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Abstract

Declaring ‘‘replication’’ from results of genome wide association (GWA) studies is straightforward when major gene effects
provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent
samples. However, such unambiguous replication is unlikely when phenotypes display polygenic genetic architecture, allelic
heterogeneity, locus heterogeneity and when different samples display linkage disequilibria with different fine structures.
We seek chromosomal regions that are tagged by clustered SNPs that display nominally-significant association in each of
several independent samples. This approach provides one ‘‘nontemplate’’ approach to identifying overall replication of
groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 M SNP GWA results for
dependence on: a) alcohol (including many individuals with dependence on other addictive substances) and b) at least one
illegal substance (including many individuals dependent on alcohol). This approach provides high confidence in rejecting
the null hypothesis that chance alone accounts for the extent to which clustered, nominally-significant SNPs from samples
of the same racial/ethnic background identify the same sets of chromosomal regions. It identifies several genes that are also
reported in other independent alcohol-dependence GWA datasets. There is more modest confidence in: a) identification of
individual chromosomal regions and genes that are not also identified by data from other independent samples, b) the
more modest overlap between results from samples of different racial/ethnic backgrounds and c) the extent to which any
gene not identified herein is excluded, since the power of each of these individual samples is modest. Nevertheless, the
strong overlap identified among the samples with similar racial/ethnic backgrounds supports contributions to individual
differences in vulnerability to addictions that come from newer allelic variants that are common in subsets of current
humans.

Citation: Johnson C, Drgon T, Walther D, Uhl GR (2011) Genomic Regions Identified by Overlapping Clusters of Nominally-Positive SNPs from Genome-Wide
Studies of Alcohol and Illegal Substance Dependence. PLoS ONE 6(7): e19210. doi:10.1371/journal.pone.0019210

Editor: Thomas Mailund, Aarhus University, Denmark

Received September 3, 2010; Accepted March 30, 2011; Published July 27, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: Support for dbGAP data came from the NIH Genes, Environment and Health Initiative [GEI] (U01 HG004422)/Gene Environment Association Studies
(GENEVA) that received assistance with phenotype harmonization, genotype cleaning, and study coordination from the GENEVA Coordinating Center (U01
HG004446), assistance with data cleaning from the National Center for Biotechnology Information, and assistance with collection of datasets and samples by the
Collaborative Study on the Genetics of Alcoholism (COGA; U10 AA008401), the Collaborative Genetic Study of Nicotine Dependence (COGEND; P01 CA089392)
and the Family Study of Cocaine Dependence (FSCD; R01 DA013423). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: guhl@intra.nida.nih.gov

Introduction

Genome wide association (GWA) is a method of choice for

identifying genes whose variants influence vulnerability to complex

disorders. Declaring ‘‘replication’’ of individual results of genome

wide association studies is straightforward when major gene effects

provide associations between marker and phenotype that display

the same phase and ‘‘genome wide’’ levels of significance (p ca

1028) in each of several independent samples. However, such

‘‘template’’ replication for individual markers is unlikely to be

achieved in many otherwise-reasonable samples for many

phenotypes. Phenotypes and samples that display polygenic

genetic architecture, allelic heterogeneity, locus heterogeneity

and sample-to-sample differences in fine structures of linkage

disequilibrium can provide especial difficulties for this ‘‘template’’

approach. These difficulties can be exacerbated when data comes

from different genotyping platforms that do not assess allele

frequencies for identical sets of SNPs. Much current genome wide

association and linkage data suggests that we may have identified

many or even most of the loci at which we might expect

‘‘template’’ analyses to identify reproducible genome wide

significance in reasonably sized samples (see references below). Much

of the risk attributable to genetic influences on common

phenotypes appears likely to arise from polygenic influences

whose properties are likely to provide many false negative results

in searches for replicated ‘‘genome wide’’ significance in multiple

independent samples that use ‘‘template’’ criteria for replication.

Vulnerability to heavy use and development of dependence on

alcohol and/or an illegal abused substance (‘‘addiction vulnera-

bility’’) appears to be such a trait. The substantial genetic

influences on addiction vulnerability are documented by data

from family, adoption and twin studies [1,2,3,4]. Twin studies also
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document shared heritable influences on vulnerability to depen-

dence on addictive substances from different pharmacological

classes, including alcohol and illegal drugs from several pharma-

cological classes [2,3,5]. Combined data from linkage and initial

GWA studies [6,7,8,9,10,11,12,13,14,15,16,17,18,19] suggest that

much of the genetic influence on vulnerability to substance

dependence is likely to be polygenic.

We have developed a ‘‘nontemplate’’ strategy that identifies

overall replication of sets of genome wide association (GWA) results

in the face of difficulties with genetic architectures, samples and

genotyping methods [9,14,20,21]. Such an approach can comple-

ment meta-analyses that seek to combine data from single markers

whose significance in single samples does not achieve genome wide

significance.

We now report application of this nontemplate strategy to

identify overall replication of groups of results from GWA studies

of samples of individuals with dependence on alcohol and illegal

substances vs matched controls [21], (http://www.ncbi.nlm. nih.

gov/gap). We separately compare data from independent samples

of individuals with European-American genetic backgrounds and

samples of individuals with African-American genetic back-

grounds. These data come from individual genotyping and

multiple-pool genotyping approaches that use 1 M SNP Illumina

and Affymetrix platforms, respectively. The results focus attention

on chromosomal regions that are identified by clusters of SNPs for

which case vs control differences achieve nominal statistical

significance in multiple samples from the same racial/ethnic

group. We describe the high confidence with which this approach

rejects the null hypothesis that clusters of nominally-significant

SNPs from different samples of individuals from the same racial/

ethnic group identify the same chromosomal regions with

frequencies expected by chance. We note the more modest levels

of confidence that this approach provides for identification of

individual SNPs, individual chromosomal regions, individual

genes and for the overlap between data from samples of the two

racial/ethnic groups studied, except in genes in which we and

other investigators have identified associations in independent

samples. We discuss this work in light of its technical and analytic

limitations and in its similarities with and differences from

‘‘template’’ GWA analyses and meta-analyses that seek reproduc-

ible associations of striking levels of significance at single SNP

markers. The current ‘‘nontemplate’’ replication of sets of results

may be useful in other settings in which the underlying properties

of the disorder and of the samples create difficulties for searches for

individual SNPs with replicated genome wide significance.

Materials and Methods

Subjects, genotyping and assignment of nominal
significance of dependent vs control allele frequencies in
each sample

1) dbGAP samples from the FSCD, COGA and COGEND

studies. Genotypes from unrelated subjects who provided

written consents and met DSM criteria for alcohol dependence

and consenting control subjects with no evidence for dependence

on any drug were assembled from three sets of subjects and

deposited in dbGAP (http://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id = phs000092.v1.p1). Family study

of cocaine dependence (FSCD) subjects were recruited from

treatment centers close to St. Louis. Mo; 55% of contacted

subjects participated [22]. Community-based comparison subjects

were recruited through driver’s license records from the Missouri

Family Registry and were matched to alcohol dependent subjects

based on date of birth, ethnicity, gender, and zip code. Eighty

percent of screened and eligible comparison subjects participated.

Other participants came from individuals who participated in the

Collaborative Study on the Genetics of Alcoholism (COGA) [23]

and the Collaborative Study on the Genetics of Nicotine

Dependence [10]. Dependent individuals displayed DSM

(Diagnostic and Statistical Manual IV) dependence on alcohol.

Controls, defined in dbGap variable phv00022939.v1.p1.c2

‘‘final_type’’, displayed no DSM dependence on alcohol,

cocaine, marijuana, opioids or other drugs but may have

evinced DSM nicotine dependence, FTND scores .4 and/or

regular smoking as defined by smoking .100 cigarettes in their

lives. We identified 1171 dependent and 1395 control unrelated

European-American subjects and 652 dependent and 499 control

unrelated African-American subjects for this analysis. Subjects

were 45% male; 48% of the alcohol-dependent subjects were also

dependent on cocaine.

Genotyping for these samples was performed using Illumina

1 M SNP arrays at the Center for Inherited Disease Research

(CIDR), with quality controls and principal components analysis

(PCA) controls for racial/ethnic background available at the

dbGAP website. Genotypes from dependent and control individ-

uals were selected from dbGAP files, excluding SNPs with minor

allele frequencies less than 0.01–0.02 (for European and African

American samples, respectively) and those with missing call rates

.5%. p values for each SNP were based on x2 tests.

2) NIDA/MNB samples. European-American and African-

American research volunteers, largely non treatment seeking,

came to the NIDA research facility in Baltimore, Maryland

between 1990 and 2007 in response to advertisements and

referrals from other research volunteers. Subjects provided written

informed consents, self-reported ethnicity data, drug use histories

via the Drug Use Survey and DSMIII-R or IV diagnoses

(Diagnostic and Statistical Manual) and were reimbursed for

their time as previously described [6,17,21,24]. Genotypes were

assessed in DNA pools using Affymetrix 6.0 arrays and methods

that we have extensively validated, as previously described

[6,7,8,9,21]. Pooling 1) provided us with the maximal ability to

protect the genetic confidentiality of subjects who volunteered for

study of genetics of illegal behaviors, 2) allowed us to utilize DNAs

from individuals who consented to participation in this study

during time periods when consents did not explicitly describe

studies using high densities of DNA markers, 3) allowed us to use

methods that we have developed and validated in this and in

previous work and 4) reduced costs. Many of these subjects would

thus not have been available for studies that assessed substantial

numbers of polymorphisms using individual genotyping. Nominal

p values for each SNP were determined based on t tests that

compared data from multiple abuser vs control pools that

contained DNAs from 680 European-American and 940

African-American individuals who had mean ages of 32.8 and

34.0 and were 69.5 and 58.8% male, respectively, as described

[21]. In addition, to provide additional validation for the pooling

results for the SNPs that formed the basis of the clusters evaluated

herein, we also performed individual genotyping using Affymetrix

6.0 arrays for the 155 African American research volunteers who

constituted virtually all of the members of 8 DNA pools and who

had consented to unlimited individual genotyping. These

individual genotyping results all passed Affymetrix quality

control standards and resulted in $98% call rates.

3) Identification of chromosomal regions containing

clusters of SNPs with nominally-significant case vs control

differences in single or multiple samples. We performed

analyses based on previously-defined criteria using datasets of

approximately 1 million SNPs [21]. We identified chromosomal
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regions of interest in individual samples by seeking regions in

which at least 4 clustered SNPs displayed case vs control

differences with nominal, p,0.05 levels of statistical significance.

We defined clustering based on separation of each clustered SNP

from the nearest nominally-significant SNP by #10 kb. We

identified similarities between the results obtained from multiple

samples by identifying the chromosomal regions that were tagged

by such clustered, nominally positive SNPs in each of the samples

of individuals from the same racial/ethnic groups. We identified

genes for which these chromosomal intervals lay within the exons

of the gene and/or in 10 kb of 59 or 39 flanking sequence.

4) Monte Carlo methods for assignment of levels of

significance to: a) the extent of clustering in each sample

and b) the degree to which clustered nominally-positive

SNPs from multiple independent samples identify the same

chromosomal regions. Monte Carlo methods were used to

assign empirical statistical probabilities to two null hypotheses,

starting with the sets of all SNPs and the nominally positive SNPs

that displayed p,0.05 case vs control values.

We first tested the null hypothesis that chromosomal clustering

of these nominally positive SNPs occurred at the level expected

by chance in these datasets. For each Monte Carlo trial that

tested this null hypothesis, we randomly selected a number of

‘‘pseudo positive’’ SNPs from each dataset that matched the

number that achieved nominal significance in the bona fide

dataset. Thus, we constructed a list of autosomal SNPs assayed in

each sample and assigned a number to each SNP that

corresponded to its position on the list. To select the

pseudopositive SNPs for each trial of the European-American

datasets, we selected 75,413 random numbers for the NIDA (see

below) and 49,843 random numbers for the dbGAP datasets. For

the African American datasets, we used 83,330 and 45,325

random numbers, respectively. For each trial, the SNPs

identified by the positions on the list that corresponded to these

randomly-assigned numbers were then queried for the extent to

which their results equaled or exceeded the results obtained for

the actual dataset. In 10,000 such trials for each sample, we

compared results concerning the extent of chromosomal

clustering from these sets of pseudopositive SNPs to those for

the true positive SNPs. These empirical Monte Carlo p values

thus addressed the null hypothesis that the true positive SNPs

from each single sample were randomly arrayed on the

chromosomes. Of course, the clustering of SNPs that provided

nominally-significant case vs control differences in each individ-

ual sample did not allow us to discern whether the haplotypes

identified in such a manner were related to a) phenotypic

differences or to b) stochastic differences in haplotype frequen-

cies between case and control samples.

Monte Carlo methods were also used to assign empirical

statistical probabilities to a second null hypotheses: that the same

chromosomal regions were identified by the clustered, nominally

positive SNPs in independent samples with the frequencies

expected by chance. In 10,000 trials from pairs of independent

samples, we compared the extent of overlap between the

chromosomal regions identified by the clustered, nominally-

positive SNPs in each sample. The Monte Carlo p values that

derive from these trials thus addressed the second null hypothesis

that the chromosomal regions identified by clusters of nominally

positive SNPs in each of multiple samples were identified only on

stochastic bases that were unrelated to phenotype.

Secondary analysis of dbGAP data used permutation approach-

es as implemented in PLINK (v1.06) (http://pngu.mgh.harvard.

edu/purcell/plink/) [25]. We randomized assignment of the

phenotypes to data derived from the current SNPs and analyzed

the data from 3,000 permutation trials that addressed each of

several null hypotheses (see below).

To assess the power of our current approach we used current

sample sizes and standard deviations, power calculator PS v2.1.31

[26,27] and a= 0.05.

Results

As noted elsewhere [21], variation among the allele frequency

estimates between pools from individuals of the same phenotype

for each racial/ethnic group from the NIDA/MNB samples was

+/2 0.02 (standard error of the mean SEM).

European-American samples
For the dbGAP data from European-Americans, x2 tests

displayed p,0.05 for 49,843 autosomal Illumina SNPs. For the

NIDA/MNB European-American samples, 75,413 of the autoso-

mal Affymetrix 6.0 SNPs displayed t values with p,0.05 in

comparisons between data from substance dependent vs control

samples [21].

Searches for genome wide significance in each
European-American sample

We identified case vs control p values for t test results from

NIDA/MNB samples and for x2 results from dbGAP samples

from unrelated individuals. Permutation testing for the dbGAP

European-American samples revealed p,0.0003 (3,000 trials) for

the number of SNPs with nominal case vs control p values,0.05.

However, virtually none of these p values reached the 1028 level

deemed necessary for genome wide significance.

Searches for clustering of SNPs with nominally-significant
case vs control differences in each European-American
sample

We identified 3125 clusters of SNPs that displayed nominally

significant, p,0.05 case vs control differences for x2 results from

dbGAP samples and 2931 clusters with nominally significant t test

results from NIDA/MNB samples.

Searches for chromosomal regions identified by
clustered SNPs with nominally-significant case vs control
differences in both European-American samples

Two hundred four chromosomal regions contained clusters of

nominally-significant SNPs from both of these two European-

American samples.

None of 10,000 Monte Carlo simulation trials that each began

with random sets of SNPs selected from each of the datasets

identified as many overlapping regions as found in the true dataset.

The overall Monte Carlo p,0.0001 for the overlap noted in the

true data thus provides very high levels of confidence that these

independently-derived sets of results do not identify the same set of

chromosomal regions by chance alone. Thus, the null hypothesis

that the chromosomal regions identified by both samples are

identified based only on stochastic grounds is falsified by these

Monte Carlo data.

In addition, none of 3,000 permutation trials provides data that

identifies as many chromosomal regions from permutated data as

those identified by the real datasets. Thus, the null hypothesis that

the chromosomal regions identified by both samples are identified

based only on stochastic grounds also nullified by permutation

testing data. The genes that: a) lie in chromosomal regions

identified by data from both European-American samples and b)

display the most nominally-significant SNPs are listed in Table 1;

Replication of Sets of GWA Results for Addiction
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Table 1. Chromosomal regions and genes identified by clusters of SNPs that provide nominally-significant differences between
individuals dependent on alcohol (dbGAP alcohol dependent v ctl) or at least one illegal substance (NIDA/MNB drug dependent v
ctl) in subjects of European-American heritage.

dbGAP alcohol dependent v ctl NIDA/MNB drug dependent v ctl

ch # SNPs bp:start bp:end pmin SNP pmin # SNPs bp:begin bp:end pmin SNP pmin gene(s)

1 4 20008199 20013168 rs3820317 9.84E-03 4 20012477 20016730 rs11810916 1.09E-02 RNF186

1 7 55288592 55299911 rs483462 7.99E-04 5 55297559 55314269 rs12118986 1.60E-03 PCSK9, USP24

1 8 55310973 55329655 rs683880 5.67E-04 5 55297559 55314269 rs12118986 1.60E-03 PCSK9, USP24

1 6 65809029 65825669 rs11208674 1.36E-02 4 65806284 65815607 rs1749499 7.20E-03 LEPR

1 4 156627725 156642253 rs12756570 3.68E-03 4 156619836 156635649 rs4661129 3.97E-03 OR10T2

1 9 166920481 166942595 rs524705 4.40E-03 9 166920955 166961651 rs577317 2.28E-04 DPT

1 6 166957917 166974598 rs1052591 5.06E-03 9 166920955 166961651 rs577317 2.28E-04 DPT

1 12 170613171 170634300 rs2227198 2.21E-04 7 170608822 170631953 rs12145969 1.65E-03 DNM3

1 4 177978272 177994423 rs1052447 2.61E-03 5 177993055 178013737 rs1754352 6.97E-03 C1orf76

1 8 199376526 199391033 rs6694122 2.04E-04 4 199383345 199385625 rs7541884 5.23E-03 TMEM9

1 9 229429623 229483170 rs16854012 6.47E-03 4 229444384 229460142 rs4567343 2.74E-03 C1orf131, GNPAT

1 12 243603976 243639175 rs1173837 5.29E-03 7 243627708 243641337 rs962786 7.14E-03 KIF26B

1 15 244056488 244072421 rs9728248 1.84E-04 4 244061674 244078022 rs780240 4.53E-03 SMYD3

2 7 19927818 19951465 rs11096626 6.28E-03 6 19936320 19953950 rs6709385 3.04E-03 TTC32

2 11 38250946 38280657 rs183487 6.45E-04 4 38269132 38283958 rs17014705 2.46E-03 C2orf58

2 4 166876339 166885605 rs4438497 6.47E-03 5 166871909 166879436 rs12712157 1.33E-03 SCN9A

2 16 233405444 233445376 rs2675966 2.84E-03 5 233429928 233444593 rs955944 2.84E-04 NGEF, TNRC15, UNQ830

3 12 7136276 7170141 rs1353828 5.56E-03 5 7166923 7178151 rs16865440 6.74E-03 GRM7

3 27 10923486 11013807 rs4684746 1.94E-04 7 10943172 10961153 rs17583433 6.13E-03 SLC6A11

3 4 15270368 15283244 rs1318937 1.44E-04 4 15274441 15283244 rs12473173 1.31E-02 CAPN7, SH3BP5

3 12 29382520 29425986 rs13084147 2.17E-03 9 29407297 29432158 rs2700165 3.91E-03 RBMS3

3 9 37924180 37957695 rs9822761 3.39E-03 7 37935049 37958835 rs6710782 1.79E-03 CTDSPL

3 5 62634698 62643369 rs17356252 1.31E-03 4 62625164 62637893 rs11563201 1.59E-02 CADPS

3 6 144082777 144094347 rs6778966 3.11E-03 4 144085356 144087277 rs1513215 1.22E-02 PCOLCE2

4 6 5478592 5489229 rs4017782 1.70E-02 4 5485061 5489334 rs6809002 2.83E-03 STK32B

4 7 6092645 6116331 rs6850751 3.02E-03 10 6083725 6111793 rs4574309 2.61E-03 JAKMIP1

4 4 20933289 20944461 rs17520130 1.52E-02 4 20943383 20960603 rs13316480 9.42E-03 KCNIP4

4 7 22037427 22051143 rs1463000 2.15E-03 5 22041791 22059150 rs2350488 2.20E-04 GPR125

4 4 54659085 54667957 rs2278141 4.16E-03 4 54661971 54671211 rs7650251 3.75E-03 GSX2

4 5 90141166 90161886 rs1795722 9.59E-04 4 90140097 90149157 rs2903643 2.72E-03 FAM13A1

4 14 95774856 95821573 rs11724023 3.68E-04 4 95807472 95811400 rs10027043 1.86E-03 PDLIM5

4 7 148002578 148028761 rs1396716 1.04E-03 4 147999449 148013733 rs17587144 6.65E-05 TTC29

4 4 178492741 178506247 rs7689099 2.76E-02 5 178492904 178512644 rs11731709 3.30E-04 NEIL3

4 11 185544039 185583197 rs724528 8.75E-04 11 185570737 185604825 rs17148190 2.78E-03 IRF2

4 5 187423999 187443174 rs4241824 2.14E-03 5 187416129 187441931 rs10518112 5.31E-04 F11, KLKB1

5 7 16733772 16752512 rs2288433 1.71E-02 9 16737109 16755375 rs10019942 1.17E-02 MYO10

5 7 60877967 60899218 rs1550816 2.10E-02 4 60883961 60898674 rs7676941 2.72E-03 ZSWIM6

5 5 78287103 78299426 rs921945 2.12E-02 10 78250443 78293007 rs10866307 1.77E-02 ARSB

5 18 96108157 96159991 rs30333 3.95E-03 4 96108387 96124514 rs2935598 4.75E-03 CAST, ERAP1

5 18 96108157 96159991 rs30333 3.95E-03 5 96138710 96151541 rs12187040 3.59E-03 CAST, ERAP1

5 4 107328554 107341302 rs10900900 2.59E-02 6 107334222 107357187 rs7710617 4.20E-03 FBXL17

5 9 156312645 156338524 rs6883317 8.94E-03 5 156313948 156338362 rs16894458 0.03297 TIMD4

5 8 169753936 169783643 rs13175143 7.58E-04 4 169755299 169768102 rs298387 1.00E-02 KCNIP1, KCNMB1

6 8 125611562 125629660 rs3799732 3.45E-03 7 125615011 125629660 rs1010284 1.03E-03 HDDC2, TPD52L1

6 5 128874118 128891370 rs17364118 1.09E-02 4 128869961 128879810 rs1997781 1.02E-02 PTPRK

6 10 152750003 152780038 rs214989 2.46E-04 5 152756299 152775286 rs4143334 7.29E-03 SYNE1

6 5 167036150 167052518 rs4710081 3.99E-03 6 167007415 167038192 rs16896407 2.82E-03 RPS6KA2
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dbGAP alcohol dependent v ctl NIDA/MNB drug dependent v ctl

ch # SNPs bp:start bp:end pmin SNP pmin # SNPs bp:begin bp:end pmin SNP pmin gene(s)

7 7 11485443 11520621 rs6972615 2.45E-03 6 11479011 11498204 rs9449067 2.42E-03 THSD7A

7 8 21647276 21678449 rs6461593 3.91E-03 4 21652526 21661805 rs1020320 7.00E-04 DNAH11

7 5 29478611 29483175 rs1362364 2.94E-02 5 29472600 29486168 rs589469 1.10E-02 CHN2

7 8 50468934 50492914 rs963739 6.76E-04 11 50491702 50517353 rs9398913 1.14E-02 DDC, FIGNL1

7 4 50623828 50640401 rs12540874 9.46E-04 9 50624515 50661951 rs17060099 5.62E-03 GRB10

7 5 50653096 50663588 rs980716 3.29E-03 9 50624515 50661951 rs17060099 5.62E-03 GRB10

7 14 149948324 150001479 rs6946579 5.64E-03 4 149950223 149957752 rs11972731 2.46E-03 GIMAP6

7 4 154283212 154287670 rs878742 1.06E-02 4 154278320 154298576 rs10237037 5.03E-03 DPP6

8 6 3030719 3047485 rs1077153 6.75E-04 4 3035516 3042040 rs6942789 2.68E-02 CSMD1

8 10 3492983 3504244 rs2469390 1.37E-03 5 3491640 3497769 rs12699472 4.43E-03 CSMD1

8 4 3925003 3934454 rs1971078 2.50E-02 9 3907290 3934466 rs7789550 7.17E-03 CSMD1

8 4 4173158 4179668 rs1847570 1.68E-02 7 4166391 4177720 rs7804595 1.56E-05 CSMD1

8 5 10426159 10433464 rs7008087 1.39E-02 4 10415815 10426892 rs4385377 7.64E-03 UNQ9391

8 10 17198427 17226143 rs7003503 3.03E-03 10 17177416 17230166 rs12538892 2.44E-03 MTMR7, VPS37A

9 4 4193214 4216155 rs10974390 1.37E-02 4 4193214 4196671 rs341676 8.82E-03 GLIS3

9 6 100869363 100891728 rs1537504 5.46E-03 6 100853373 100876607 rs4237043 6.49E-04 COL15A1

9 5 111559709 111564648 rs2025878 3.23E-03 6 111545414 111562096 rs16938588 9.40E-03 PALM2

9 10 124177516 124204757 rs10513402 9.32E-03 5 124194135 124204757 rs2319361 1.32E-02 PTGS1

9 4 128199379 128209802 rs4836537 2.19E-02 4 128187181 128205955 rs6982224 4.57E-03 FAM125B

9 4 129336305 129348849 rs1891730 1.49E-02 4 129346310 129350356 rs16895390 7.01E-03 FAM129B

10 8 14397705 14415265 rs7082219 1.14E-04 7 14385664 14426301 rs16902692 1.08E-03 FRMD4A

10 4 53701449 53715401 rs1194516 3.30E-02 4 53696742 53702708 rs16929092 3.32E-03 PRKG1

10 6 61607010 61624482 rs12355908 3.95E-03 6 61585961 61607010 rs10119177 8.68E-03 ANK3

10 12 97281219 97339124 rs1536444 9.74E-04 8 97286712 97318201 rs7873766 8.41E-03 SORBS1

10 11 127458448 127494379 rs11244664 4.14E-03 4 127471364 127485187 rs7470086 3.52E-03 UROS

10 4 127630157 127646057 rs4403725 1.92E-03 4 127635773 127646057 rs1529192 1.13E-03 FANK1

11 4 20971341 20972871 rs10766761 1.69E-03 7 20959597 20974482 rs1891983 4.11E-03 NELL1

11 6 21530697 21556573 rs4922847 4.62E-03 6 21538074 21567545 rs17158139 1.23E-02 NELL1

11 6 122127741 122146466 rs12804711 8.64E-03 6 122109340 122129879 rs12261326 6.31E-03 UBASH3B

12 4 1854005 1867513 rs4765855 2.27E-02 4 1851711 1860652 rs16920334 1.58E-03 CACNA2D4

12 4 6210649 6216045 rs3181301 3.26E-02 5 6196175 6218155 rs16924415 4.62E-03 CD9

12 6 25136871 25157470 rs7303669 1.02E-02 4 25130689 25143445 rs17703918 2.11E-03 CASC1, LRMP

12 4 93905833 93915516 rs11107845 4.83E-03 4 93899571 93908819 rs3816785 0.016554 NDUFA12

12 6 110129183 110133727 rs3809291 2.21E-02 6 110118664 110143457 rs10829448 3.37E-03 CUX2

13 6 99172061 99202794 rs1125436 2.55E-03 4 99179251 99187733 rs10749902 0.012953 CLYBL

14 9 22081305 22111496 rs1263663 1.19E-02 8 22099352 22112693 rs1078402 5.22E-04 TRA@, TRAC, DAD1

14 12 32287714 32314819 rs910318 3.38E-03 4 32295737 32307125 rs608871 1.48E-03 AKAP6

14 6 56122035 56145673 rs7141305 2.45E-02 4 56129133 56137765 rs216852 1.17E-03 C14orf101

14 9 72786268 72812034 rs7202 7.26E-03 7 72786527 72791053 rs12320955 4.52E-03 PAPLN

14 27 93977822 94053547 rs11626091 2.74E-05 5 94033360 94053376 rs11051219 3.19E-04 SERPINA12

14 4 102682945 102688800 rs719252 1.09E-02 5 102686871 102702856 rs1908592 1.14E-03 RPL21P12

15 4 31741944 31745419 rs4779628 6.64E-03 4 31741944 31750247 rs2232562 2.88E-02 RYR3

15 9 77528074 77560994 rs7169963 6.33E-04 4 77538688 77556997 rs3811170 1.68E-03 KIAA1024

15 7 78050272 78071496 rs1879894 3.85E-03 4 78048881 78059873 rs17685991 3.86E-03 BCL2A1

15 15 87507774 87562668 rs8028123 1.34E-03 4 87510142 87521605 rs1091646 7.37E-04 ABHD2

15 15 87507774 87562668 rs8028123 1.34E-03 4 87562492 87564607 rs12579003 1.91E-03 RLBP1

15 5 91550160 91553882 rs1872052 9.80E-04 6 91532308 91561784 rs11107909 4.23E-03 UNQ9370
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the complete list of chromosomal regions identified in this way is

listed in Table S1. The fraction of the genome occupied by these

results is 210% of the size expected by chance, based on the

fractions of the genome occupied by clustered nominally positive

results from each of these two European-American samples (data

not shown).

African American samples
45,325 SNPs displayed nominally-significant case vs control

differences for dbGAP samples from African American individu-

als. For the NIDA/MNB African-American samples, 83,330 SNPs

displayed ‘‘nominally significant’’ t values with p,0.05 from this

racial/ethnic group. Permutation testing for the dbGAP African-

Americans revealed p = 0.69 for the number of SNPs with nominal

case vs control p values,0.05 (500 trials).

Searches for genome wide significance in each African-
American sample

We identified case vs control p values for x2 results from dbGAP

samples and for t test results from NIDA/MNB pooled samples

[21]. None of these p values approached the 1028 level deemed

necessary for genome wide significance.

Searches for clustering of SNPs with nominally-significant
case vs control differences in each African-American
sample

We identified clusters of SNPs that displayed nominally

significant, p,0.05 case vs control differences for p values from

x2 results from dbGAP samples and t test results from NIDA/

MNB samples (2026 and 3383 clusters, respectively).

Searches for chromosomal regions identified by
clustered SNPs with nominally-significant case vs control
differences in both African-American samples

One hundred twenty nine chromosomal regions were identified

by clustered nominally-positive results from both of the two African-

American samples. None of 10,000 Monte Carlo simulation trials

that each began with random sets of SNPs selected from each of the

datasets identified as many overlapping regions as found in the true

dataset; hence Monte Carlo p,0.0001. Thus, the null hypothesis

that the chromosomal regions identified by both African American

samples are found based only on stochastic grounds is nullified by

these Monte Carlo data.

However, 199 of 200 permutation trials did provide data that

identifies as many chromosomal regions from permutated data as

dbGAP alcohol dependent v ctl NIDA/MNB drug dependent v ctl

ch # SNPs bp:start bp:end pmin SNP pmin # SNPs bp:begin bp:end pmin SNP pmin gene(s)

15 4 98675178 98686110 rs8029650 1.91E-03 6 98677092 98691878 rs10778338 6.03E-03 ADAMTS17

15 6 99372427 99380316 rs2412004 3.22E-03 4 99375750 99389091 rs4964353 6.79E-03 LRRK1

16 14 79197141 79228642 rs12448290 6.69E-04 4 79205051 79220547 rs7318115 1.17E-03 CDYL2

16 4 81784515 81789713 rs17675933 2.75E-03 17 81783353 81829795 rs9564436 2.34E-04 CDH13

16 6 82535061 82542626 rs2245222 6.97E-03 4 82523937 82537492 rs9599646 4.77E-03 OSGIN1

16 4 83008592 83017058 rs247805 2.20E-02 4 82992730 83011363 rs7329434 2.20E-02 ATP2C2

17 12 28797681 28835589 rs952540 1.74E-04 4 28797681 28806815 rs17502818 1.40E-03 ACCN1

17 12 28797681 28835589 rs952540 1.74E-04 6 28827828 28847221 rs16959573 1.66E-03 ACCN1

17 4 50752149 50762786 rs12453544 8.62E-03 5 50760650 50785227 rs354445 1.95E-03 HLF

18 4 53871218 53884508 rs4941304 4.08E-03 4 53871218 53879450 rs1531634 3.69E-03 NEDD4L

18 4 55281959 55298778 rs12961264 3.31E-03 5 55287091 55289937 rs2293839 7.33E-04 CCBE1

18 4 55317233 55327896 rs7243244 1.90E-02 5 55301972 55322776 rs17111687 9.60E-05 CCBE1

19 4 56810110 56822600 rs4802831 6.81E-03 5 56800494 56823545 rs1402861 9.21E-03 SIGLEC5

20 7 15738136 15756549 rs6135562 2.77E-03 5 15756444 15767911 rs11636091 1.04E-03 MACROD2

20 9 15846030 15864192 rs6034328 4.87E-04 17 15823691 15880560 rs7496492 6.47E-03 MACROD2

20 4 36422510 36431069 rs12624843 3.51E-03 4 36411050 36428083 rs893909 2.23E-02 LBP

20 10 42059032 42099777 rs6031301 1.55E-03 4 42086347 42093700 rs4778721 8.16E-04 TOX2

20 6 51147482 51159764 rs16997525 5.30E-04 6 51153258 51173380 rs1865814 7.16E-05 TSHZ2

21 4 39116086 39121078 rs11254 1.72E-03 23 39116086 39156867 rs9939213 9.26E-04 ETS2

21 5 40051798 40064802 rs8128850 6.09E-03 12 40057196 40094216 rs1528601 5.25E-03 IGSF5

21 10 40503592 40529634 rs447940 8.54E-03 25 40485110 40547818 rs12448529 6.06E-03 DSCAM

21 6 40567354 40589103 rs2837545 2.06E-02 6 40572993 40603541 rs12324955 1.03E-03 DSCAM

21 4 46807080 46811595 rs2839327 4.78E-03 5 46788563 46811098 rs1862751 6.07E-04 DIP2A

22 15 21832478 21835952 rs5759621 2.41E-03 6 21824833 21834959 rs2045925 4.17E-04 RAB36

22 4 43494243 43510219 rs5765930 1.85E-02 5 43494161 43512004 rs13333580 2.50E-02 PRR5

Columns list: chromosome, number of nominally-positive SNPs in dbGAP samples, beginning and end of the chromosomal region identified by clustered nominally-
significant associations in dbGAP samples, SNP with the minimal p value found in the region, the p value for the SNP with the minimal p value in this region, similar data
for the NIDA/MNB samples, and the gene(s) identified by these clustered SNPs.
doi:10.1371/journal.pone.0019210.t001
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those identified by the real datasets. Thus, the null hypothesis that

the chromosomal regions identified by both samples are identified

based only on stochastic grounds was not nullified by permutation

testing, in ways that suggest that structure in the data may have

contributed to the known propensity for permutation testing to

overestimate false discovery rates in the presence of such structure

[28,29].

The genes that: a) lie in chromosomal regions identified by data

from both African-American samples and b) display the most

nominally-significant SNPs are listed in Table 2; the complete list

of chromosomal regions identified in this way is listed in Table S2.

The fraction of the genome occupied by these results is about

220% of that expected by chance, based on the fraction of the

genome occupied by clustered nominally positive results from each

of the African American samples (data not shown).

Searches for genes identified by clustered SNPs with
nominally-significant case vs control differences in all
four samples

The clusters from both of the two African-American samples

identified six genes that were also identified by clusters from both

of the two European-American samples. CDH13, CSMD1 and

DSCAM are three cell adhesion molecules that we have identified

in many prior studies of addiction vulnerability and/or abilities to

quit smoking (see below), while CADPS, MTMR7 and UBASH3B

have been identified in fewer prior studies. This modest overlap

contrasts with the larger overall overlap between the Affymetrix

datasets for the African-American vs European American NIDA/

MNB samples [21] and the Illumina datasets for the African-

American vs European American dbGAP samples. In the latter

case, we can identify 146 chromosomal regions, 88 of which

contain 126 genes, in which overlapping results between the two

racial/ethnic groups are found in ways not found by chance in

10,000 Monte Carlo simulation trials (data not shown).

Validation of pooling vs individual genotyping for SNPs
whose results provided the clusters

We compared individual vs pooled allele frequency estimations

for the ca. 500 SNPs that displayed minor allele frequencies .0.1

and provided clustered, nominally positive results in data from the

NIDA pooled samples. The results from these SNPs displayed

mean 0.66 Pearson correlation coefficients between data from

pooled and individual genotyping. These correlations were more

modest than those identified in validating studies for pooling that

used larger ranges of expected allele frequencies. Thus, there was

an average 0.19 range of expected values for these genotypes vs 0.9

range for the SNPs and pools used in initial studies that validated

pooling with these Affymetrix 6.0 arrays) [21].

Discussion

Genome-wide association data of increasing richness is available

for many complex disorders. Several of these GWA datasets

contain relatively robust results at ‘‘oligogenic’’ loci that can also

be identified, in many cases, by linkage-based approaches

[30,31,32,33]. Even moderately secure GWA identification of

‘‘polygenic’’ influences on disease, however, is likely to require

replicated data from multiple independent samples.

‘‘Template’’ analyses seek SNPs that provide ‘‘genome wide

significance’’ with the same phase of association in data from

multiple independent samples. However, there have been no

unanimous criteria for declaring replication of sets of data in

circumstances in which no SNP achieves this level of statistical

significance in each of multiple samples.

We have focused on identification of statistical significance for

sets of chromosomal regions that are each identified by sets of

nominally-significant SNPs from several independent samples.

This approach identifies chromosomal regions and genes that are

very likely, as a group, to display bona fide association with

individual differences in vulnerability to develop dependence on

an addictive substance. This overall confidence derives from

approaches that address distinct sets of null and/or alternative

hypotheses to explain the results obtained. First, seeking chromo-

somal regions in each sample that are identified by at least 4

closely-spaced nominally-positive SNPs addresses the null hypoth-

esis that the results obtained are randomly distributed across

chromosomes. This initial process also addresses the alternative

hypothesis that the nominally-positive SNPs are identified based

on technical problems in correctly assigning allele frequency

differences to case vs control sample comparisons (or in correctly

identifying the true variances for these values). Of course, we

would expect to see clustering of nominally-positive SNPs in each

sample in regions in which there was either a) linkage

disequilibrium between the SNPs studied and between these SNPs

and functional variants that influenced addiction vulnerability or

b) linkage disequilibrium between these SNPs and stochastic

differences in haplotype frequencies in individual samples of cases

vs those in a single sample of controls that are unrelated to the

phenotype. The second way in which we seek replication identifies,

in independent samples, many of the same chromosomal regions

based on their content of clustered, nominally positive SNPs. This

comparison addresses the null hypothesis that the clustering

observed in each sample derives from stochastic case vs control

differences in haplotype frequencies rather than case vs control

differences that are truly related to differences in phenotypes. This

comparison also provides additional support for our ability to

reject the null and alternative hypotheses relating to assay noise.

We thus identify more chromosomal regions and genes based on

the overlap between the chromosomal regions identified by data

from each sample than we would expect if the only reason for

clustering of nominally positive SNPs in each sample was

stochastic variation in the frequencies with which blocks of

restricted haplotype diversity are found in cases vs controls that are

unrelated to the phenotype. Availability of data from other

recently-reported genome wide association studies also provides a

third way in which we seek replication, based on identification by

the current data, of more of the same genes that were identified in

other reports from independent samples and different analyses

than we would expect by chance. This comparison also provides

additional means for us to refute then null hypothesis that the

clustering observed in each sample derives from stochastic case vs

control differences in haplotype frequencies rather than case vs

control differences that are truly related to differences in

phenotypes. In replicated samples that compared 500 k allele

frequencies in alcohol dependent to population control samples,

Treutlein and colleagues [15] have used a mixed analytic strategy

to identify nine genes. Products of two of these genes, ADH1C and

PECR, are likely to play direct roles in alcohol metabolism and

thus provide weak candidates for overlap with data from the

NIDA/MNB samples. Our current results identify three of the

remaining seven genes: CDH13, ERAP and CAST. Based on

chance, we should have identified fewer than one of these genes

(0.07 genes on average). We have also recently begun analyses of a

500,000 SNP dataset supplied by these authors. We have

identified chromosomal regions tagged by clusters of at least 3

SNPs which lie within 25 kb of each other that display nominally-

significant case vs control differences in this sample, criteria that we

have previously used for 500 k datasets. These analyses identify 30
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Table 2. Chromosomal regions and genes identified by clusters of SNPs that provide nominally-significant differences between
individuals dependent on alcohol (dbGAP alcohol dependent v ctl) or at least one illegal substance (NIDA/MNB drug dependent v
ctl) in subjects of African-American heritage.

dbGAP alcohol dependent v ctl NIDA/MNB drug dependent v ctl

ch # SNPs bp:begin bp:end pmin SNP pmin # SNPs bp:begin bp:end pmin SNP pmin gene(s)

1 9 28084237 28106641 rs6679432 1.94E-02 4 28085800 28094024 rs17257252 4.41E-03 C1orf38, RPA2

1 5 160357908 160384670 rs1337072 1.36E-02 4 160382664 160395446 rs12124105 1.52E-02 NOS1AP

1 5 182071303 182087392 rs10494570 1.11E-02 7 182079430 182107726 rs11806497 5.41E-04 RGL1

1 4 212649607 212665577 rs10779614 1.19E-02 4 212650752 212655224 rs17022866 2.21E-03 PTPN14

2 4 166129660 166148793 rs10803799 1.16E-04 4 166123345 166130256 rs16850914 3.41E-03 FAM130A2

2 4 240548770 240568964 rs11893710 6.42E-03 4 240542948 240556386 rs13424612 1.19E-03 NDUFA10

3 8 14469859 14483315 rs11128699 6.25E-03 5 14470459 14486703 rs17237132 1.77E-03 SLC6A6

3 4 16380744 16383669 rs9835911 5.03E-03 4 16377563 16389202 rs689953 1.43E-02 RFTN1

3 7 21726437 21747061 rs957589 1.32E-03 8 21717029 21737614 rs13077624 1.02E-02 ZNF385D

3 7 41451566 41467634 rs1495692 4.32E-05 7 41447475 41465298 rs12054014 2.48E-03 ULK4

3 5 62635606 62643369 rs978879 8.10E-03 6 62615383 62637642 rs1512015 1.31E-03 CADPS

3 4 144385643 144403567 rs6776634 3.98E-02 11 144384755 144408513 rs6786129 6.79E-04 PBX2P1

4 9 93699740 93730844 rs7682842 5.98E-04 9 93684320 93699740 rs17319672 8.72E-06 GRID2

4 9 93699740 93730844 rs7682842 5.98E-04 4 93719692 93727390 rs17019608 3.45E-03 GRID2

5 5 7574083 7602448 rs10035541 1.85E-02 7 7591237 7615180 rs1392481 2.56E-03 ADCY2

5 5 41608479 41624460 rs669684 8.81E-03 10 41575032 41617270 rs620876 4.99E-03 TCP1L2

5 4 148176930 148194422 rs12652757 5.08E-03 4 148169604 148179324 rs2116714 2.06E-03 ADRB2

5 4 167355762 167368572 rs17069578 1.99E-03 5 167361210 167387579 rs17069636 2.93E-04 ODZ2

6 4 12225330 12232841 rs2228213 1.71E-02 4 12225541 12239453 rs2327514 2.36E-03 HIVEP1

6 4 31234388 31247483 rs1108746 9.83E-04 4 31230976 31243685 rs9501063 2.86E-03 CCHCR1, POU5F1,
TCF19

6 10 32278411 32307330 rs2071287 1.22E-02 6 32288098 32302370 rs2269418 4.43E-04 NOTCH4

6 7 46016169 46032945 rs4714892 5.78E-04 10 45987042 46031767 rs9367228 9.12E-03 CLIC5

6 6 129830351 129839777 rs6569603 1.91E-04 6 129838313 129856864 rs17057464 2.75E-03 LAMA2

6 5 147933198 147957929 rs7743538 6.08E-03 5 147940910 147969453 rs9497816 3.43E-03 SAMD5

6 6 148834310 148848906 rs1124163 3.87E-03 5 148822606 148840150 rs6927662 3.53E-03 SASH1

6 7 168744759 168766408 rs12197584 4.58E-03 4 168765804 168776041 rs9456259 6.38E-03 SMOC2

7 4 37749625 37757420 rs2709114 5.41E-03 6 37754332 37786876 rs2709114 3.52E-03 GPR141

7 10 154494400 154529011 rs1619015 2.17E-03 4 154510872 154528905 rs1730186 1.82E-02 HTR5A

8 5 1466441 1477325 rs17748677 3.40E-03 4 1468372 1478011 rs17681530 3.86E-03 DLGAP2

8 6 3543065 3557725 rs17326670 2.39E-03 6 3537344 3551589 rs17067079 9.79E-06 CSMD1

8 4 4194159 4209292 rs10104910 9.77E-03 4 4200701 4215192 rs3990909 5.21E-03 CSMD1

8 6 17266781 17290933 rs12676388 8.09E-03 4 17281156 17285461 rs7460082 2.31E-02 MTMR7

8 5 72347452 72360941 rs11991562 1.34E-02 8 72351592 72382875 rs6989867 8.03E-04 EYA1

8 4 102824050 102836428 rs6468792 2.12E-02 7 102818744 102835352 rs1125334 2.81E-03 NCALD

8 6 139357180 139371129 rs1512406 5.04E-04 7 139358561 139377143 rs1512407 7.92E-05 FAM135B

8 5 141035897 141054146 rs6981165 3.17E-03 5 141032458 141044168 rs881378 2.54E-03 NIBP

9 4 7155427 7162630 rs10976082 1.43E-02 4 7140997 7157510 rs913581 7.73E-04 JMJD2C

9 4 9408277 9423131 rs4342663 8.69E-03 13 9383744 9435270 rs10816124 7.94E-04 PTPRD, RN7SLP2

9 7 118770530 118810301 rs7042036 3.43E-04 6 118810026 118836028 rs2050274 3.15E-03 ASTN2

10 4 66260831 66274062 rs1227244 1.90E-02 7 66245561 66275840 rs10761866 1.42E-03 ANXA2P3

10 16 74499314 74567822 rs12573512 5.00E-03 9 74540513 74570789 rs6480671 1.23E-03 ECD, NUDT13

10 4 90564031 90575327 rs11817978 1.33E-02 4 90570124 90575118 rs4934423 2.08E-02 ANKRD22, LIPM

10 5 115300542 115311814 rs4918842 1.77E-02 6 115301876 115327383 rs7093962 6.99E-03 HABP2

10 6 135216408 135227438 rs8181425 1.50E-02 4 135209148 135223425 rs9629977 1.94E-03 FLJ44653, SYCE1

11 5 12253357 12271091 rs7106205 1.43E-03 5 12241317 12255138 rs11022270 9.33E-03 MICALCL
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of the genomic regions and 18 of the genes identified by both

dbGAP and NIDA/MNB European American samples, providing

more than 19 times the amount of overlap expected by chance

(Uhl GR, Johnson C, Treutlein J, Cichon S, Ridinger M, Wodarz

N, Soyka M, Zill P, Maier W, Moessner R, Gaebel W, Dahmen

N, Fehr C, Scherbaum N, Steffens M, Ludwig KU, Frank J,

Wichmann HE, Schreiber S, Dragano N, Sommer WH,

Leonardi-Essmann F, Lourdusamy A, Gebicke-Haerter P, Wien-

ker TF, Sullivan PF, Nöthen MM, Kiefer F, Spanagel R, Mann K,

Rietschel M, unpublished observations, 2011).

There are a number of important limitations that come from

these samples, these analyses, and from the application of this

approach to these datasets. The two distinct null hypotheses both

require careful thinking about linkage disequilibrium, since it is

easy to confuse data and analyses that bear on linkage

disequilibrium among markers that display case vs control

differences in single samples, the chromosomal regions that such

markers label, and the chromosomal regions labeled by such sets

of markers in multiple independent samples. Especial difficulties in

clarity may arise since we anticipate true positive results that

combine differences between cases and controls that are based on

linkage disequilibrium among markers that display case vs control

association with disease and between these markers and the

functional allelic variants that provide the variation in gene

function that influences phenotype. Without dissecting these

differences, it is easy to come to the incorrect conclusion that

the method described herein is only detecting the linkage

disequilibrium structure and not disease association.

There are other limitations. The NIDA/MNB samples, largely

of individuals who were not seeking treatment, were recruited at a

single site and compare dependent individuals with heavy levels of

substance use to controls with modest or no substance use. These

features might provide differences from the dbGAP samples which

were recruited at a number of sites from largely treatment-seeking

individuals or probands. The dbGAP samples compare alcohol

dependent individuals to controls whose levels of illegal substance

use do not produce dependence, but might be substantial. To

parallel the recently-reported analysis of this data by Beirut and

colleagues [16], we have included, in the control group,

individuals who smoked significant numbers of cigarettes and/or

display DSM or FTND dependence on nicotine. Reanalyses of the

data from the dbGAP European American sample after excluding

the 376 individuals with FTDN scores .4 and/or DSM nicotine

dependence yields overlap with data from NIDA samples that is

even stronger than that identified in the main analyses presented

here, even though more than J of the ‘‘controls’’ are removed

dbGAP alcohol dependent v ctl NIDA/MNB drug dependent v ctl

ch # SNPs bp:begin bp:end pmin SNP pmin # SNPs bp:begin bp:end pmin SNP pmin gene(s)

11 4 20620979 20632993 rs1617769 2.17E-03 7 20586739 20621980 rs2298826 1.57E-04 SLC6A5

11 4 87727005 87740895 rs4753359 1.68E-03 4 87719881 87730124 rs618143 9.42E-03 CTSC

11 6 88091682 88116810 rs1993842 9.39E-03 5 88095026 88109123 rs2892293 4.54E-03 GRM5

11 4 92259078 92271738 rs9666789 1.52E-02 5 92259808 92275974 rs12421052 2.14E-03 FAT3

11 4 122111119 122121536 rs4935804 2.30E-03 4 122121115 122128473 rs1540113 1.29E-03 UBASH3B

12 5 65221347 65236556 rs10748053 8.18E-04 4 65208873 65229384 rs7971370 4.95E-03 GRIP1

12 4 71010301 71018781 rs10506653 1.09E-02 10 70989581 71025118 rs17783131 6.08E-04 TRHDE

13 17 94683173 94714801 rs4258481 7.94E-03 13 94684855 94734859 rs9590213 1.54E-04 ABCC4

13 5 102501056 102512255 rs157382 1.01E-02 12 102491230 102519109 rs1549836 2.17E-03 SLC10A2

13 4 108262545 108277505 rs9521065 1.24E-03 4 108262052 108276593 rs390790 7.41E-03 MYO16

14 6 85039659 85062024 rs1884009 1.20E-03 4 85043508 85064044 rs17709714 1.19E-03 FLRT2

14 9 85074724 85098018 rs1955418 2.29E-03 4 85086089 85096268 rs985620 1.98E-04 FLRT2

15 4 24767181 24769395 rs28551016 8.86E-04 4 24761221 24768832 rs4887529 1.07E-03 GABRA5

16 4 81469875 81483050 rs16958826 1.42E-03 14 81469724 81505974 rs9319578 5.41E-05 CDH13

19 5 11815562 11851258 rs286246 2.12E-03 4 11816632 11836425 rs1466308 8.54E-03 VN2R13P, VN2R14P,
ZNF439, ZNF440

20 4 6702246 6720263 rs235704 5.80E-03 4 6714019 6722420 rs13044579 5.60E-03 BMP2

20 6 19983767 20012701 rs6046593 8.04E-03 5 19997088 20023996 rs9808594 5.69E-04 C20orf26

20 10 48907768 48942090 rs1062651 9.85E-04 4 48912167 48930175 rs6096138 5.45E-03 BCAS4

20 5 54252037 54262859 rs6099057 1.10E-03 7 54233123 54261400 rs6123568 4.10E-03 MC3R

21 7 26422204 26447377 rs12482753 4.85E-03 12 26419368 26465912 rs9984764 1.61E-03 APP

21 6 40435728 40454200 rs2837468 1.36E-02 6 40446501 40459247 rs11911749 3.25E-04 DSCAM

22 6 15695102 15706432 rs165611 1.02E-04 5 15689881 15706432 rs2075120 1.62E-04 CECR8

22 4 29185674 29194610 rs5753158 6.46E-03 10 29169346 29215980 rs5753152 2.18E-04 SEC14L3

22 11 35727496 35747143 rs6000529 1.11E-02 5 35733248 35738081 rs130598 7.85E-03 C22orf33, MPST, TST

Columns list: chromosome, number of nominally-positive SNPs in dbGAP samples, beginning and end of the chromosomal region identified by clustered nominally-
significant associations in dbGAP samples, SNP with the minimal p value found in the region, the p value for the SNP with the minimal p value in this region, similar data
for the NIDA/MNB samples, and the gene(s) identified by these clustered SNPs.
doi:10.1371/journal.pone.0019210.t002

Table 2. Cont.
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from these analyses (Johnson et al, unpublished observations, 2010).

Due to the small number of individuals with Asian or Hispanic

racial/ethnic backgrounds in this sample, we have excluded them

from the present analyses. This exclusion also renders our

comparisons different from those used in the recent report of

data from many of these same dbGAP individuals [16]. While

Monte Carlo simulation tests weigh strongly against the null

hypothesis that chance alone accounts for the degree to which the

same genes are identified by data from each of the two samples

from individuals of the same racial/ethnic background, permuta-

tion tests only reach high levels of statistical significance in

rejecting this null hypothesis in the European American subjects.

Principal components analyses suggest that much of the variance

in this data is not due to phenotype or racial/ethnic group

(Johnson et al, unpublished observations, 2010); such structure might

account for the permutation results from the African American

data [28,29]. Based on statistical considerations, the present

analyses are likely to provide many false negative results. The

power of each of these samples to detect polygenic influences is

moderate. The requirement for convergent identification of the

same chromosomal region by data from both samples of the same

racial/ethnic background provides a likelihood of even more false

negative results. Case vs control allele frequency differences in the

NIDA/MNB samples were genotyped using multiple DNA pools

and an Affymetrix 6.0 platform, providing t tests that use

information about both mean differences and variances. Case vs

control differences in the dbGAP samples were assessed using

Illumina platform genotyping of individual samples, yielding x2

results without explicit assessment of variance. The requirement

that at least 4 nominally-significant SNPs lie within 10 kb of each

other cannot be fulfilled in a number of chromosomal regions or in

a number of genes in which the density of SNPs is too low to meet

this stringent requirement (see Supplement of [14] for list of the

genes that cannot be assessed with these criteria using the

Affymetrix platform). There are only about J million autosomal

SNPs that are shared between the ca. 900 K and 1 M autosomal

SNPs evaluated by the Affymetrix and Illumina platforms,

respectively, further exacerbating this problem in many genomic

regions.

Despite these limitations, there is highly-significant overall

convergence between two comparisons of NIDA/MNB and

dbGAP GWA data from substance-dependent individuals vs

controls: one comparison in European-American subjects and

another comparison in African-American subjects. For each of

these comparisons, the degree to which clusters of nominally-

positive SNPs identify the same chromosomal regions and genes is

never found by chance in up to 10,000 Monte Carlo simulation

trials.

This evidence for replication, defined in this fashion, also

provides striking contrasts to results from attempts to identify

replication (and/or generalization) in other ways. For example,

results that seek to identify the extent to which the same SNPs

display nominally-significant associations with the same phase in

each of these replicate samples within each racial/ethnic group

identify about as many SNPs with these properties as expected by

chance (data not shown).

We have previously reported the apparent success of ‘‘non-

template’’ analyses that are similar to those used herein when

applied to data from four independent case vs control samples for

bipolar disorder [20]. None of these bipolar vs control samples,

individually, provided results with genome wide significance.

These samples combined data from individual and pooled

genotyping using different genotyping platforms. Despite these

difficulties, the results of nontemplate analyses provided much

more frequent identification of the same genomic regions and

genes by clustered, nominally positive SNPs from multiple

independent samples in bipolar disorder than we would anticipate

by chance.

Studies that focus on identifying ‘‘template’’ same-phase

association with genome wide levels of significance in multiple

independent samples appear most likely to succeed when

oligogenic genetic architecture confers large association signals in

each independent sample, when the same SNP sets are studied in

each, when the disease exhibits little allelic or locus heterogeneity

and when there are good matches between the fine patterns of

linkage disequilibrium of the samples being studied. Apparent

replication ‘‘failures’’ using this approach could thus relate to a

number of features that include associations of modest magnitude,

sample-to-sample differences in fine patterns of linkage disequi-

librium, different amounts of information provided by markers

with population-specific differences in allele frequencies, allelic

heterogeneity and locus heterogeneity.

Monte Carlo methods allow us to test the probabilities of chance

clustering of nominally-positive SNPs and the chance of

convergence between clusters identified in one sample with

clusters identified in other samples. Our Monte Carlo approaches

deploy an empirical method that uses the existing dataset as a

source for randomly selected SNPs for each Monte Carlo trial.

The results of these simulations provide strong overall confidence

that these sets of results are not due to chance. By contrast, these

approaches alone provide unequivocal identification of few

individual SNPs or genes. This lack of unequivocal identification

of individual SNPs is consistent with polygenic/allelic heteroge-

neity current working models for the genetic architecture of

vulnerability to substance abuse [14,34]. However, identification

of associations at some loci, such as the CDH13 locus, in many

independent samples (see below) makes it very highly unlikely that

this locus does not harbor allelic variants that influence

interactions between humans and addictive substances.

Previous analyses that have compared the MNB/NIDA

European-American to African-American results have identified

genomic regions that are labeled by clustered, nominally-positive

SNPs from both samples, supporting roles for some allelic variants

that are likely to be old in relation to human history [6,7,9,21].

Data from analyses that combine results from individuals with

different racial/ethnic backgrounds also provide suggestive results

in regions such as the GABA receptor gene cluster on

chromosome 4 for evolutionarily-old variants [16,35]. Identifica-

tion in both studies of SNP markers whose allelic frequencies

distinguish controls from addicts of different ethnicities supports

‘‘common disease/common allele’’ genetic architecture [36] for

part of the genetics of addiction vulnerability. However, the

substantially greater convergence, noted here, for data from the

same racial/ethnic groups also points to possibly-substantial roles

for variants that have been accumulated more recently in human

populations that have been more separate until relatively recently.

Genes identified by this work include those in several classes.

When we compare the list of genes identified by these samples to

functional classes as annotated in Gene ontology (GO) using

Biobase, we find the greatest (9.261029–1.261026) statistical

significance for overrepresentation of the genes whose products are

involved with the following biological processes: signal transmis-

sion (57 observed/28 expected by chance), signaling process (57/

28), cell communication (39/16), regulation of cellular process

(90/57), regulation of localization (23/7), signaling (68/39),

negative regulation of biological process (42/19), regulation of

biological process (94/63), biological regulation (100/70) and

synaptic transmission (16/4).
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CDH13 associations with addiction phenotypes have now been

identified in both the four samples studied here and in a number of

prior reports. We initially identified associations between sub-

stance dependence vulnerability and CDH13 variants in smaller

subsets of COGA and MNB samples in studies that utilized earlier

microarray types [9,37]. We and others have subsequently

identified such associations in several other samples for addic-

tion-related phenotypes that include: a) vulnerability to substance

dependence [12], independent replicated alcohol dependence

datasets [15,19,38], b) individual differences in acute responses to

alcohol administration [39] and c) abilities to quit smoking

[24,40,41]. Allelic variants in CDH13, a glycophosphoinositol-

anchored cadherin that is expressed in neurons that lie in

interesting brain circuits, are thus very strong candidates to

contribute to addiction-related phenotypes.

The findings presented in the current report thus add the strong

evidence for involvement of variants in several individual genes,

add to the ongoing consideration of methods for comparing GWA

datasets and enhance understanding of genetic underpinnings of

human addiction. For addictions, as for many complex disorders,

such data provides an increasingly rich basis for improved

understanding and for personalized prevention and treatment

strategies.

Supporting Information

Table S1 The complete list of chromosomal regions that a) are

identified by data from both European-American samples and b)

display the most nominally-significant SNPs (genes listed in

Table 1).

(XLS)

Table S2 The complete list of chromosomal regions that a) are

identified by data from both African-American samples and b)

display the most nominally-significant SNPs (genes listed in

Table 2).

(XLS)
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