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Abstract

Background: Predicting species’ potential geographical range by species distribution models (SDMs) is central to
understand their ecological requirements. However, the effects of using different modeling techniques need further
investigation. In order to improve the prediction effect, we need to assess the predictive performance and stability of
different SDMs.

Methodology:We collected the distribution data of five common tree species (Pinus massoniana, Betula platyphylla, Quercus
wutaishanica, Quercus mongolica and Quercus variabilis) and simulated their potential distribution area using 13
environmental variables and six widely used SDMs: BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM. Each model run was
repeated 100 times (trials). We compared the predictive performance by testing the consistency between observations and
simulated distributions and assessed the stability by the standard deviation, coefficient of variation, and the 99% confidence
interval of Kappa and AUC values.

Results: The mean values of AUC and Kappa from MAHAL, RF, MAXENT, and SVM trials were similar and significantly higher
than those from BIOCLIM and DOMAIN trials (p,0.05), while the associated standard deviations and coefficients of variation
were larger for BIOCLIM and DOMAIN trials (p,0.05), and the 99% confidence intervals for AUC and Kappa values were
narrower for MAHAL, RF, MAXENT, and SVM. Compared to BIOCLIM and DOMAIN, other SDMs (MAHAL, RF, MAXENT, and
SVM) had higher prediction accuracy, smaller confidence intervals, and were more stable and less affected by the random
variable (randomly selected pseudo-absence points).

Conclusions: According to the prediction performance and stability of SDMs, we can divide these six SDMs into two
categories: a high performance and stability group including MAHAL, RF, MAXENT, and SVM, and a low performance and
stability group consisting of BIOCLIM, and DOMAIN. We highlight that choosing appropriate SDMs to address a specific
problem is an important part of the modeling process.
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Introduction

Species distribution models (SDMs), also known as climate

envelope models, habitat suitability models, and ecological niche

models, use environment data for sites of occurrence (presence) of

a species to predict a response variable, such as suitability, for a site

where the environmental conditions are suitable for that species to

persist and so may be expected to occur [1–7]. Since Nix et al.

begin to model the distribution of crop species in Australia [8],

empirical SDMs have emerged as valuable tools for predicting

both animal and plant distributional patterns [9,10]. Interest in

SDMs has increased dramatically, motivated principally by the

need to solve current ecological problems, such as understanding

the ecological requirements of species [11], assessing biodiversity

[12], managing nature reserves [1], predicting the potential for

invasion [13], and modeling biological responses to climate change

[3,6].

A variety of SDMs, each with specific advantages and

disadvantages, have been introduced to predict species spatial

distribution [14]. Differences in predictive performance arise from

different construction principles, the selection of environment

variables considered in the model, the specific distribution areas

and data input requirements (presence/absence data (PA) and

presence-only data (PO)) [2,4,5,7,15–18]. There are substantial

discrepancies in predicting species’ distributions by SDMs with

different predictive modeling method, which have highlighted the

uncertainties of prediction results [14,19–21]. These uncertainties

of prediction may puzzle stakeholders and policy makers, and cast

doubt on the reliability of species distribution predictions by

SDMs. Therefore, critical assessment of the predictive perfor-

mance and stability of SDMs need to be performed.

Model prediction performance can be assessed by Kappa

statistic, area under the receiver operating characteristic curve

(AUC), overall accuracy, sensitivity, specificity, and true skill
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statistic (TSS). Among them, the Kappa and AUC are most often

used [22,23]. In contrast to predictive accuracy, such studies

seldom consider the stability of SDMs as revealed by the

distribution of Kappa and AUC values after multiple trials [24].

Our aim here is to assess the predictive performance and stability

of different modeling techniques by evaluating the Kappa and

AUC values. To achieve this, we selected five common tree species

(Pinus massoniana, Betula platyphylla, Quercus wutaishanica,

Quercus mongolica and Quercus variabilis) in China to evaluate

six widely used species distribution models, BIOCLIM, DO-

MAIN, MAHAL (Mahalanobis distance), RF (random forests),

MAXENT (maximum entropy) and SVM (support vector

machine). We highlight that there are significant differences in

prediction performance and stability among different models.

Materials and Methods

Data description
One coniferous species (P. massoniana) and four broad-leaf

species (B. platyphylla, Q. wutaishanica, Q. mongolica and Q.
variabilis) were chosen as test species. They are all common and

dominant species widely distributed in China. Original distribu-

tion data come from the Eco-Environmental Sciences Research

Center in China. The data are based on the vegetation surveys

and research results in ecological system evaluation and ecological

function regionalization. The data are presence-only. Distribution

data were gathered from the Database for Ecosystems and

Ecosystem Service Zoning in China (http://www.ecosystem.

csdb.cn). All species distribution maps were rasterized at a spatial

resolution of five arc-minutes. Finally we obtained 312 presence

points for Q. variabilis, 1421 points for B. platyphylla, 2572 points

for Q. mongolica, 256 points for Q. wutaishanica, and 4079 points

for P. massoniana.

Table 1. Lists of the 26 environment variables.

Variable Symbol

Annual mean temperature (uC)a,b Bio1

Mean diurnal range (Mean of monthly (max temp - min temp)) (uC)a,b Bio2

Isothermality (6100)b Bio3

Temperature seasonality (standard deviation6100) (uC)a,b Bio4

Max temperature of warmest month (uC)b Bio5

Min temperature of coldest month (uC)b Bio6

Temperature annual range (uC)b Bio7

Mean temperature of wettest quarter (uC)a,b Bio8

Mean temperature of driest quarter (uC)b Bio9

Mean temperature of warmest quarter (uC)b Bio10

Mean temperature of coldest of quarter (uC)b Bio11

Annual precipitation (mm)a,b Bio12

Precipitation of wettest month (mm)b Bio13

Precipitation of driest month (mm)b Bio14

Precipitation seasonality (coefficient of variation) (mm)a,b Bio15

Precipitation of wettest quarter (mm)b Bio16

Precipitation of driest quarter (mm)b Bio17

Precipitation of warmest quarter (mm)b Bio18

Precipitation of coldest quarter (mm)a,b Bio19

Human footprinta,c HF

Human influence indexc HII

Human population density in year 2000 (persons/km2)a,c HPD

Soil organic carbon density (kg/m2 at 1 m depth)a,d SOC

Soil pH valuea,d SPH

Soil moisture indexa,d SMI

Altitude (m)a,b ALT

aVariables used in modeling.
bSee http://www.worldclim.org/.
cSee http://sedac.ciesin.columbia.edu/.
dSee http://www.sage.wisc.edu/atlas/maps.php.
Human footprint (HF) is based on the premise that the impact of human influence varies by biogeography and HF expresses as a percentage the relative human
influence in every biome on the land’s surface.
Human influence index (HII) is a measure showing direct human influence on ecosystems using eight measures of human presence (population density/km2, score of
railroads, score of major roads, score of navigable rivers, score of coastlines, score of nighttime stable lights values, urban polygons, and land cover categories).
Soil moisture index (SMI) reflects the ability of soil to supply moisture to plants and SMI can identify a quick onset of drought by demonstrating the observed dryness of
a soil relative to the plant’s ability to extract water as scaled over the range from field capacity to wilting point.
doi:10.1371/journal.pone.0112764.t001
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Building species distribution models requires accurate assess-

ment of species distribution data. The two predominant types of

data used are PA data and PO data [2,15–18]. In most studies, PO
data are obtained. In this case (only PO data obtained), for SDMs

using PA data, randomly selecting pseudo-absence data (back-

ground data) are required to build and assess the model, and the

pseudo-absence data selected randomly are acted as absence data

[25]. So SDMs using PA data can be used in this way. In our

studies, we selected some points as pseudo-absences data for RF

and SVM.

Five hundred pseudo-absence points for every species were

randomly generated from all points in the China excluding

available presence points. The dataset were partitioned randomly

into a training set and a test set with a ratio of 4:1. The former was

used for training the studied model for prediction, and the latter

was used for testing the final model for predictive performance and

stability. This process was repeated for 100 times. In each

iteration, test statistics (AUC and kappa) were calculated.

Environmental data
We collected 26 ecological-environmental variables (Table 1).

Data for 19 bio-climatic factors and a geographical factor were

extracted from the Global Climate Data (http://wwww.worldclim.

org), representing the period 1950–2000 (i.e., the present). These

data layers were produced by interpolating the average monthly

climate data on a 30-arc-second (approximately 1 km2) resolution

grid [26]. Three human disturbance factors come from the Center

for International Earth Science Information Network (http://

sedac.ciesin.columbia.edu), and three soil factors come from the

Atlas of the Biosphere (http://wwww.sage.wisc.edu/atlas/, the

Nelson Institute Center for Sustainability and the Global

Environment, University of Wisconsin-Madison).

The 26 variables can capture the main environmental gradients

of China [27]. Previous studies have confirmed these variables are

important to determine the plant distribution ranges in China

[28], and some studies on species distribution range have used the

similar variables as predictors of potential distribution patterns

[29–35].

Species distribution models with many potentially relevant

variables may lead to over-fitting and poor prediction performance

[27,36,37]. Thus, prior to model building, Pearson’s correlation

coefficients (Rs) were calculated between pairs of variables at all

points in China to determine which variables to include (Appendix

Figure S1 and Table S1). Variables showing a correlation (Rs) .
0.85 were considered redundant. Between any redundant

variables, only one would be kept, and others would be removed.

Many previous applications of SDMs have used the similar

method to choose suitable environmental variables

[27,31,34,36,37]. The 13 final environmental variables were

chosen as the variables parameters of SDMs (Table 1).

Modeling algorithms
We chose six species distribution models: BIOCLIM, DO-

MAIN, MAHAL (Mahalanobis distance), RF (random forests),

MAXENT (maximum entropy), and SVM (support vector

machine). These six SDMs are widely used in academic research

and species conservation [16,17,33,34].

The BIOCLIM model uses environmental data of all known

species distribution points and can determine the range of weather

conditions suitable for species occurrence. The percentile distri-

bution of every climatic variable within each grid in the species

distributions zone is used for multivariate analysis. If the ranges of

all climatic variables in the grid are within boundaries appropriate

for that species, the BIOCLIM model indicates that this place is

suitable [8,17].

The DOMAIN uses a point-to-point similarity metric based on

the Gower distance, which is a method for creating a distance

matrix from a set of characteristics of species. DOMAIN can

assign a classification value of habitat suitability index to each

potential site based on its proximity in environmental space to the

most similar positive occurrence location [38]. Then, a threshold

value of suitability is chosen to determine the distribution

boundaries of species’ ecological niche.

The MAHAL model is based on Mahalanobis distance (MD).

MD considers the variables correlations in the data set without

depending on the scale of measurements. The method ranks the

potential sites through their MD to a vector, which can express the

mean environmental values of all recorded environmental factors.

A certain distance threshold can act as the ecological niche

boundaries. These algorithm generate an elliptic envelope which

can explicitly explain the possible interrelations between these

environmental factors [21].

The RF, a classification and regression tree model, is a

combination of tree predictors where every tree can depend on

the values of a random vector sampled independently with the

same distribution for all trees in the forest [39,40].

MAXENT is based on a machine learning algorithm called

maximum entropy, and is based on the principle that species

without ecological constraints will spread as far as possible with a

distribution as close as possible to uniform [41].

The SVM is a machine-learning method that belongs to a

family of generalized linear classifiers. The principle of SVM is the

Vapnik Chervonenkis (VC) dimension and structural risk minimi-

zation theory [42]. The SVM model can find the most reasonable

way between species adaptability and complexity to yield the most

likely distribution according to the limited sample information

[43].

Each of the SDMs was operated with strictly following the

modeling technique and using the same 13 environmental

variables. Modeling data, advantages and disadvantages were

listed in Table S2. We chose ‘‘R’’ as the computing platform and

the dismo package to simulate species distribution [44,45].

Model evaluation and comparison
Kappa statistic and AUC were considered to be the best

evaluation standard and they were widely used in SDMs

[5,17,22,23,27,31,34,46,47]. We calculated Kappa and AUC

values according to the methods of Fielding & Bell [46] and

Hanley & McNeil [47], respectively.

The Kappa statistic for agreement is based on the optimal

threshold that can make the best of the information in the mixed

matrix to measure the performance of the model. Evaluation

criteria for the Kappa statistic are as follows: excellent (0.85–1.0),

very good (0.7–0.85), good (0.55–0.7), fair (0.4–0.55), and fail (,

0.4). The AUC derived from signal detection theory is the area

under the receiver operating characteristic curve (ROC). Evalu-

ation criteria for the AUC statistic are as follows: excellent (0.90–

1.00), very good (0.8–0.9), good (0.7–0.8), fair (0.6–0.7), and poor

(0.5–0.6) [22,23].

To evaluate the stability of the six models, we used the standard

deviation, coefficient of variation, and 99% confidence interval of

the Kappa and AUC values to reflect the scatter of results from

100 repetitions for each species. These criteria are statistically

significant and widely used in statistic [48], and many previous

studies have used them as stability indicators [49–51]. For

example, Elith et al. [50] review the aspects of uncertainty in

predictions of species distribution, and suggest some methods
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(especially the confidence intervals) for investigating and commu-

nicating these uncertainties. Olden et al. [51] use the confidence

intervals to estimate the percent correct classification of different

predictive models of fish species distributions.

Figure 1. Predicted geographic distribution areas for each species (Quercus variabilis, Betula platyphylla, Quercus mongolica, Quercus
wutaishanica and Pinus massoniana) in six SDMs (BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM).
doi:10.1371/journal.pone.0112764.g001

Table 2. The mean value and confidence interval of AUC and Kappa.

AUC
(Mean6SD)

Kappa
(Mean6SD)

Confidence interval of AUC
(99% confidence level)

Confidence interval of Kappa
(99% confidence level)

BIOCLIM 0.94560.019 b 0.85060.037 b 0.94020.950 0.84020.859

DOMAIN 0.95660.014 b 0.82960.039 b 0.95320.960 0.81920.839

MAHAL 0.97160.012 a 0.88760.033 a 0.96820.974 0.87920.895

RF 0.97660.010 a 0.90260.030 a 0.97320.978 0.89420.910

MAXENT 0.97560.010 a 0.88960.031 a 0.97220.977 0.88120.897

SVM 0.97060.012 a 0.89160.031 a 0.96720.973 0.88320.899

Means with different letters differ significantly among the six SDMs (BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM). SD is the abbreviation for standard deviation.
doi:10.1371/journal.pone.0112764.t002
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Predictive maps
The calculated species distributions maps obtained by these

models are not binary (0 or 1) or discrete data sets, but a set of

continuous probability values. To determine the species distribu-

tion range, we need to set a suitable threshold value below which a

species is considered absent. There are many threshold optimiza-

tion criteria, such as Max of Kappa, Max (sensitivity + specificity),

traditional default threshold 0.5, and so on. The threshold

selection of Max (sensitivity + specificity) can minimize the mean

value of the error rate for positive observation values and negative

observation values. Max (sensitivity + specificity) equals to the

optimal threshold point on the ROC curve whose tangent has a

corresponding slope [52] and it also equals to Max (sensitivity +
specificity21), otherwise known as TSS [53]. We used the

threshold value of Max (sensitivity + specificity) to generate a

binary map depicting predicted areas for each species (Figure 1).

Results

To display mapped model results for the five tree species, we

chose the map which was closest to the mean values of AUC for

each species as the finally binary map (Figure 1 and Table S3).

According to the mean values of Kappa and AUC, the prediction

results were most reliable for Q. variabilis and least reliable for P.
massoniana. The six SDMs were able to well predict all species

distributions, though the predict results were different. The mean

AUC values from 100 repetitions of the MAHAL, RF, MAXENT,

and SVM models were similar (range, 0.97020.976) and all were

significantly higher (p,0.05) than the mean AUCs for BIOCLIM

and DOMAIN (0.945 and 0.956, respectively) (Table 2). Like the

mean AUC values, the mean Kappa values from MAHAL, RF,

MAXENT, and SVM trials (range, 0.88720.902) were similar

and significantly higher (p,0.05) than the mean Kappa values for

BIOCLIM and DOMAIN (0.850 and 0.829, respectively)

(Table 2). The mean standard deviations (SD) of the Kappa and

AUC values from BIOCLIM and DOMAIN trials were signifi-

cantly higher than those for MAHAL, RF, MAXENT, and SVM

(both p,0.05) (Table 2), while the 99% confidence intervals (CIs)

for MAHAL, RF, MAXENT, and SVM (AUC range, 0.9672

0.978; Kappa range, 0.87920.910) were significantly narrower

than those for BIOCLIM and DOMAIN (AUC, 0.94020.960;

Kappa, 0.81920.859) (p,0.05 for all) (Table 2). Finally, the

coefficient of variability (CV) of the mean AUC and Kappa values

for BIOCLIM and DOMAIN were significantly higher than those

for MAHAL, RF, MAXENT, and SVM (p,0.05 for both)

(Figure 2 and Figure 3).

Discussion

Previous studies have doubted the usefulness of SDMs method

[54,55] for their potential error sources, such as biotic errors and

algorithmic errors [2]. Biotic errors can be caused by some

Figure 2. The variable coefficient (CV) of AUC for six SDMs (BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM).
doi:10.1371/journal.pone.0112764.g002
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ecological factors (e.g., biotic interactions, species dispersal ability,

and population’s adaptation) that are not included in building

SDMs, which can cause the prediction values of species

distribution zone to depart from equilibrium assumption inhered

in SDMs [56]. Algorithmic errors can be caused by the limitation

of modeling techniques and the uncertainty of models that we

have discussed here. Though there are some uncertainties, many

studies have documented that SDMs provide the best available

method to predict species’ potential ranges [14,19–21]. Our results

highlight there ought to be more testing and improving the

method to enhance confidence in the prediction ability and

stability of SDMs. By demonstrating large differences of predictive

performance and stability of different modeling techniques, our

study confirms that choosing appropriate SDMs to address a

specific problem is an important step in the modeling process.

The six SDMs tested yielded different distribution maps using

the same 13 ecological variables, and they could be divided into a

high performance group (MAHAL, RF, MAXENT and SVM),

and a low performance group (BIOCLIM and DOMAIN), based

on their predictive performance and stability. Our result agrees

well with other studies. For example, Reiss et al. [35] show that

MAXENT, RF and SVM have similar predictive performance,

and their AUC values are significantly higher than BIOCLIM.

Tsoar et al. [17] confirm that MAHAL can predict better than

BIOCLIM and DOMAIN. Elith & Graham et al. [16] show that

MAXENT has significantly higher predictive performance than

BIOCLIM and DOMAIN. Giovanelli et al. [34] confirm that

MAXENT and SVM have a similar predictive performance, and

they are the most accurate prediction models among the four

tested SDMs (BIOCLIM, SVM, DOMAIN, and MAXENT).

Collectively, these studies indicate the superior predictive accuracy

and stability of MAHAL, RF, MAXENT, SVM over other

models, including the BIOCLIM and DOMAIN models study

here.

Different SDMs are differentially sensitive to various environ-

mental variables, thereby affecting stability. Alternatively, models

less sensitive to these changes should have greater stability [57].

We speculate that the superior stability and prediction perfor-

mance of these four models (BIOCLIM, SVM, DOMAIN, and

MAXENT) are due to methodological advances in machine

learning, mathematical modeling, and the statistical tools em-

ployed (Table S2). Several recent SDMs that consider more recent

ecological findings and incorporate the improved mathematical

modeling techniques, machine learning algorithms, and more

robust statistical tools demonstrate greater predictive accuracy

than earlier SDMs [9,34,41,43,58]. For example, MAXENT has

some inherent advantages including: (1) It can consider interac-

tions between environmental variables, (2) It has efficient

deterministic algorithms which can be benefit to predict species’

optimal probability distribution, and (3) It can avoid over-fitting

[41]. The principle of MAXENT is to satisfy all known conditions

without making subjective assumptions. When we use MAXENT

Figure 3. The variable coefficient (CV) of Kappa for six SDMs (BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM).
doi:10.1371/journal.pone.0112764.g003
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to forecast the probability distribution of a random event, the

probability distribution is more uniform and the stability is higher

[41].

Of course, many other variables, such as species rarity, sample

size, spatial scale, size of the species’ geographic range, the

selection of environment variables, selection method for pseudo-

absence data, and the autocorrelation between geography and

space can affect predictive performance [15–17,59]. Additional

methodological improvements that may obviate potential prob-

lems such as over-fitting and over-dispersion include: (1) assessing

the influence of different scales according to species dispersal

capacity, behavior, and the extent of the study area, and (2)

applying enhanced frameworks by better reflecting observed

species population trends and distributions for assessing uncer-

tainties and errors in SDMs. Though some studies have also

confirmed that MAHAL, RF, MAXENT, and SVM are superior

to BIOCLIM and DOMAIN [16,17,34,35,58,60], whether the

prediction performances are also superior for other species or

similar species in different geographic regions requires further

study.

With the development of SDMs, some dynamic models can also

reflect the environmental dynamic change and biological dynamic

response, and they are helpful to truly reflect species potential

dynamic distribution. We therefore suggest that future studies

should develop more sophisticated dynamic models by incorpo-

rating some dynamic parameters (e.g. dynamic environmental

variables, time of development events, growth rates, species

migration ability, competitive interactions, or species sensitivity

to climate), which are known to affect species potential distribution

patterns but are often ignored in traditional static SDMs.
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