and machine learning. There is a lack of methodological homo-
geneity across papers, and studies have not addressed the direction of 
observed effects. However, an increase in delta and theta connectivity is 
reported, including in four of the papers at minimum or intermediate 
risk of bias. Authors have suggested that these effects are reflective of 
plasticity in recovery, and symptoms may be related to an inability to 
deactivate the default mode network. Network metric studies often used 
machine learning to report high levels of classification accuracy, but 
frequently used convenience samples of unmatched controls, making 
them vulnerable to spectrum bias. While not yet being clinically useful, 
this shows a potential role for machine learning, which should be 
explored further. 

The most common risks of bias identified in this review related to 
clarity of outcome measures, likely retrospective unblinded analysis and 
a lack of clinical description of participants, leading to the possibility of 
confounding. Most studies were small, the largest included 84 partici-
pants with mTBI. Additionally, the analysis performed was heteroge-
neous, with the most common type of analysis (a connectivity analysis) 
being performed in only 17 of the 37 included papers. There was a wide 
intra-study and inter-study range of time interval between injury and 
MEG scanning, which may mask some of the temporal evolution of MEG 
changes following mTBI. 

For future studies, collaboration across sites should be encouraged. 
This will increase sample size and power, and prospective registration 
with clear quantifiable outcome measures would limit bias. These 
should align with recommended core outcome sets for mTBI research 
(Carroll et al., 2001; Thompson et al., 2015). An appropriately matched 
trauma-exposed control group should be used. This is especially 
important if the intention is to apply machine learning techniques. This 
would be more representative of the population that mTBI participants 
are drawn from, ensure machine learning only detects features related to 
mTBI, and will reveal pragmatic false positive rates, which would be 
more applicable to clinical settings. To further limit bias, the baseline 
characteristics of both control and case samples should be clearly stated 
and ideally matched, given that this is known to influence MEG findings. 
Exclusion criteria should be well defined, dropout rates stated, and 
impact on results considered. Regarding the application of machine 
learning within these studies, training and test populations should be 
separate to avoid over-fitting. More importance should be given to 
repeatability, ideally across different scanners and clinical settings. 

5. Limitations 

The major limitations of this review were being unable to resolve its 
broad questions into quantitative measures and the inability to perform 
a meta-analysis of MEG data, based on the available literature. For 
example, different mechanisms of injury could not be differentiated by 
MEG within individual studies. If this data could be pooled, and assessed 
with a pre-specified analysis method, we could definitively answer this 
question. This issue arises because of the broad definition of mTBI, the 
complex nature of the MEG datasets and variety of analysis methods 
available and reported. It is likely that a pooling of original study 
datasets will be required to overcome this, but this was beyond the scope 
of this review. The review’s strengths include the prospectively regis-
tered systematic design and independent rating of papers, which should 
limit the risk of bias in its conclusions. Additionally, this review has 
identified and made recommendations to improve study methodology, 
frequently judged suboptimal by clinical critical appraisal tools. 

6. Conclusion 

To the best of the authors’ knowledge, this is the first prospectively 
registered systematic review of MEG studies focused on adult mTBI. This 
review has not identified sufficient evidence to support routine clinical 
use of MEG in mTBI currently. This is due to study heterogeneity, a lack 
of diagnostic test accuracy studies, and underpowered longitudinal 
studies of low quality. Despite this, some key areas of progress have been 
identified. These include the two most promising biomarkers of excess 
resting state low frequency power, and connectivity changes in all fre-
quency bands. These may represent biomarkers, with potential for 
diagnostic application, which reflect time-sensitive changes, or may be 
capable of offering clinically relevant prognostic information. Verifying 
these findings would help meet an urgent clinical need within civilian, 
sports and military medicine to identify and characterise mTBI, and to 
allocate neurorehabilitation resources of differing nature, complexity 
and cost. This is best done with prospective clinical studies, using pre- 
defined protocols and drawing on the research guidelines highlighted 
in this review. Collaboration across sites would help standardise analysis 
methods and reporting, allowing quantitative comparison of findings 
across studies. 
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