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Abstract

Brain-specific homing and direct interactions with the neural substance are prominent hypotheses for brain metastasis
formation and a modern manifestation of Paget’s ‘‘seed and soil’’ concept. However, there is little direct evidence for this
‘‘neurotropic’’ growth in vivo. In contrast, many experimental studies have anecdotally noted the propensity of metastatic
cells to grow along the exterior of pre-existing vessels of the CNS, a process termed vascular cooption. These observations
suggest the ‘‘soil’’ for malignant cells in the CNS may well be vascular, rather than neuronal. We used in vivo experimental
models of brain metastasis and analysis of human clinical specimens to test this hypothesis. Indeed, over 95% of early
micrometastases examined demonstrated vascular cooption with little evidence for isolated neurotropic growth. This vessel
interaction was adhesive in nature implicating the vascular basement membrane (VBM) as the active substrate for tumor cell
growth in the brain. Accordingly, VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor
growth prior to any evidence of angiogenesis. Blockade or loss of the b1 integrin subunit in tumor cells prevented adhesion
to VBM and attenuated metastasis establishment and growth in vivo. Our data establishes a new understanding of CNS
metastasis formation and identifies the neurovasculature as the critical partner for such growth. Further, we have elucidated
the mechanism of vascular cooption for the first time. These findings may help inform the design of effective molecular
therapies for patients with fatal CNS malignancies.
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Introduction

Brain metastases are the most common malignant tumors of the

central nervous system (CNS) outnumbering primary brain tumors

such as glioblastoma in prevalence by tenfold [American Cancer

Society, http://www.cancer.org/]. Over 20% of all cancer

patients develop metastatic disease to the CNS and have a 9

month median survival with maximal treatment [1–4]. As modern

therapies allow improved peripheral control of primary and

metastatic disease, such as trastuzumab for metastatic breast

cancer, the incidence of brain metastasis appears to be

paradoxically increasing [4–7]. This may be due to several reasons

including the blood-brain barrier preventing drug entry, tumor

dormancy, positive selection of ‘‘brain-seeking’’ or therapy-

resistant subclones, or iatrogenic induction of new functional

mutations. Hence, further characterization of these mechanisms

and identification of new strategies for treatment of brain

metastasis are important goals.

Clinically, brain metastases most commonly arise from lung,

breast, and melano-carcinomas. The major requirements for

metastasis to distant sites appear to vary by organ and remain

incompletely understood [8–11]. The pathophysiology of brain

metastasis, in particular, remains elusive. In metastasis to lung and

bone, characteristic patterns of gene expression in MDA-MB-231-

derived mammary carcinoma cells have been shown to enable

organ specific colonization [10]. Such factors have not yet been

identified for brain metastasis, but are likely to exist as mouse and

human carcinoma lines have been selected for increased brain

colonization [11,12]. However, these characterizations of the

‘‘seed’’ largely neglect contributions from the ‘‘soil’’ and appear to

be cell line specific [13]. On the other hand, there is a persistent

assumption in the literature that brain metastasis is the result of

specific interactions with the neural elements of the brain

parenchyma mediating ‘‘brain homing’’ (or targeted metastasis to

the brain), direct cell attachment and establishment, invasion, and

progressive growth into micro- and macrometastases [1,5,14,15].

These ideas are certainly consistent with the classic concept of

Pagetian ‘‘soil’’, however, there currently exist no in vivo data to

support such statements and indeed very few studies address these

topics directly. In contrast, we have noted many experimental brain

metastasis studies dating back several decades have anecdotally

described early growth of tumor cells along pre-existing brain vessels

([16–22]; Table S1). This relationship is reminiscent of vascular

cooption described in a rat glioma model [23]. These findings

suggest the neural elements of the brain parenchyma do not provide

a sufficient substrate for metastatic carcinoma growth and instead

implicates the existing neurovasculature as a key niche for

malignant progression. This also supports the data by Fidler and

colleagues [24] that suggests sprouting neoangiogenesis may not be

necessary for the initiation of metastasis growth in the brain.
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Here, we used a combination of in vitro and in vivo studies and

human pathological specimens to analyze the temporospatial

growth pattern of brain metastasis microcolonies in order to

characterize the relationship between metastatic tumor cells and

the existing neurovasculature. We focused on timepoints as early

as 3d after intravascular injection in order to focus on the earliest

events in microcolony formation. We found that brain microme-

tastases in mouse and human tissue utilized vascular cooption for

growth rather than invading and growing within the neural

parenchyma. Vascular cooption can be an alternative to neo-

angiogenesis and likely acts to deliver blood borne nutrients and

oxygen. We propose here that vascular cooption has an additional

function for brain metastases; interactions with the pre-existing

vessels are required for initial adhesion, proliferation, invasion,

and microcolony establishment. We show that the neural

parenchyma of the brain cannot substitute in supplying these

functions. This work identifies the central role of the vasculature

for metastatic growth in the CNS as well as providing insight into

the mechanism of adhesive vascular cooption. These novel

concepts may allow the development of more effective therapies

for brain metastasis.

Results

Perivascular growth of early brain micrometastases in
vivo

To characterize the vascular association of tumor cells in

experimental brain metastasis models, we examined early brain

microcolony formation after intracardiac injection of metastatic

mouse and human tumor cells. It has been anecdotally noted that

microcolonies in experimental brain metastasis assays often tended

to grow along preexisting vessels (Table S1). We established that

this pattern occurs with a high frequency and across all cell lines

we tested. 4T1-GFP mammary carcinoma cells [25] were found to

be intimately associated with the perivascular surface of brain

microvessels from the earliest timepoint at 3 d up to 14 d (Fig. 1A)

after injection into syngeneic BALB/c mice. This was observed in

over 97% of the microcolonies at all timepoints (Fig. 1B). Similar

vascular associations resulted from the intracardiac injection of the

human breast carcinoma cell lines MDA-MB-231 and its ‘‘brain

seeking’’ variant cell line MDA231BR [11], the human melano-

carcinoma cell line A7 in SCID mice, and the murine melanoma

cell line K1735M2 injected into syngeneic C3H/He mice. Brain

microcolonies from each of these cell lines examined between 7

and 14 d after injection were associated with vessels in the same

pattern consistent with vascular cooption (Fig. 1C). Interestingly,

the ‘‘brain seeking’’ MDA231BR line showed equivalent vascular

association and microcolony area as the parental line, although the

number of colonies produced by injection of the parental cells was

approximately 2 fold less (Fig. S1). Thus perivascular colony

formation was the predominant pattern of growth by carcinoma

cells in experimental in vivo metastasis assays.

We verified that the colonies resulted from proliferation of

vascular-associated tumor cells between 3 and 7 d by measuring

tumor area (Fig. 1D) and with BrdU immunohistochemistry

(Fig. 1E). Similar to prior studies [16,24,26], these microcolonies

appeared to rely on pre-existing vessels for growth. First,

proliferation of tumor cells was observed within 1 week of

injection and prior to any evidence of neoangiogenesis (Figs. 1D

and 1E). Second, vessel morphology appeared largely normal,

however, vessel density was significantly lower in tumor-involved

areas of the brain (Fig. S2). Third, despite the extensive

perivascular involvement of the tumors, the endothelial blood

brain barrier (BBB) markers GLUT-1 (Fig. 1F and S2) and ZO-1

(not shown) remained unaltered. We verified BBB integrity with

static and dynamic studies of function including gadolinium-

enhanced MRI (Fig. S2), small molecular weight TRITC-dextran

injection (not shown), and tyramide-signal amplification enhanced

immunohistochemistry for IgG extravasation (Fig. S2) at time-

points up to 14 d. These results demonstrated that early brain

micrometastasis formation was associated with minimal neoangio-

genesis leading to the conclusion that growth must be dependent

upon pre-existing vessels. Finally, to verify the perivascular

preference of brain micrometastases was not biased by intravas-

cular delivery of tumor cells, we characterized a syngeneic model

of spontaneous brain metastasis [27]. Brain sections were

examined for spontaneous micrometastases 5–7 weeks after

orthotopic injection of 4T1-GFP cells into the mammary fat pad

(n = 10 mice). The growth and morphological characteristics of

these colonies were indistinguishable from those derived from

intracardiac delivery of cells demonstrating both intact GLUT-1-

positive vasculature and angiotropic spread upon adjacent

capillaries (Fig. 1F).

To assess the clinical relevance of frequent vascular cooption in

experimental metastasis, we asked whether tumor cells within

human brain metastasis specimens displayed a similar vascular

association. In brain micrometastases and tumors with carcino-

matous CNS spread that could be considered at the early stages of

parenchymal colonization, the patterns were similar to those in the

experimental models above, with the tumor cells in these brain

metastases appearing to track along the blood vessels (Fig. 2A).

Quantitation of vascular cooption in these cases from primary

tumors of varied origin revealed that 98.2% of metastatic brain

colonies were vascular-associated (Fig. 2B and Table 1). Based on

clinical pathologic indices, there was little clear morphological

evidence characteristic of tumor angiogenesis in these cases

(Table 1 and Fig. 2A). Therefore, early growth of brain metastasis

microcolonies in experimental models and human clinical

specimens occurs via intimate interactions with the existing

neurovasculature. This growth can occur immediately after

extravasation (as early as 3 d after intra-arterial injection) and

does not require neovascularization.

Vascular cooption after intraparenchymal injection
We further asked whether the association of tumor cells with the

vessels was merely a matter of location after extravasation. This

was tested by injecting tumor cells directly into the brain allowing

equivalent access to both the vascular and the neural elements of

the brain. 4T1-GFP cells after intraparenchymal injection formed

colonies surrounding vessels within 2 days (Fig. 3A). 93% of tumor

profiles were vascular-associated at 4 d (4T1-GFP cells, n = 3). The

apparent increase in the number of tumor cells could not be simply

due to migration and homotypic aggregation of the injected tumor

cells because BrdU labeling showed widespread proliferation of the

tumor cells (Fig. 3A, inset). Similar results were obtained after

intraparenchymal injection of MDA-MB-231 cells (Fig. 3B). Thus,

vascular association or cooption does not rely on cells entering the

brain via extravasation from the blood supply and must be due

instead to preferential association of the tumor cells with the

vessels.

To further these findings, we directly observed tumor cells in vivo

using transcranial multiphoton and confocal imaging through a

cranial window in mice. This preparation allowed us to serially

revisit the same fields through the cranial window from 0 to 4 days

following intraparenchymal injection. Injected tumor cells were

seen to elongate upon blood vessels within 1 hour of injection (Fig.

S3). The majority of recently injected cells were spheroidal; after 2

d there was an obvious expansion of tumor cells in the same field

Vascular Soil for Metastasis
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(Fig. 3C). They appeared to be exclusively growing upon vessels

(Figure 3D). The vascular pattern was not noticeably modified

after 2 days and there was no appearance of new vessels consistent

with tumor growth dependent upon preexisting vessels. However,

some vascular ectasia was noted and possibly associated with

greater tumor burden and/or a response to the tissue disruption

due to the injection (Fig. 3C, white arrowheads). These histological

and transcranial imaging studies were repeated using direct

injection of B16F10-GFP mouse melanoma cells with similar

results (Fig. S3). On the basis of these studies, we conclude that the

vascular association of tumor cells in brain colonies is not simply

due to the physical association of the tumor cell with the vessel

after extravasation, but is based upon preferential interactions with

the vessel.

Figure 1. Vascular cooption of cancer cells in brain metastasis formation. (A) Histological analysis of 4T1-GFP microcolonies demonstrating
intimate association with CD34+ capillaries (red) from 3 to 14 d after intracardiac injection of cells into syngeneic BALB/c mice. Insets are images of
vessels in the absence of the tumor cells/green channel. Arrow shows angiocentric invasion. All scale bars, 30 mm. (B) Quantification of tumor-
vascular association of 4T1-GFP at 3, 7, and 14 d (n = 3–4 per timepoint). (C) Early brain microcolonies from human cell lines MDA-MB-231, MDA-MB-
231BR, and A7 and the murine melanoma K1735M2-GFP demonstrated similar vascular cooption (as indicated). Insets as in (A). Scale bar, 30 mm. (D)
Cross sectional tumor area measured at 3 and 7 d demonstrates rapid growth over this time (*P,0.05, t-test; n = 256 colonies analyzed, 3–4 mice per
timepoint). (E) Immunofluorescence for BrdU (cyan) in a tumor colony at 7 d demonstrates a high proportion of proliferative perivascular cells within
the colony shown in the inset in green. Scale bar, 30 mm. (F) Projection image of a spontaneous 4T1-GFP brain micrometastasis demonstrates similar
features to colonies from the intracardiac model such as Glut-1 positive vessels (red) and angiocentric invasion (arrow). CD326 is an epithelial tumor
marker that only stains the tumor cells. Scale bar, 30 mm. Error bars represent s.d.
doi:10.1371/journal.pone.0005857.g001
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Vascular cooption occurs by direct adhesion to vessel
wall exterior

We sought to generate experimental situations in tissue culture

analogous to the intraparenchymal injections to characterize the

interaction of metastatic tumor cells with the vascular or neural

elements of the brain. First, we used an ex vivo assay with tumor

cells plated onto live, acutely isolated adult mouse brain slices [28].

All five of the murine and human tumor lines tested for

experimental brain metastasis in Fig. 1 were plated on live slices.

Each of these cell lines was found to preferentially elongate upon

the vasculature within 2 hours (Fig. 4A, 4B and S4). Tumor cells

not directly in contact with vessels did not spread (Fig. 4A and S4).

These results were directly verified with timelapse confocal

microscopy (Movie S1). Thus, we concluded that metastatic

carcinoma cells, when given equal access to live vascular and

neural substrates, interact preferentially with the vessels over the

neural parenchymal elements.

Based on morphological features of cells and microcolonies in

histological sections (Figs. 1 and 2) and the rapid cell spreading on

live slices observed above, we reasoned that there was likely an

active adhesive interaction between the metastatic tumor cells and

the exterior of blood vessels. To test the potential for tumor cell

adhesion to elements of the brain parenchyma, either vascular or

neural, we assayed adhesion of metastatic tumor cells plated on

thawed slide-mounted snap frozen brain sections. 4T1-GFP cells

were plated on normal murine brain and cultured for 2 h followed

by washing off non-adherent cells. Only a small minority of plated

cells adhered to the slices, however, 93% of these adherent cells

were in contact with vessels (Fig. 4C). To test the adhesion of

human tumor cells, we used the MDA-MB-231 breast carcinoma

line in a parallel assay with human brain sections. Similarly 85% of

the adherent human cells were associated with vessels (Fig. 4D and

S5). These results demonstrated that metastatic tumor cells adhere

to the brain parenchyma and that their preferred substrate is

vascular rather than neural. These studies complement the

observations in live slices that showed tumor cell spreading to be

associated with vascular, not parenchymal engagement.

Vascular cooption promotes CNS invasion of metastatic
cells

The preferential vessel adhesion and spreading of metastatic

tumor cells raised the possibility that invasion might also depend

upon the vasculature. To determine whether metastatic tumor

invasion required vessels or could occur via neural elements, we

modeled vascular invasion in vitro by plating 4T1-GFP spheroids

on live post-natal brain slices. After 3 to 7 days of co-culture,

Figure 2. Vascular cooption in human brain metastasis. (A) Human carcinomatous metastasis from lung primary tumor (third case in Table 1)
demonstrates vascular association. Right, high power view of hatched region. Scale bars, 0.5 mm (left), 120 mm (right). (B) Quantitation of vascular
association in human brain metastasis specimens of diverse primary origin from six patients (*P,0.001, t-test, n = 3420 tumour profiles from 6
patients; Table 1). Error bars represent s.d.
doi:10.1371/journal.pone.0005857.g002

Table 1. Brain metastases are highly associated with pre-existing vessels in human clinical specimens.

Primary
Growth
pattern

Number
profiles

Single
cell (%)

Vascular
associated (%)

Vascular
ectasia*

Endothelial
hypertrophy*

Multi-layer
vessels*

Breast V-R 338 166 (49.1) 337 (99.7) no no no

Lung NSC micro/sol 430 406 (94.4) 419 (97.4) very rare very rare no

Lung NSC V-R 1000 684 (68.4) 985 (98.5) very rare rare no

? Breast, gyn V-R 1000 788 (78.8) 982 (98.2) very rare rare no

? Breast V-R 393 309 (78.6) 386 (98.2) very rare no no

Melanoma micro 264 256 (97.0) 256 (97.0) no rare no

*Clinical indices of angiogenesis.
Abbreviations: lung NSC, lung non-small cell carcinoma; gyn, gynecological carcinoma; micro, micrometastasis; sol, solitary metastases; V-R, Virchow-Robin space
invasion.
doi:10.1371/journal.pone.0005857.t001
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spheroids invaded the slice almost exclusively upon the vascular

scaffolding (Fig. 5A and 5B). Spheroids that failed to contact

vessels showed little evidence of invasion into the brain slice

(Fig. 5A, right). The importance of vascular contact for invasion

was confirmed by measuring the depth of penetration into the

slices. The spheroids in contact with the vessels penetrated

significantly deeper into the brain slice than those without contact

(Fig. 5C). Thus, invasion of carcinoma cells in the brain

parenchyma preferentially involves vascular interactions.

Histological examination of the edges of the tumor masses from

microcolonies in the spontaneous, intracardiac injection, and

intraparenchymal models provided additional evidence for the

predominant association of invasion with vessels. The leading edge

from these tumors consisted of collective extensions/protrusions of

tumor cells growing along adjacent vasculature (Figs. 1A, 1F,

3A, 3B, and S3; arrows). Collective angiotropic invasion was

verified in the 4T1-GFP and B16F10-GFP models in vivo with

transcranial imaging (Fig. 3D and S3). Human brain metastasis

specimens were similarly examined for evidence of vascular

associated parenchymal invasion. In 80% (8 of 10) cases of well-

established solitary CNS breast cancer metastases, we could

identify at least one area at the tumor-brain interface consistent

with collective angiotropic invasion (Fig. 5D). Additionally,

vascular association was observed in specimens showing single

cell invasion (Fig. 5E). Finally, vascular-dependent invasion from

the Virchow-Robin spaces was observed identically in both the

mouse model and in carcinomatous human specimens (Fig. 5F).

Therefore, metastatic carcinoma cells have limited ability to

infiltrate neural substrates in vivo; instead, parenchymal invasion

occurs predominantly via the vasculature consistent with an

adhesive reliance on blood vessels.

Adhesion to VBM promotes growth of metastatic cells
The substrate for adhesion of carcinoma cells to brain vessels is

likely the vascular basement membrane (VBM) which is composed

predominantly of collagen type IV and laminins. Consistent with

this hypothesis, the spatial distribution of collagen types I and IV,

entactin fibronectin, laminin, and perlecan is limited to the

exterior of blood vessels in the brain parenchyma (Fig. S6). These

basement membrane proteins are known to promote anchorage-

dependent growth signaling of adherent cells and are widely used

to coat dishes for culture. To test the role of brain VBM in tumor

cell growth signaling we examined whether adhesion to VBM

components could potentiate metastatic cell proliferation in vitro in

the absence of serum. 4T1-GFP cells were plated on collagen I,

collagen IV, fibronectin, laminin, vitronectin, or BSA-coated

Figure 3. Vascular preference for CNS growth of carcinoma cells in vivo. 104 (A) 4T1-GFP or (B) MDA-MB-231 cells were injected directly into
the forebrain of mice. Representative coronal sections are shown after 4 d and demonstrate angiotropic growth (left; inset, BrdU from the main
tumor mass on an adjacent section). The right panels show a magnification of the hatched areas on the left further documenting the interaction of
the tumor cells with the vessels, in this case angiocentric invasion (arrows). Scale bars, 120 mm (left), 30 mm (right). (C) Serial transcranial confocal/
multiphoton imaging through a cranial window showed that colony expansion occurred along pre-existing vessels in vivo (n = 5 mice). Day 0 (left),
Day 2 (right). Note dilatation of coopted vein compared to day 0 (white arrowheads). Scale bars, 240 mm. (D) Detail of hatched area in (C)
demonstrates tumor cells now present in previously uninvolved areas with extensive spreading on pre-existing vessels (arrows). Yellow arrowhead,
TRITC-dextran laden phagocytes. Scale bars, 30 mm.
doi:10.1371/journal.pone.0005857.g003
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control wells in the absence of serum. Cellular proliferation was

measured at 48 h by BrdU incorporation ELISA. 4T1-GFP cells

demonstrated significantly increased BrdU incorporation on all

substrata compared to BSA (Fig. 6A). Consistent with the role of

ERK in anchorage-dependent signaling for cellular survival and

growth, this potentiation could be attenuated with incubation with

the highly specific MEK inhibitor, SL327. Similar results were

obtained with MDA-MB-231 and B16F10-GFP cells (Results not

shown). Therefore, individual components of VBM are sufficient

to support significant proliferation of metastatic tumor lines in the

absence of serum in vitro.

We sought to verify that anchorage-dependent growth signaling

from the VBM was a significant contribution to tumor growth in

vivo. In order to distinguish use of the VBM from those growth

signals and nutrients delivered directly from the bloodstream, we

tested whether non-perfused vessels could act as sites for vascular

cooption and tumor growth. Blood vessels were microdissected

from the brain surface and placed upon the site of intrapar-

enchmal tumor cell injection before implantation of a cranial

window. Serial transcranial imaging was then performed to

monitor tumor growth at 0, 2, and 4 days (Fig. 6B and results

not shown). Widespread angiotropic growth and invasion occurred

along the exterior of non-perfused vessels within just 2 d in 4 of 4

mice (Fig. 6C). This experiment suggests that adhesion to VBM of

non-perfused vessels can promote vascular cooption and early

growth of metastatic cells in the brain in vivo.

The mechanism of vascular cooption in the CNS
We have shown that the vascular association of tumor cells in

the CNS is based on adhesion to the VBM and that this

relationship supports establishment and progression of tumor

microcolonies independent of blood-born nutrients. Since cellular

adhesion to vascular basement membrane components requires

members of the integrin family of cellular adhesion receptors [29],

it is likely that vascular cooption and subsequent metastatic tumor

growth in the brain relies on identical mechanisms. As a corollary,

we found marked immunoreactivity for activated focal adhesion

kinase (pFAK-Y397), a major integrin signaling pathway, in 4T1-

GFP microcolonies in vivo (Fig. S7). To test this hypothesis directly

we investigated the effect of blocking integrin function on adhesion

Figure 4. Tumor cell interactions with CNS vessels. (A) 4T1-GFP cells were plated onto live adult murine brain slices and fixed after 2 h of co-
culture. 3-D reconstructions of hatched area (right panels) verify that the elongated tumor cell is spreading upon a vessel (arrows). Scale bar, 120 mm.
(B) Quantitation of vascular association on live brain slices with several mouse and human tumour lines demonstrates the vast majority of elongated
cells (82–90%) are attached to vessels (*P,0.05, Mann-Whitney U-test, n = 294–546 cells per line, 2 independent experiments in duplicate). (C) 4T1-
GFP cells were plated onto slide-mounted tissue sections of murine brain for 2 h and non-adherent cells were rinsed off. Tumor cells preferentially
attached to vessels (arrows) rather than the neural elements (arrowhead). Graph, the location of the adherent cells was assessed (*P,0.01, Mann-
Whitney U-test, 2 independent experiments in triplicate). Scale bar, 60 mm. (D) Human MDA-MB-231 cells (arrows) were plated on slide-mounted
human brain sections. They similarly attached to vessels preferentially (arrows) over the neural parenchyma (arrowhead). (*P,0.01, Mann-Whitney U-
test, n = 3 patient samples, 2 independent experiments in duplicate). Scale bar, 240 mm. All error bars represent s.d.
doi:10.1371/journal.pone.0005857.g004
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and metastatic colony growth. We focused this series of

experiments on the human breast carcinoma line MDA-MB-231

because the integrin complement in this cell line has been well

characterized [30] and due to the wider array of effective anti-

integrin blocking antibodies available for human than for mouse.

First, we confirmed expression of various integrin subunits on

MDA-MB-231 microcolonies in vivo (Fig. S7) as previously

described in vitro [30]. We next tested integrin subunit blocking

antibodies on attachment to ECM in tissue culture. The anti-

b1integrin subunit antibody alone nearly completely blocked

adhesion of MDA-MB-231 cells to various types of ECM whereas

antibodies to any other single a or b subunit did not similarly block

adhesion (Fig. S7). Given the known functional redundancy in the

complement of b1 integrins and the dominant role for b1 signaling

in adhesion, migration and proliferation [31], this is not a

surprising result. Indeed, all cell lines used in this study expressed

high levels of b1 integrins (Fig. S7 and results not shown).

To test the importance of b1 integrins in brain metastasis, we

assayed tumor cell adhesion on a more physiologically-relevant

substrate using brain sections. MDA-MB-231 cells were preincu-

bated with either isotype-matched IgG1 control or anti-b1

activating or inhibiting antibodies prior to plating on adjacent

unfixed slide-mounted human brain sections (Fig. 7A). The tumor

cells when plated on brain sections had been noted to adhere

almost exclusively to vessels (Fig. 4C and 4D). Adhesion to vessels

was potentiated by anti-b1 integrin activating antibodies and

markedly attenuated by anti-b1 integrin blocking antibody (Fig. 7A

and 7B). Thus, adhesion of tumor cells to the VBM, and

consequently the process of vascular cooption, depends upon

tumor cell b1 integrins.

To investigate the relevance of the above findings in vivo we

asked whether blocking the b1 integrin subunit would affect

colony formation after intraparenchymal injection of tumor cells.

MDA-MB-231 cells were incubated with monoclonal antibodies

which block the function of the human, but not murine, b1

integrin subunit (Results not shown). Axial tumor area was

evaluated 4 d after the injection on histopathology (Fig. 7C). As

predicted, the brain colonies derived from cells treated with non-

Figure 5. Angiocentric invasion of parenchyma by brain metastases. (A) 4T1-GFP spheroids were plated onto live brain slices to assess
parenchymal invasion. 4T1-GFP spheroids invaded live brain slices upon the vascular scaffolding (left), but those spheroids contacting the brain
parenchyma in regions without vessels showed little morphological evidence of invasion (right). Scale bar, 60 mm. (B) The percent of invasive colonies
associated with vessels was significantly higher than those in contact only with the brain (*P,0.05, Mann-Whitney U-test, 2 independent
experiments). (C) The maximum depth of invasion by each spheroid into the brain slice was measured further confirming a vascular preference
(*P,0.001, Mann-Whitney U-test, 2 independent experiments). (D) Example of collective angiotropic invasion (arrow) from a human specimen of
brain metastasis from breast carcinoma. Asterisks, vessel lumens. Scale bar, 50 mm. (E) Example of single-cell angiocentric invasion (arrowhead) in the
brain from a human specimen of malignant melanoma brain metastasis. Arrows show endothelial cell nuclei. Scale bar, 20 mm. (F) Left, angiocentric
parenchymal invasion (arrow) was observed to occur from the Virchow-Robin spaces in human cases with carcinomatous CNS spread (lung
carcinoma, scale bar, 100 mm) as mirrored in the 4T1-GFP mouse model, right (scale bar, 120 mm). All error bars represent s.d.
doi:10.1371/journal.pone.0005857.g005
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blocking antibodies were significantly larger than those from the

cells treated with blocking antibodies (Fig. 7D). We verified the

antibody treatment itself was not toxic to these tumor cells after

culture in the absence of serum and ECM substrate (Results not

shown). Thus, cells treated with b1 integrin subunit blocking

antibodies largely failed to become established and grow in the

brain consistent with the inability to adhere to and utilize the

surrounding blood vessels.

Brain metastasis establishment requires b1 integrin-
mediated proliferation

The above results with function blocking antibodies identify an

important role for b1 integrins in metastatic tumor microcolony

establishment in the CNS. To further evaluate the effect of b1

integrins on colony formation, we analyzed CNS growth of ESb

murine lymphoma cells and of an engineered mutant in which the

b1 integrin subunit has been genetically eliminated (ESb-DKO)

[32]. Both ESb and ESb-DKO cells proliferate normally in

suspension in vitro under standard defined medium conditions ([32]

and Results not shown) and are not susceptible to anoikis. Similar

to the pathology seen in many human lymphomas, and in contrast

to that of carcinoma metastases, ESb cells diffusely invaded

through the parenchyma, but demonstrated superimposed peri-

vascular cuffing reminiscent of cooption (Fig. 8A). These cells

formed a rapidly growing lesion often measuring over a millimeter

in diameter in just 4 d. In contrast, the b1 integrin subunit

deficient ESb-DKO cells were significantly impaired in the ability

to grow and form an expanding lesion in the brain (Fig. 8B and

8C). ESb-DKO cells retained the capability for invasion deep into

the brain parenchyma confirming that the b1 integrin subunit is

not necessary for lymphoma invasion of the CNS [33] (Fig. 8B,

arrows). We noted a low baseline of BrdU+ profiles at the injection

site of mice and widespread invasion and BrdU-positive cells

throughout the cranial fascia and dermis overlying the injection

site in mice injected with ESb-DKO ruling out a proliferative

defect in the mutant line in vivo (Fig. S8) [32].

To verify that ESb cells interacted with the VBM in vivo, we

analyzed tissue sections with immunohistochemistry against

activated focal adhesion kinase (pFAK-Y397) and activated

extracellular regulated kinase (pERK1/2). ESb cells were highly

immunoreactive for pFAK-Y397 confirming integrin-mediated

anchorage-dependent signaling (Fig. 8D). In contrast, ESb-DKO

cells demonstrated only background levels of immunoreactivity for

pFAK-Y397. ERK activity is downstream of FAK activation and

associated with survival and mitosis. We observed strong nuclear

and moderate cytoplasmic pERK1/2 immunoreactive ESb

lymphoma cells, but only weakly positive ESb-DKO cells in brain

colonies (Fig. 8E). In addition, ESb-colonized vessels demonstrated

frequent perivascular BrdU positive nuclei (Fig. 8F, inset).

Interestingly the majority of BrdU+ cells (67%) were found in

direct contact or within 10 mm of vessels (Fig. 8E). Therefore, ESb,

but not ESb-DKO, tumor cells in the brain were associated with

immunoreactivity for activated FAK and ERK as well as

perivascular BrdU consistent with proliferation via anchorage

Figure 6. Brain vascular basement membrane potentiates carcinoma growth. (A) Basement membrane components (as indicated)
potentiate incorporation of BrdU in 4T1-GFP cells in the absence of serum in vitro (*P,0.05, **P,0.001; ANOVA with Bonferroni Multiple Comparisons
Test, experiment in triplicate, 3 repeats). BrdU incorporation was attenuated by treatment with the selective MEK inhibitor SL327 (all post-drug
differences significant to P,0.01 except BSA). Error bars represent s.d. (B) After intraparenchymal injection of 4T1-GFP cells, several isolated
meningeal vessels were placed over the injected tumor cells. The 4T1-GFP cells grew on the basement membrane of these non-perfused microvessels
(outlined by arrows, left) in vivo. Growth was monitored with serial transcranial imaging; day 0 (left), day 2 (right). Scale bars, 240 mm. (C) Detail of
hatched region in (B) demonstrating growth upon non-perfused vessels (hatched white lines). Reconstructed Z-Y dimension image at the level of the
magenta line (right) demonstrates former lumens (asterisks) of the non-perfused vessels now surrounded by tumor cells. Scale bars, 30 mm (bottom).
doi:10.1371/journal.pone.0005857.g006
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dependent signaling from the VBM. Thus, the b1 integrin subunit

on tumor cells mediates anchorage-dependent growth signaling

upon adhesion to the VBM of the neurovasculature and is essential

for the formation of metastatic brain colonies by ESb cells.

Further, the requirement for the b1 integrin subunit is indepen-

dent from protection from anoikis in this case.

Discussion

We have demonstrated that the primary soil for metastatic

tumor cell attachment and growth in the brain is vascular rather

than neural. This vascular cooption, or the utilization of pre-

existing vessels, has only been previously anecdotally reported as a

form of vascularization in experimental brain metastasis (Table

S1). Here, we have quantitatively demonstrated it to be the

predominant form of vessel use by tumor cells during early

experimental brain metastasis establishment and in human clinical

specimens reflecting early stages of the disease. We further show

the interaction relies on b1 integrin-mediated tumor cell adhesion

to the vascular basement membrane of blood vessels. These

findings exclude a requirement for de novo angiogenesis prior to

microcolony formation. They also contrast with the classical seed

and soil hypothesis for brain metastasis suggesting a neural

substrate and reliance upon neural-derived trophic factors for

growth. Importantly, they do not exclude vascular remodeling [24]

or contributions from the neural elements for later growth [34].

This work thus describes in detail a major mechanism of brain

metastasis formation in addition to identifying the mechanism of

vessel cooption in the brain for the first time.

The CNS parenchyma is largely devoid of non-vascular stromal

basement membrane components which are necessary for

epithelial and carcinoma cell adhesion and survival (Fig. S6).

Vascular cooption, therefore, supplies substrates for malignant

growth of non-neural carcinoma cells not otherwise widely

available in the neuropil. Proliferation by metastatic tumor cells

is highly potentiated upon adhesion to a basement membrane

substratum and is attenuated by inhibiting MEK in vitro.

Consistent with the experiments in tissue culture, during the early

stages of colony formation in vivo we found the vast majority of

micrometastases to be in direct contact with the VBM of existing

brain vessels and many of these cells were proliferating.

Resident neural stem cells tend to localize in perivascular

locations [35] and cells defined as brain tumor stem cells (BTSCs)

are found in a similar location [36,37]. Secreted paracrine growth

Figure 7. Adhesion to vascular basement membrane requires b1 integrin function. (A) MDA-MB-231 cells were tested for adhesion on
slide-mounted human brain slices. Cells were plated in the presence of the indicated antibody and then washed after 2 h. Micrographs demonstrate
adherent MDA-MB-231 cells (green) upon the same arteriole (red) in serial human brain sections under different treatment conditions (as indicated).
Scale bar, 120 mm. (B) Adhesion to vessels was significantly attenuated with anti-b1 function blocking antibodies (*P,0.001, Kruskal-Wallis test with
post-hoc Dunn’s multiple comparisons test, tissue from 2 patients run in duplicate and repeated) and potentiated with an activating anti-b1
antibody. (C) MDA-MB-231 cells (vimentin+, green) were treated with b1 integrin subunit blocking or non-blocking antibodies prior to
intraparenchymal injection in the brain of SCID mice. After 4 d, tumor colonies from animals in the non-blocking antibody condition (left panels)
demonstrated vascular associated growth and invasion in contrast to the blocking condition (right panels). Horizontal sections. Scale bar, 60 mm. (D)
Tumor cross sectional area was measured after 4 d growth with antibody treated cells showing significantly larger tumor area in the non-blocking
condition (*P,0.05, Mann-Whitney U-test, n = 3–4 mice per treatment).
doi:10.1371/journal.pone.0005857.g007
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factors from the endothelial cells of the ‘‘perivascular niche’’ were

shown to stimulate the growth and survival of BTSCs. In contrast,

we demonstrated that slide-mounted brain sections (i.e., dead

tissue) still supplied the components needed for adhesion and

spreading by carcinoma cells. The requirement of metastatic

carcinoma cells for the vasculature in adhesion and invasion

during metastasis in the brain may be more analogous to the

requirement for VBM during development of pancreatic islets

[38]. Islet cells use b1 integrins to interface with the VBM and this

interaction is required for proliferation and endocrine function.

Nikolova et al. termed this basement membrane microenviron-

ment, a ‘‘vascular niche’’ [38,39]. Similarly vascular mural cells

require the b1 integrin subunit for proper adhesion to vessels and

for maintaining vessel stability [40]. In an analogous fashion,

carcinoma cells, then, appear to hijack the brain’s VBM for

essential functions during brain metastasis. Interestingly, inhibiting

angiogenesis in circumscribed, well-established CNS melanoma

metastases causes reversion to growth by vascular cooption [19].

This suggests a continuum for vessel utilization by tumor cells

which may represent a viable target for therapeutic exploitation.

The interaction between the tumor cells and the vessels relies on

b1 integrin-mediated tumor cell adhesion to the vascular basement

membrane of blood vessels. This interaction is sufficient to

promote immediate proliferation and micrometastasis establish-

ment of tumor lines in the brain. This angiotropic mechanism was

universal to both carcinomas (anchorage-dependent cells) and

lymphomas (anchorage-dispensible cells) in the CNS. b1 integrins

play a dominant role in many facets of normal cell biology and

have been implicated in cancer initiation, progression, and

metastasis [30–32,41–44]. There are at least 10 b1 integrin

heterodimers which serve as variably promiscuous adhesive

receptors to diverse ligands such as the collagens and laminins.

Nonetheless our data suggest that antagonism of the b1 integrin

subunit alone might be useful in therapeutic strategies for brain

metastases. Indeed, Park et al [42] found that inhibitory anti-b1

integrin subunit antibodies induced apoptosis in breast carcinoma

cells grown in three dimensional culture, but not in cells grown in

monolayers. Treating mice bearing breast cancer xenografts from

those cell lines with the same antibody led to decreased tumor

volume. In addition to the apoptotic mechanism described in vitro,

inhibition of vascular cooption may have also attenuated growth.

In an alternative strategy to evaluate the role of b1 integrins,

tumors were analyzed in the MMTV/PyMT transgenic model of

breast cancer [43]. Conditional deletion of b1 integrin after

induction of tumorigenesis resulted in impairment of FAK

phosphorylation and proliferation consistent with a reliance on

anchorage-dependent signaling for tumor growth. Although the

presence of the b1 integrin subunit is mandatory for embryonic

development, chronic systemic anti-b1 antibody therapy did not

result in overt toxicities in adult mice [42]. Further research into

the regulation of b1 integrin regulation, function and downstream

signaling may yield clinically useful applications for metastatic

disease in cancer patients [31,45,46].

Materials and Methods

Ethics statement
Animal procedures were performed under UK Home Office

licensing and ethics committee approval from the Clinical

Medicine Ethical Review Committee at the University of Oxford.

Human tissue was retrieved from the Thomas Willis Oxford Brain

Collection with prior written informed consent and final approval

from the local research ethics committee (reference 06/Q1604/

141).

In vivo experiments
All animal procedures were approved by the UK Home Office.

Experimental brain metastases were established by intracardiac

injection of 105 tumor cells [11]. Alternatively, direct intraparen-

chymal injection of 56103 to 104 cells was performed into the

striatum or hippocampus with a stereotaxic apparatus (Bench-

mark, MyNeurolab.com). MRI imaging was performed with a 7-

Tesla horizontal bore magnet with a Varian Inova spectrometer

(Varian) between 2 and 14 d post tumor inoculation. Transcranial

imaging was performed up to 3 times via cranial window with a

Leica TCS-SP2 AOBS confocal microscope and a Spectra-Physics

MaiTai Ti-Sapphire pulsed laser.

In vitro experiments
VBM adhesion and proliferation assays were performed with

10 mg/ml ECM components or BSA (control). Adhesion was

tested after 2 h and proliferation after 48 h. Adhesion to brain

sections was evaluated after 2 h [28]. Non-adherent cells were

rinsed off in three rinses of PBS on a shaker set. Live brain slice

assays were performed acutely for 2 hours or 3 to 7 d for long-term

culture as described in Text S1.

Human specimens
Clinical neuropathology specimens were obtained with ethics

committee approval from routine neurosurgical or autopsy

procedures and processed for routine immunohistochemistry and

analyzed as described in Text S1.

Integrin inhibition studies
Inhibitory monoclonal antibodies against integrin subunits and

isotype control antibodies were used at 5 to 20 mg/ml.

Histological analysis
Experimental tissues were collected under terminal anesthesia

after transcardiac perfusion with saline and 4% paraformaldehyde

or organs were freshly isolated and snap frozen or immersion

Figure 8. b1 integrin is required for angiocentric growth of tumor cells in the CNS in vivo. (A) Representative montage demonstrates
tumor growth and invasion of ESb cells (CD45+, green) from the point of initial injection (asterisk). Despite the ability of single cells to migrate
through the brain parenchyma there was a clear preference for growth upon vessels (hatched areas, lower panels). Inset, lower left demonstrates
BrdU+ (cyan) perivascular ESb cells. Scale bar, 500 mm (montage), 60 mm (bottom micrographs). FFX, fimbria/fornix bundle. (B) in vivo growth of ESb-
DKO murine lymphoma cells (b1 integrin null) is highly impaired relative to ESb cells (A). Long-distance migration of single cells is not affected
(arrowheads). Scale bar, 240 mm. (C) Tumor area was nearly 22 times greater in the ESb compared to the ESb-DKO line at 4 d (*p,0.01; error bars
represent s.d.; n = 3–4). (D) Immunohistochemistry for activated FAK (pFAK-Y397) demonstrates strong staining in perivascular wild-type ESb cells
(left) but little staining in ESb-DKO cells (right). Scale bar, 60 mm. Asterisk, injection site. (E) Immunohistochemistry for activated ERK (pERK1/2) shows
strong nuclear staining and moderate cytoplasmic staining of perivascular ESb lymphoma cells (left) but not in ESb-DKO cells (right). Scale bars,
240 mm (top) and 30 mm (bottom). (F) Histogram demonstrating perivascular distribution of BrdU+ profiles in animals injected with ESb cells (cyan).
The majority of BrdU+ profiles are within 1 cell diameter of vessels (mean 6 s.d. distance: 7.569.4 mm).
doi:10.1371/journal.pone.0005857.g008
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fixed. Immunohistochemistry was performed as described in Text

S1 in 15-30 mm cryostat sections.

Statistical analyses
Data were compiled in MS Excel and data analyzed with Excel

or Graph Pad InStat 3. Pairwise comparisons were made with an

unpaired t-test or the Mann-Whitney u-test as appropriate.

Evaluation of variance in data groups was performed with

ANOVA or the Kruskal-Wallis test as appropriate. If significance

was detected post-hoc comparisons were made with an appropri-

ate post-hoc test. A p,0.05 was considered statistically significant.

For detailed methodology please see Text S1.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0005857.s001 (0.05 MB

DOC)

Figure S1 Brain seeking MDA231BR line requires vascular

cooption for CNS growth. (A) Intracardiac injection of metastatic

human breast carcinoma MDA-MB-231 or the brain seeking

subclone, MDA231BR, results in tumour growth on existing brain

vessels at 7–14 d. Vascular association of colonies for either cell

line was.97% (left) (B) despite a greater number of brain colonies

formed after injection of MDA231BR than after the parental line

(middle, *P,0.05, Mann-Whitney U-test). (C) Tumour area from

each subclone was also equivalent (right). These results further

support the hypothesis that interactions with existing vessels are

necessary for initial growth of brain metastases. All error bars

represent s.d. (n = 3–4 mice per cell line).

Found at: doi:10.1371/journal.pone.0005857.s002 (0.06 MB TIF)

Figure S2 Experimental brain micrometastases coopt and grow

upon pre-existing vessels. (A) Representative images of tumor-

associated cortical vessels or control hemisphere visualized by

Glut-1 immunoreactivity (red), a biomarker for an intact blood-

brain barrier (BBB). Inset shows the vascular associated tumor cells

(green) superimposed on the vasculature. Scale bar, 120 mm. (B)

Quantitation demonstrates significantly lower vascular density in

regions with growing brain metastases compared to corresponding

fields in control brains. (*P,0.05, t-test; n = 3 per group). Error

bars represent s.d. (C) High resolution T2-weighted and

gadolinium-dTPA enhanced T1-weighted MRI largely failed to

reveal experimental brain microcolonies at timepoints between 7

and 14 d after intracardiac inoculation (n = 5). This is consistent

with the lack of blood brain barrier (BBB) leakage as would be

expected from new tumour vessels. Yellow arrowhead, high

intensity signal in sagittal sinus serves as positive control for

gadolinium enhancement. Bottom, representative brain section

(fluorescent montage) at +4.0 Bregma demonstrates numerous

tumour microcolonies (white arrowheads) which were not detected

by MRI. Scale bar, 1 mm (montage). (D) BBB integrity was further

verified with enzymatic immunofluorescence for mouse IgG on

adjacent sections. Middle, high power micrograph of boxed area

in (C) displays a 4T1-GFP microcolony with no detectible frank

BBB disruption. Positive and negative controls as indicated. High

concentration of IgG in microglia and vessels as previously

described [47]. Arrows, microglia; arrowheads, vessels. Scale bar,

40 mm (micrograph).

Found at: doi:10.1371/journal.pone.0005857.s003 (1.75 MB TIF)

Figure S3 Active vascular preference of carcinoma cells in the

brain in vivo. (A) 1 h after intraparenchymal injection of 4T1-GFP

cells into BALB/c mice, cells were visualized through a cranial

window. Tumor cells could be seen spreading along the pre-

existing vessels (arrow). Scale bar, 15 mm. (B) B16F10-GFP murine

metastatic melanoma cells associate with preexisting vessels in the

CNS after intraparenchymal injection. Left, histological section at

4 d. Right, imaging vascular invasive cells through cranial window

in a live anesthetized mouse. Arrows, angiocentric invasion. Scale

bars, 30 mm.

Found at: doi:10.1371/journal.pone.0005857.s004 (0.86 MB TIF)

Figure S4 Carcinoma cell spreading on vessels in live brain

slices. (A) Distribution of cell morphologies after co-culture with

acutely isolated living brain slices. 56103 tumour cells were plated

on each brain slice and analysed for morphology after 2 hours.

Elongated cells represented a small subset of cells in all tumour

lines. (B) All cells were scored in regard to contact with blood

vessels and graphed according to morphology. Indeed, upwards of

90% of elongated cells for all 5 cell lines were in contact with blood

vessels. There were significantly more vascular associated

elongated cells compared to round cells associated with vessels

(p,0.01 for all cell lines, Kruskal-Wallis test with post-hoc Dunn’s

multiple comparisons test, error bars represent s.d.). This suggests

vascular contact is causal in the ability for the cells to spread out or

elongate on brain slices. (C-F), Representative fields of the various

cell lines (as indicated) plated upon live brain slices demonstrating

vascular preference of elongated cells. Right panels (C-F) represent

high power views of hatched areas for greater detail. Arrows,

elongated vascular associated cells. MDA-MB-231, MDA231BR,

and A7 cells are identified by vital staining with CMRA prior to

co-culture (red). Scale bars, 120 mm (C, D, and F), 60 mm (E).

Found at: doi:10.1371/journal.pone.0005857.s005 (0.87 MB TIF)

Figure S5 Carcinoma cells preferentially adhere to brain vessels

in situ. (A) Adherent MDA-MB-231 cells appeared to prefer cross-

sectional arteries and arterioles as a substrate (see Fig. 4D) in

human tissue and were found to adhere especially to the muscular

layer of the vessel wall. This layer, found between the media

intima and adventitia, possesses a fine reticular meshwork of

vascular basement membrane proteins which likely serves as the

primary adhesion substrate (right panels; scale bars, 60 mm, left;

15 mm, right.). The seeming arterial preference may be due to the

larger exposed area of basement membrane of arterioles compared

to (B) veins and (C) capillaries. White arrow, media intima; yellow

arrow, media adventitia. Scale bars (B and C), 120 mm.

Found at: doi:10.1371/journal.pone.0005857.s006 (2.17 MB TIF)

Figure S6 Basement membrane proteins are limited to brain

blood vessels (A) Distribution of collagen type I, collagen type IV,

entactin, fibronectin, laminin, and perlecan in the normal murine

brain was evaluated with immunofluorescence on horizontal

sections. Micrographs were acquired in the cortex. The VBM

components were largely limited to the vasculature as demon-

strated by co-localisation with the endothelial cell markers Glut-1

or CD34 (green). White arrowhead, collagen type I expression in

pia mater. Scale bar, 60 mm. (B) In contrast, immunostaining of

normal mouse visceral organs (as indicated) produced vascular and

extensive extravascular immunoreactivity for laminin. Scale bar,

60 mm.

Found at: doi:10.1371/journal.pone.0005857.s007 (2.84 MB TIF)

Figure S7 Integrins mediate adhesion to brain vessels. (A)

Murine mammary carcinoma 4T1-GFP brain microcolonies are

immunoreactive to activated focal adhesion kinase (pFAK-Y397)

suggestive of integrin-mediated downstream signaling. Scale bars,

60 mm (left) and 30 mm (right). (B) Expression of integrin subunits

previously reported to be expressed in MDA-MB-231 cells in vitro

[30] was verified in experimental brain metastases in vivo 7 d after

intracardiac injection. All eight subunits (a6, not shown) were
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readily detectible in microcolonies with indirect immunofluores-

cence using human-specific monoclonal antibodies. Scale bar,

15 mm. (C) MDA-MB-231 breast carcinoma cells were tested for

adhesion to human placental collagen type IV or laminin in the

presence of the indicated blocking antibodies (* p.0.01, ANOVA

with post-hoc Dunnet multiple comparisons test, performed in

quadruplicate and repeated). (D) The effect of blocking antibodies

to human b1 or b3 integrin subunits, of control IgG, or of

activating b1 integrin subunit antibody was tested on adhesion of

MDA-MB-231 human breast carcinoma cells to mouse EHS

collagen type IV and laminin (p.*0.01 both comparisons,

ANOVA with post-hoc Dunnet multiple comparisons test,

performed in triplicate or quadruplicate and repeated). These

experiments identified the b1 subunit to be obligatory for MDA-

MB-231 breast carcinoma adhesion to murine EHS collagen type

IV and laminin and human HP collagen type IV. (E) Western blot

for the carboxy terminus of the b1 integrin subunit reveals

expression in all tumor cell lines used in this study analyzed (other

lines not shown). Numerous glycosylated isoforms [45] as well as

species-specific variants can be appreciated. b actin served as

loading control. (F) b1 integrin subunit immunofluorescence on

the cell membrane in both 4T1-GFP and MDA-MB-231 (as

indicated) cells plated in collagen type IV coated wells.

Immunoreactivity was also seen particularly distally in cell

processes of MDA-MB-231 cells (arrows). Scale bar, 30 mm

(top), 10 mm (bottom).

Found at: doi:10.1371/journal.pone.0005857.s008 (0.67 MB TIF)

Figure S8 b1 integrin null ESb-DKO cells are not generally

growth defective in vivo. (A) BrdU immunohistochemistry (cyan)

of tissue sections from DBA/2 mice 4 d after intraparenchymal

injection of ESb-DKO cells (green, inset) demonstrates a low

baseline of proliferation (horizontal brain section). Scale bar,

30 mm. (B) ESb-DKO cells are able to invade, grow, and

proliferate (inset) within several layers of the scalp over the

injection site (arrow, hair follicle; coronal brain section). Scale bar,

240 mm.

Found at: doi:10.1371/journal.pone.0005857.s009 (0.43 MB TIF)

Text S1 Detailed Experimental Procedures

Found at: doi:10.1371/journal.pone.0005857.s010 (0.14 MB

DOC)

Movie S1 Tumor cell spreading on live brain slices requires

vascular contact. Timelapse confocal microscopy of A7 human

malignant melanoma cells (red) plated onto a live SCID brain slice

demonstrates a vascular associated cell elongating (center) upon a

large exposed vessel (green) over the course of 30 minutes.

Vasculature vitally stained with GS-IB4 lectin (Alexa 488). Z-

stacks were captured every 3 m and 2D z-projections compiled

with ImageJ.

Found at: doi:10.1371/journal.pone.0005857.s011 (0.05 MB

MOV)
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52. Leenders W, Küsters B, Pikkemaat J, Wesseling P, Ruiter D, et al. (2003)

Vascular endothelial growth factor-A determines detectability of experimental

melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer 105:

437–443.

53. Wang H, Fu W, Im JH, Zhou Z, Santoro SA, et al. (2004) Tumor cell a3b1

integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell

Biol 164: 935–941.

Vascular Soil for Metastasis

PLoS ONE | www.plosone.org 14 June 2009 | Volume 4 | Issue 6 | e5857


