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Abstract
The study of mutations causing the steroid-resistant nephrotic syndrome in children has greatly advanced our
understanding of the kidney filtration barrier. In particular, these genetic variants have illuminated the roles
of the podocyte, glomerular basement membrane and endothelial cell in glomerular filtration. However, in a
significant number of familial and early onset cases, an underlying mutation cannot be identified, indicating that
there are likely to be multiple unknown genes with roles in glomerular permeability. We now show how the
combination of N-ethyl-N-nitrosourea mutagenesis and next-generation sequencing could be used to identify
the range of mutations affecting these pathways. Using this approach, we isolated a novel mouse strain with a
viable nephrotic phenotype and used whole-genome sequencing to isolate a causative hypomorphic mutation in
Lamb2. This discovery generated a model for one part of the spectrum of human Pierson’s syndrome and provides
a powerful proof of principle for accelerating gene discovery and improving our understanding of inherited forms
of renal disease.
 2013 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great
Britain and Ireland.
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Introduction

Twenty percent of paediatric patients with the nephrotic
syndrome fail to achieve remission with steroid treat-
ment [1], and these patients have a high incidence of
progression to end-stage kidney disease [2]. In contrast
to the more common form of the disease, the steroid-
resistant nephrotic syndrome (SRNS) is predominantly
monogenic, involving at least 24 known genes [3],
including NPHS1 [4], NPHS2 [5], WT1 [6], LAMB2
[7], CD2AP [8], PLCE1 [9], ACTN4 [10], TRPC6 [11]
and INF2 [12]. These targets have highlighted the key
role of the podocyte in maintaining the integrity of the
glomerular filtration barrier [13] and the importance
of the endothelial cell and the extracellular glomeru-
lar basement membrane (GBM), which is composed of
collagen IV, laminin, heparan sulphate proteoglycans

and nidogen-1, in maintaining selective permeability
[14,15]. The mutations causing SRNS have revealed
diverse and sometimes unexpected functions, ranging
from ion channels to the organization of the actin
cytoskeleton or mitochondrial function. In 20–40% of
familial cases of childhood-onset SRNS [16–18] and
at least 30% of all cases within the first year of life
[19,20], the underlying gene is not known. Combined
with the diversity of genes and pathways already iden-
tified, this suggests there are many unknown genes
contributing to the filtration barrier, with potential as
therapeutic targets [21].

Whilst future studies using next-generation sequenc-
ing will undoubtedly identify more of the genes
involved in familial cases of SRNS, such families are
rare, and it is therefore possible that a simultaneous and
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complementary approach using animals could acceler-
ate the discovery of new genes and provide models for
human disease. In particular, forward screens using the
chemical mutagen N -ethyl-N -nitrosourea (ENU) are a
powerful method to identify genes without a priori
assumptions as to pathways or function, by inducing
random point mutations that mimic human variation.
The aim of this study was to establish an efficient
method to identify genetic variants causing protein-
uria in a mouse model, using ENU mutagenesis. By
harnessing whole-genome sequencing (WGS), we were
able to rapidly isolate the causative mutation in an ENU
pedigree with the nephrotic syndrome.

Materials and methods

ENU and phenotyping
Nephertiti mice were generated at the Australian Phe-
nomics Facility, Australian National University, Can-
berra. C57BL/6 J (B6) founder mice were treated with
three doses of 90–100 mg/kg N -ethyl-N -nitrosourea
(Sigma), as previously described [22]. Proteinuria was
detected by urine dipstick (Multistix, Bayer Health
Care) in third-generation (G3) offspring from such a
founder.

Collection of blood samples
Mice aged 17–25 weeks were terminally anaesthetized
and blood samples were collected, by cardiac puncture,
into lithium heparin paediatric tubes and centrifuged to
separate out the plasma.

Routine clinical chemistry of plasma samples
Clinical chemistry was performed on a Beckman Coul-
ter AU400 semi-automated clinical chemistry analyser
by the Mary Lyon Centre’s clinical pathology service
laboratory at MRC Harwell. All assays were carried
out using the manufacturer’s instructions, parameter
settings and reagents. Samples were analysed for total
protein, albumin, total cholesterol, triglycerides urea
and creatinine. Electrolytes (sodium, potassium and
chloride), total calcium, inorganic phosphate, alanine
aminotransferase, aspartate aminotransferase, alkaline
phosphatase, HDL cholesterol, LDL cholesterol and
glucose were also measured.

Histology
Tissue sections were fixed in 10% neutral buffered
formalin, embedded in paraffin, cut to 3 µm sections
and stained with either haematoxylin and eosin (H&E),
periodic acid–Schiff (PAS) or methenamine silver,
according to published methods. For transmission elec-
tron microscopy, tissue was fixed with gluteraldehyde,
embedded with resin and sectioned at 70 nm. The
Oxford Centre for Histopathology Research performed
the electron microscopy and silver staining. IgG

immunofluorescence was performed on formalin-fixed
tissues, following pronase antigen retrieval [23] using
fluorescein isothiocyanate (FITC)-conjugated IgG
(Caltag) [24]. 4′,6-Diamidino-2-phenylindole (DAPI)
was used for nuclear counterstaining. Immunofluo-
rescence images were captured using a Zeiss 510
metahead confocal microscope.

DNA extraction
DNA was extracted from tail tissue using a DNAeasy
kit (Qiagen), and quantified using a Qubit fluorometer
(Invitrogen).

Conventional mapping
B6 mice were out-crossed to the CBA/J strain for
mapping and bred to bring the causative mutation to
homozygosity, using dipstick urine testing to track
the phenotype. Linkage mapping was performed using
simple sequence-length polymorphisms (SSLP) and
single nucleotide polymorphisms (SNPs) (Figure 2A,
B). Maximal LOD scores [25] using a range of
recombination fractions < 0.5 were calculated at each
of 26 polymorphic loci, given the observed alleles in
a mean of 27 affected and unaffected mice from the
nephertiti pedigree.

Whole-genome sequencing and mapping
Whole-genome sequencing was performed on one lane
of a HiSeq 2000 (Illumina) to 5.8× mean coverage,
using paired-end 100 bp reads. Reads were mapped
with Stampy [26] against the MGSCv37 mouse ref-
erence genome; 92.7% of the genome was covered
by at least one read. Variants were called with Platy-
pus (Rimmer A, Mathieson I, Lunter G, McVean
G, (2012) Platypus: An Integrated Variant Caller
www.well.ox.ac.uk/platypus) and filtered against an in-
house union file of variants seen in other ENU mouse
pedigrees, and against dbSNP v 128. The variants were
also filtered for coverage depth, allelic or strand bias,
homopolymers, repetitive sequence and quality of local
variation. In-house Python scripts were used for all fil-
tering steps.

An in-house algorithm based on a hidden Markov
model [27] was used to infer the most likely ances-
tral haplotypes inherited by the sequenced nephertiti
mouse, based on the observed frequency of variants and
knowledge of the ENU mutation rate [28]; for details,
see Supplementary material. A bam format file con-
taining the read data for this experiment will be made
freely available in the European Nucleotide Archive
data repository.

Validation of the Lamb2 mutation with Sanger
sequencing
Whole genomic DNA from the sequenced mouse
was amplified using oligonucleotide primers (for-
ward CTATGCTGGTGGAGCGTTCT, reverse TGAG-
TAGCGGGACTCACACA) and Biotaq polymerase
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(Bioline Reagents Ltd). Amplification of the PCR prod-
uct was carried out using BigDye reagents (Applied
Biosystems) and sequenced on an ABI Prism 3100
machine.

Statistical analyses
LOD score calculations were as described above, all
other statistical analyses were performed using the
GraphPad Prism package. WT-to-mutant p values for
clinical chemistry were calculated using unpaired two-
tailed t-tests.

Ethics
All animal experiments were approved by local and
national ethical review, including the Australian
National University Animal Ethics and Experimen-
tation Committee and the Oxford University Local
Ethical Review Committee and UK Home Office
(License No. PPL 30/2455).

Results

In the course of a programme screening third-
generation offspring of ENU-treated mice for immune
phenotypes [29], we detected several mice from a
single pedigree with heavy proteinuria on dipstick
testing, which was detectable at weaning (3 weeks of
age) and inherited in an autosomal recessive manner
(Figure 1A). The nephertiti mouse strain exhibited
a nephrotic phenotype. Mice examined between 17
and 25 weeks had hypoproteinaemia and hypoalbu-
minaemia, raised cholesterol and trigylcerides and
low body weight in comparison to wild-type (WT)
B6 mice. Urea and creatinine were not significantly
raised in comparison to WT (Figure 1B–G). Light
microscopy of the kidneys of affected animals, but
not WT littermates, demonstrated protein casts within
tubules and protein resorption droplets within tubular
epithelium (Figure 2A, B). Methenamine silver
staining revealed a coarsely thickened GBM with
widespread basement membrane spikes (Figure 2C,
D). Electron microscopy (EM) showed an irregular
appearance to the subepithelial GBM with areas
of thickening and spikes. The subendothelial GBM
surface remained smooth. There was moderate efface-
ment of the podocyte foot processes (Figure 2E–H).
Immunofluorescence confirmed the absence of IgG
antibody accumulation (see supplementary material,
Figure S1).

Due to the random nature of ENU mutagene-
sis, out-crossing to another inbred laboratory strain
and linkage mapping using strain-specific polymor-
phisms has conventionally been required to identify the
causative mutation. Consequently, nephertiti was out-
crossed to the CBA/J strain and bred to homozygosity,
tracking the phenotype by urinalysis. Coarse linkage

mapping identified simple sequence-length polymor-
phisms (SSLPs) with LOD scores of 6.84 and 2.3 on
chromosome 9 (Figure 3A). Fine mapping narrowed
the candidate region to 14.3 Mb on chromosome 9
(Figure 3B), containing 311 RefSeq or 559 Ensembl
gene annotations.

We then carried out low-coverage WGS in order to
identify the causative mutation. DNA from one affected
mouse was sequenced to mean 5.8× coverage. Because
the mouse had been out-crossed, there were > 3.8 ×
106 variants called; however, excluding low-quality
calls and known variation reduced this number to 298
876 (see Materials and methods). Within the 14.3 Mb
linkage region there were a total of 1680 variants, of
which eight were in coding regions or splice sites.
Filtering for those affecting protein sense (missense,
nonsense or splice variant) and homozygous in the
affected mouse reduced this to one candidate, a G–A
transition at position 108 383 650 on chromosome 9,
predicted to result in a C185Y amino acid substitution
in exon 5 of the laminin-β2 protein.

Mutations in human LAMB2 cause Pierson’s syn-
drome, which typically presents with severe nephrotic
syndrome alongside ocular abnormalities and neuro-
muscular hypotonia [7]. Since Lamb2 knock-out mice
exhibit nephrotic range proteinuria [30], both the clin-
ical and animal data suggest that this mutation is
causative in nephertiti .

Although this result demonstrated that WGS com-
bined with linkage data could isolate the causative
mutation, we wanted to examine the efficacy of a
WGS approach without utilizing conventional linkage
information. To do this, we developed an algorithm
to identify all genomic intervals inherited from the
ENU-treated founder, based on the density of variants
(see Supplementary material). The algorithm identified
regions comprising 263 Mb as having two alleles inher-
ited from the ENU-treated founder (Figure 4A). These
regions contained 347 of the filtered variants. Select-
ing for homozygous variants affecting protein sense
reduced the number of candidates to eight (Figure 4B),
including the Lamb2 mutation. Sanger sequencing con-
firmed the mutation (Figure 4C), which is highly con-
served and predicted deleterious by Polyphen-2 [31].

Discussion

Laminin forms the basic scaffold protein of basement
membranes, as cruciform heterotrimers composed of
α, β and γ subunits. The principal laminin of adult
GBM is composed of α5, β2 and γ1 subunits [32]
and is also expressed at the neuromuscular synapse
[33]. The mutation in nephertiti lies in the globular N-
terminal domain on the short arm of laminin β2, which
is important for trimer polymerization [34] (Figure 4D).

Lamb2−/− mice have severe neuromuscular disease,
which contributes to their perinatal lethality; but when
transgenic laminin β2 is expressed in skeletal mus-
cle (MCK-B2), the mice develop proteinuria and die
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Figure 1. Nephertiti, an ENU mutant strain with proteinuria. (A) Urine protein in affected nephertiti mice and unaffected littermates,
where 3 += 3–10 mg/ml and 4+> 10 mg/ml. Comparison of plasma total protein (B), albumin (C), total cholesterol (D), triglycerides (E),
creatinine (F) and weight (G) in age-matched, homozygous, heterozygous and WT sibling controls, between 17 and 25 weeks. p values are
based on unpaired two-tailed t-tests between WT and homozygous mutants. Error bars indicate mean and standard deviation

of kidney failure at 1 month [35]. In contrast, the
nephertiti mice survive beyond 6 months. All mice
homozygous for the nephertiti allele had 3+ or 4+
protein on dipstick testing (Figure 1A), consistent with
3–10 mg/ml or > 10 mg/ml urinary protein, respec-
tively [36], and comparable with the 10 mg/ml reported
in Lamb2 −/−-null mice [37]. Therefore, the prolonged
survival in nephertiti mice appears to be due to pre-
served renal function despite nephrosis (Figure 1F, G),
and different from the effects of the null mutation [38].
This would be consistent with a hypomorphic muta-
tion, with mutant laminin β2 expressed in the GBM,
and suggests that the defect in nepheriti mice may be
due to abnormal function of the mutant protein.

The nephertiti phenotype is consistent with the
spectrum of human Pierson’s syndrome. Patients with

truncating null mutations develop mesangial sclerosis
and end-stage renal failure within the first few years of
life, often combined with complex ocular abnormalities
and severe psychomotor retardation [39]. However,
several groups have identified patients with missense
mutations in LAMB2 , which are associated with slower
renal progression and in some cases an absence of
extrarenal manifestations [40–43]. The latter would
be consistent with the phenotype in nephertiti , where
survival, breeding, locomotor function and behaviour
appear to be normal. The human missense mutations
are clustered at the globular N-terminal domain [44],
and some have been shown to result in low levels of
laminin β2 in the GBM [42]. In contrast, damaging
premature stop codons are distributed across the gene,
and deletion of even the last 39 amino acids results
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Figure 2. Renal light microscopy and electron microscopy in WT (A, C, E, G) and nephertiti (B, D, F, H) mice. (A, B) After H&E staining, at
objective magnification ×20, nephertiti mice show dilated renal tubules containing protein casts (arrow) and protein resorption droplets in
tubular epithelium (arrowhead). (C, D) After methenamine silver staining, at objective magnification ×60, nephertiti mice show prominent
membrane spikes (arrow). (E, F) By electron microscopy, at magnification ×18 500, nephertiti mice show irregularly thickened glomerular
basement membranes (arrowhead). (G, H) Higher-power images of basement membrane in (E, F), with subepithelial spikes and podocyte
foot process effacement in nephertiti (arrow). All histology is shown in homozygous affected nephertiti mice and WT unaffected siblings.
Histology is representative of samples from three affected and three WT for each stain

in complete loss of protein expression [7], presumably
because the C-terminus is required for trimer assembly
[45].

The mechanism by which missense mutations in
the N-terminal domain induce the nephrotic syndrome
is not fully understood. Polymerization through
binding of these domains is mediated via C-terminal
interactions with dystroglycan and integrin receptors
in vitro, driving reciprocal cytoskeletal assembly and
actin reorganization [46] and suggesting that correct
polymerization of laminin could involve podocyte
signalling. The filtration barrier failure observed with

podocyte-specific knockout of the integrin-linked
kinase ILK also points to a role for the interaction
between laminin in the GBM and podocyte integrin
[47]. The prominence of membrane spikes in nepher-
titi closely resembles mice lacking the tetraspanin
CD151 , in which lack of integrin α3β1–CD151 inter-
actions may also result in podocyte detachment and
compensatory production of excess GBM components
[48]. The fact that over-expression of laminin β1
can partially rescue the Lamb2−/− phenotype [49],
albeit an incomplete rescue, despite adequate laminin
trimer formation, indicates that laminin β2 has unique
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Figure 3. Mapping the nephertiti mutation to chromosome 9. (A) Coarse mapping using SSLP. (B) Fine mapping using SSLP and SNPs. The
only SNP with fully consistent linkage to the homozygous phenotype is shown boxed; the limits of the linkage region are defined by the
adjacent SNPs

properties, perhaps due to its higher binding avidity to
integrin α3β1 compared with laminin β1 [50].

Proteinuria precedes foot process effacement in
Lamb2−/− mice, suggesting that the defect is at least
partly GBM-intrinsic[38]. Consistent with this, we
found relative preservation of podocyte structure in
nephertiti , despite GBM thickening and the nephrotic
syndrome. Changes in one component of the GBM can
affect others, for example in Alport’s syndrome, where
mutations in collagen IV result in ectopic expression
of laminin [51]; however, Lamb2−/− mice have nor-
mal collagen IV chain expression [30]. A transgenic
N-terminal mutant laminin-β2 only partially rescues
the Lamb2−/− phenotype, with low levels of β2 at the
GBM attributed to failure to secrete the protein [52],
and moderate transgene expression resulting in a moth-
eaten, irregularly thickened GBM, similar to nephertiti .
The transgenic C321R mutation results in misfolding
in the endoplasmic reticulum and death due to renal

failure by 3 months [53]. The preserved function and
prolonged survival in nephertiti may be due to the
more physiological expression of the mouse pro-
tein; alternatively, the C185Y mutation, which unlike
C321R lies N-terminal to the disulphide-bonded cys-
teines of the EGF-like repeats, may have lesser conse-
quences for protein folding.

Whereas nephertiti was generated on a B6 back-
ground, the targeted knockout Lamb2−/− was originally
from 129 s1/SvJ ES cells and could therefore carry
129 specific modifiers in linkage to the Lamb2 gene
on a B6 background. Although formal proof would
require analysis of a Lamb2−/− on a pure B6 back-
ground, we think it unlikely that linked genes in the
congenic region have important modifier effects: first,
because it is possible to effect a partial rescue of
the renal-specific Lamb2−/− mice, originally from 129
ES cell origin, with a B6CBAF2/J mutant transgene
[52]; and second, because we did not observe any
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Figure 4. A hypomorphic laminin β2 mutation is the cause of proteinuria in nephertiti. (A) Scatter plots of homozygous (red) and
heterozygous (blue) filtered WGS variants for each chromosome. High-density regions correspond to the CBA genomic regions; regions
inheriting both alleles from the ENU-treated founder have a lower density of homozygous variation than CBA regions but higher than
background variation from the reference in WT genomic intervals. The region identified by conventional linkage mapping is shaded yellow.
Regions identified as homozygous ENU in this mouse by variant density using the hmm algorithm are shaded pink. Black circles indicate
candidate coding variants affecting protein sense, the Lamb2 variant is shown as a pink circle. (B) Candidate variants identified by WGS
without reference to the conventional linkage region include the causative mutation. (C) Sanger sequencing confirms the Lamb2 mutation.
(D) The mutation induces a C-to-Y substitution in the globular N-terminal domain (LN) of laminin β2, on the β2 short arm of the laminin
521 heterotrimer

phenotypic consequences following outcrossing to the
CBA/J strain for mapping in nephertiti .

Laminin is thought to be produced by both podocytes
and endothelial cells in the glomerulus [54]; however,
glomerular hybrid experiments suggest that cellular ori-
gin influences laminin localization within the GBM
[55]. Access to a mutant strain expressing a hypo-
morphic form of laminin β2 under its physiological
promoter will make it possible to isolate such cell-
specific effects.

ENU mutagenesis coupled to high-throughout
sequencing offers two advantages for the discovery of
new genes involved in the development or maintenance
of the glomerular filtration barrier, which are illustrated
by our study. First, point mutations induce viable
phenotypes that mimic human disease, so nephertiti
models the milder spectrum of Pierson’s syndrome

and confirms the importance of the N-terminal domain
in laminin β2 function. Second, it is now possible,
using WGS, to move rapidly from phenotypic screens
for proteinuria, urinary protein:creatinine ratio, renal
clearance, histology or imaging to the identification
of causative mutations. Future screens based on
these principles will identify novel genes, variants
and pathways involved in heritable forms of human
renal disease and provide tools for investigating the
underlying mechanisms that cause pathology.
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