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Abstract: Endoscopic ultrasound (EUS) has emerged as a widely utilized tool in the diagnosis
of digestive diseases. In recent years, the potential of artificial intelligence (AI) in healthcare has
been gradually recognized, and its superiority in the field of EUS is becoming apparent. Machine
learning (ML) and deep learning (DL) are the two main Al algorithms. This paper aims to outline
the applications and prospects of artificial intelligence-assisted endoscopic ultrasound (EUS-AI) in
digestive diseases over the past decade. The results demonstrated that EUS-AI has shown superiority
or at least equivalence to traditional methods in the diagnosis, prognosis, and quality control of
subepithelial lesions, early esophageal cancer, early gastric cancer, and pancreatic diseases including
pancreatic cystic lesions, autoimmune pancreatitis, and pancreatic cancer. The implementation of
EUS-AI has opened up new avenues for individualized precision medicine and has introduced novel
diagnostic and treatment approaches for digestive diseases.

Keywords: artificial intelligence; endoscopic ultrasound; machine learning; deep learning; digestive
system diseases

1. Introduction

Artificial intelligence (Al) is a computer program that has been developed by humans
to mimic the abilities of the human brain to think, judge, and react. Since the term “Al
algorithm” was first proposed by John McCarthy in 1956, it has undergone a significant
transition from artificial narrow intelligence (ANI) to artificial general intelligence (AGI).
While ANI refers to Al that is trained to focus on performing specific tasks, AGI is a
theoretical form of Al that possesses self-awareness and the ability to solve problems, learn,
and plan for the future. Artificial super intelligence (ASI) surpasses human intelligence
and capabilities, but it is still in a completely theoretical stage. The realization of ASIis the
ultimate purpose of Al research. Currently, machine learning (ML) and deep learning (DL)
are the main architectures of Al that are widely used in medical image recognition. ML is a
computer program that enables machines to learn without explicit programming. It could
quantify the features of medical images based on inherent regular patterns. Various ML
technologies, such as decision trees, random forest (RF), logistic regression, and artificial
neural networks (ANN), are commonly employed in diagnosing medical images. DL is
a new field of ML, which is realized by imitating the mechanisms of the human brain in
three phases: data collection and annotation, construction of DL architecture, and training
and verification of its capabilities. One of the most notable advantages of DL is its ability
to automatically detect and objectively identify features of interest in medical images.
Compared with ML, DL is easier to implement and offers higher accuracy. Convolutional
neural network (CNN) is commonly used in the field of DL, and it is considered one
of the best-performing algorithms for recognizing images at present [1-3] (Figure 1). In
recent studies, the focus has been on evaluating the diagnostic performance of individual
DL models for various diseases. However, each model may have its own unique ability
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to outperform other models in feature learning. Consequently, some researchers have
begun exploring the possibility of enhancing diagnostic accuracy through the integration
of multiple models after model fusion. Gunasekaran et al. proposed an ensemble model
(GIT-NET) that combines pre-trained ResNet50, DenseNet201, and Inception v3 models.
By utilizing these models to extract features from the KVASIR v2 dataset with eight classes
of digestive diseases, the authors achieved accuracies of 92.96% and 95.00% through
model averaging and weight averaging methods, respectively, surpassing the baseline
models [4]. Similarly, Ramamurthy et al. introduced an approach that employed a pre-
trained EfficientNet BO backbone and custom CNN (Effimix) to automatically classify
gastrointestinal diseases, employing the HyperKvasir benchmark dataset. By leveraging
the combined features of these two networks, the proposed model achieved an accuracy of
97.99%, along with an impressive F1 score, precision, and recall values of 97%, 97%, and
98%, respectively [5]. Zhao et al. developed an improved YOLOX model that incorporated
YOLOX, group normalization, and video adjacent-frame association to achieve real-time
detection of endometrial polyps. The improved model had sensitivities of 100% and 92.0%
for lesions in both the internal and external test sets, surpassing the per-lesion sensitivities
of the original YOLOX model, which stood at 95.83% and 77.33%, respectively. These
findings highlight the potential of the improved model in reducing the risk of endometrial
cancer by effectively identifying and localizing endometrial polyps [6].

Decision tree, random forest (RF), logistic
regression, artificial neural network (ANN), etc.

Artificial Machine
Intelligence Learning

Convolutional neural network (CNN), etc.

Figure 1. Machine learning and deep learning have emerged as prominent Al architectures exten-
sively employed in the field of medicine. Figure 1 presents several typical examples of techniques
that can be effectively applied to these two architectures.

In the early stages of the disease, patients often lack obvious clinical signs and symp-
toms, making it challenging to diagnose. Traditional imaging techniques, such as ultra-
sonography (US), computed tomography (CT), and magnetic resonance imaging (MRI),
may not be able to detect smaller lesions. However, with advancements in gastrointestinal
endoscopy technology, the potential advantages that endoscopic ultrasound (EUS) might
have over other imaging modalities has been discovered. Yoshida et al. observed that EUS
exhibited a median sensitivity of 93-94% in detecting pancreatic lesions, surpassing the
sensitivity of magnetic MRI at 67% and CT at 53% (for detecting lesions <30 mm, n = 49) [7].
EUS combines ultrasound technology with endoscopic visualization, allowing for high-
resolution and real-time visualization of the digestive tract lumen, obtaining ultrasonic
images of the gastrointestinal tract and adjacent organs, and providing insights into the
depth of tumor invasion and the presence of enlarged lymph nodes. As a result, EUS has
become an important detection tool for various digestive diseases, enhancing the ability to
accurately assess the nature and scope of lesions and improving the detection rate of the
diseases [8,9].
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The diagnostic accuracy of EUS is closely related to the knowledge, experience, and
operation level of the endoscopists. It is subjective to a certain extent. Some diseases are
challenging to diagnose with EUS alone [10]. Al has the ability to process large amounts
of data with high accuracy, and when combined with EUS, it offers objective, simple,
and rapid examination. Tonozuka et al. developed a computer-aided diagnosis (CAD)
system utilizing EUS images and assessed its efficacy in distinguishing between pancreatic
ductal adenocarcinoma (PDAC), chronic pancreatitis (CP), and individuals with normal
pancreatic conditions. The findings of this study showcased the exceptional performance
of the CAD system for detecting PDAC, with a sensitivity of 92.4% and a specificity of
84.1%, respectively [11]. In a study conducted by Wang et al., the diagnostic value of
single endoscopy and artificial intelligence-assisted endoscopic ultrasound (EUS-AI) in
early esophageal cancer and precancerous lesions was compared. The researchers also
described the diagnostic accuracy of two different models; namely, the CNN model and
the Cascade region-convolutional neural network (Cascade RCNN) model. The findings
revealed that the Cascade RCNN model, which was based on the soft-NMS intelligent al-
gorithm, exhibited better diagnostic performance compared to the CNN model algorithm.
Moreover, the performance of the Cascade RCNN model was similar to the gold standard
developed by endoscopists. Additionally, the use of the Cascade RCNN model resulted in
a reduction in detection time and a significant improvement in efficiency. The detective
rates of the Cascade RCNN model, CNN model, and endoscopic detection alone in early
esophageal cancer and precancerous lesions were 88.8% (71/80), 56.3% (45/80), and 44.1%
(35/80), respectively [12]. Given the extensive duration required for EUS training and the
intricate nature of the techniques involved, there is a growing interest among researchers
in the field of EUS-AI. EUS-ALI has the potential to aid novice practitioners in their training,
significantly reducing the learning curve for them. Additionally, it can serve as a tool
for quality control in pancreatic diseases, by providing information about the current
location and suggesting the appropriate means of examination for the next step, including
assisting with endoscopic ultrasound-guided fine-needle aspiration/biopsy procedures.
However, the utilization of EUS in primary hospitals is relatively limited, resulting in
a lack of operational experience among endoscopists. Consequently, the incorporation
of EUS-Al in primary hospitals could prove highly advantageous in enhancing the over-
all disease detection rate. This paper aims to provide a comprehensive review of the
diagnosis, prognosis, and quality control of EUS-AI in various digestive diseases such
as subepithelial lesions (SELs), early esophageal cancer, early gastric cancer (EGC), and
pancreatic diseases including pancreatic cystic lesions, autoimmune pancreatitis (AIP), and
pancreatic cancer (PC) in the last ten years. The objective is to facilitate the advancement
of this examination method in the realm of medical health. Additionally, this paper sheds
light on the limitations and future prospects of EUS-Al in the field of digestive diseases
(Figure 2).
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Figure 2. The applications of EUS-Al in gastrointestinal and pancreatic diseases, including identifying
and evaluating lesions, prediction of prognosis, treatment planning, and quality control in the
diagnostic process of the diseases. Figure 2 also point out the broad prospects of EUS-AL

2. Methods
2.1. Search Strategy

For this review we searched articles in the PubMed Database published within the
past ten years (2013-2023) in order to assess the latest advancements in this area. Search
terms in the title, abstract, and keywords are as follows: (“artificial intelligence” OR
“AI” OR “machine learning” OR “deep learning” OR “convolutional neural network”
OR “computer-assisted” OR “computer-aided” OR “neural network” OR “digital image
analysis” OR “digital image processing”) AND (“endoscopic ultrasound” OR “endoscopic
ultrasonography” OR “endosonography” OR “EUS”). To avoid omissions, the digestive
system diseases were not included in the retrieval strategy. The data search was limited to
studies written in English.

2.2. Inclusion and Exclusion Criteria

We carefully selected articles that accurately described the applications and prospects
of EUS-AI for digestive system diseases. Studies that met all of the following inclusion
criteria were selected: (1) evaluated EUS-AI for the diagnosis, prognosis, and quality control
of digestive system diseases; (2) the final diagnosis was established by the histopathological
diagnosis after surgical or endoscopic resection (ER) or EUS-guided fine-needle aspira-
tion/biopsy; (3) an Al algorithm was applied to the diagnosis of patients with digestive
system diseases using EUS; (4) study results demonstrated the diagnostic performance of
CAD algorithms, including area under the curve (AUC), sensitivity, specificity, or accuracy,
with or without EUS experts as controls.

Studies were excluded based on any of the following criteria: (1) did not evaluate
digestive system diseases by EUS-AI; (2) studies were conference proceedings, abstracts,
editorials, case reports, or letters; (3) duplicate articles; (4) incomplete data available.

3. Types of Digestive System Diseases Diagnosed and Prognosed by EUS-AI
3.1. Subepithelial Lesions

SELs of the gastrointestinal tract are masses or mass-like structures originating from
the non-mucosal layer, including gastrointestinal stromal tumors (GISTs), leiomyoma,
schwannoma, neuroendocrine tumor (NET), ectopic pancreas, lipoma, and hemangioma, of
which the first two are the most common. GISTs originate from interstitial cells of Cajal or
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stem cells with a tendency to differentiate interstitial cells of Cajal, and they usually occur
in the stomach and small intestine. GISTs have variable malignant potential, accounting for
1-3% of gastrointestinal malignancies. Surgical resection of small lesions without metastasis
might be the only possible way to cure GISTs [13-15]. Therefore, distinguishing them from
benign SELs in early stages is the key to treating GISTs.

CT and MRI are the tests more commonly used to diagnose GISTs [16]. The risk of
postoperative recurrence of GISTs is related to the modified US National Institutes of Health
classification. Clinically, GISTs are categorized into four grades of very low, low, interme-
diate, and high risk based on size, site of development, number of microscopic nuclear
divisions, and whether or not it is ruptured [17]. In the very low-risk and low-risk group,
GISTs are mostly rounded with well-defined borders, and the lesions on CT reveal low den-
sity or equal density; the lesions on MRI generally appear to have hypointense or isointense
signals on T1-weighted imaging, slightly hyperintense signals on the T2-weighted imaging,
and evenly hyperintense signals on fat suppression T2-weighted imaging. Intermediate-
risk and high-risk lesions tend to be irregularly shaped with blurred borders. The lesions
are shown heterogeneously in both CT and MRI. A consensus report from the German
GIST Imaging Working Group suggested that MRI as an option in case of liver-specific
problems or contraindications to CT [18]. CT and MRI are usually used to examine larger
tumors, and EUS has become the diagnostic procedure of choice for small GISTs [19].

EUS can clearly observe the size and morphology of gastrointestinal tumors, the
structure of each layer of the gastrointestinal wall, and the invasion of adjacent organs. It
has become the best diagnostic modality for SELs in recent years [20]. The typical EUS
imaging features of GISTs are hypoechoic solid masses originating from the fourth layer of
ultrasound with well-defined borders while the structure of the fifth layer of ultrasound is
clear and intact. However, it is more difficult to distinguish between GISTs and leiomyoma
with EUS alone. Several studies have been conducted to input filtered high-quality EUS
images as a training set into an Al model, extract meaningful image features for model
construction, and then input EUS images from the validation set into the model to verify
its ability to diagnose GISTs and non-GISTs. It is concluded that EUS-AI has the potential
to be a good choice for diagnosing SELs (Table 1).

In 2020, Minoda et al. studied the diagnostic accuracy of EUS-AI based on gastric
SELs for GISTs and non-GISTs, indicating that EUS-AI has an accurate diagnosis for GISTs
>20 mm [21]. In 2022, Minoda et al. verified that this AI model could also be used to
distinguish GISTs and non-GISTs patients from non-gastric SELs. The authors collected
EUS images of 52 non-gastric SELs patients (esophagus, n = 15; duodenal, n = 26; colon,
n =11), and they noticed that the diagnostic accuracy of EUS-AI improved as the size of
the lesion increased, independent of lesion location [22]. A recent meta-analysis (including
7 studies with 2431 patients) noted that the pooled sensitivity and specificity of EUS-AI
by CNN in diagnosing GISTs were 0.92 (95%/Cl, 0.89-0.95) and 0.82 (95%/Cl, 0.75-0.87),
respectively, which was higher than those of endoscopists. Two of the studies assessed the
ability to predict the malignant potential of GISTs; the very low-risk and low-risk GISTs
were classified as the low-risk group, while the intermedium-risk and high-risk GISTs were
classified as high-risk group. The pooled sensitivity and specificity for diagnosing high-
risk GISTs were 0.84 (95%/CI, 0.68-0.94) and 0.81 (95%/Cl, 0.73-0.86), and the summary
diagnostic odds ratio was 28.80 (95%/Cl, 3.48-238.31), indicating that the EUS-AI model
could accurately predict the malignant potential of GISTs [23].

Studies have tested the accuracy of contrast-enhanced harmonic endoscopic ultra-
sound (CH-EUS) using Al algorithms to diagnose SELs. Tanaka et al. retrospectively
examined 53 patients with GISTs and leiomyomas to evaluate their diagnostic accuracy by
using DL involving a residual neural network and leave-one-out cross-validation, com-
bining it with the SiamMask technique to track and trim lesions in CH-EUS videos. The
sensitivity, specificity, and accuracy of Al in diagnosing GISTs were 90.5%, 90.9%, and
90.6%, respectively, and those of endoscopists were 90.5%, 81.8%, and 88.7%, respectively
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(p = 0.683), indicating that the diagnosis of CH-EUS images between Al and endoscopists
was comparable [24].

Notably, Hirai et al. conducted a multicenter retrospective study to develop an EUS-AI
model for common SELs (GISTs, leiomyoma, schwannoma, NET, ectopic pancreas), which
assessed the diagnostic accuracy of the model and endoscopists. This study was the first to
combine Al and SELs EUS images for classification and recognition, and it showed that
the EUS-AI had a diagnostic accuracy of 86.1% for the five SELs categories, which was
significantly higher than that of endoscopists; moreover, this model had high sensitivity
and accuracy in distinguishing GISTs from non-GISTs, with 98.8% and 89.3%, respectively,
which was noticeably higher than that of endoscopists [25].

Table 1. Studies assessing the sensitivity, specificity, and diagnostic accuracy of Al models for GISTs.

. . . Research Outcomes for the Al
Study Study Design Al Model Patient Population Object Model
SELs <20 mm: Recognition of GISTs
Total Patients = 30 in SELs <20 mm:
GISTs =23 Sensitivity = 86.3%
Leiomyoma =5 Specificity = 62.5%
Schwannoma =1 Accuracy = 86.3%
. Retrospective Ectopic Pancreas = 1 AUC =0.861
Minoda etal. [21] (Japan) CNN SELs > 20 mm: EUS Images Recognition of GISTs
Total Patients = 30 in SELs > 20 mm:
GISTs =24 Sensitivity = 83.3%
Leiomyoma = 4 Specificity = 91.7%
Schwannoma =1 Accuracy = 90.0%
Ectopic Pancreas = 1 AUC =0.965
écitsa%sP_a’gznts =52 Recognition of GISTs:
Retrospective Leiom_oma =14 Sensitivity = 100%
Minoda et al. [22] P CNN Y - EUS Images Specificity = 86.1%
(Japan) Ectopic Pancreas = 1 o
Avpendiceal Accuracy = 94.4%
PP AUC = 0.980
Mucocele =1
Retrospective Total Patients =53 gjri:ilnvlftlorlgf()%{’/s -
Tanaka et al. [24] p DL GISTs =42 CH-EUS Images tvity = 740 /o
(Japan) Leiomvoma = 11 Specificity = 90.9%
4 B Accuracy = 90.6%
Total Patients = 631
CNN GISTs = 435 Recognition of GISTs:
. non-GISTs = 196 2. o
o Retrospective DCGAN . N Sensitivity = 98.8%
Hirai et al. [25] . . (Leiomyoma = 97, EUS Images o o
(Japan) Semi-supervised _ Specificity = 67.6%
. Schwannoma = 33, o
Learning Accuracy = 89.3%

NET = 47, Ectopic
Pancreas = 19)

Abbreviation: Al artificial intelligence; CNN, convolutional neural network; GISTs, gastrointestinal stromal
tumors; SELs, subepithelial lesions; EUS, endoscopic ultrasound; AUC, area under the curve; DL, deep learning;
CH-EUS, contrast-enhanced harmonic endoscopic ultrasound; DCGAN, deep convolutional generative adversarial
network.

3.2. Early Esophageal Cancer

Early esophageal cancer refers to invasive carcinoma with lesions confined to the
mucosal layer, regardless of whether or not regional lymph node metastasis was presented.
The symptoms of early esophageal cancer are relatively insidious and usually appear in the
middle to late stage of the disease. The prognosis of esophageal cancer is closely related
to its staging. The five-year survival rate of patients with advanced esophageal cancer is
only about 10%, while early esophageal cancer can reach 90% after surgery [26]. Therefore,
the early diagnosis and early treatment of esophageal cancer are of great significance to
improve the prognosis for patients. EUS is the most accurate imaging modality for T staging



Diagnostics 2023, 13, 2815

7 of 18

of esophageal cancer [27]. T stage is determined by the number of layers of the primary
tumor invading the esophageal wall and the depth of adjacent tissue infiltration. Tis a
high-grade dysplasia confined to the epithelium and not penetrating the lamina propria,
Tla tumors invade the lamina propria or muscularis mucosae, and T1b tumors invade
the submucosa [28]. The stage of the tumor determines how it will be treated, and the
American College of Gastroenterology guidelines recommend endoscopic treatment for
low-grade intraepithelial neoplasia, Tis, T1a, superficial low-risk T1b, and high-risk T1b
esophageal adenocarcinoma with surgery, while advanced tumors required esophagectomy,
with perioperative chemotherapy or chemoradiotherapy before surgical treatment [29].
This is based on the relative subjectivity of endoscopists and the variability of operation
between them, which might lead to misdiagnosis of the diseases [30]. A study by Wang
et al. noted that the sensitivity of EUS for T staging of esophageal cancer ranged between
0% and 70.8%, but the specificity ranged between 71.0% and 100.0%, both of which were
dependent on clinical pathological stage. The overall accuracy of EUS T staging was
58.6% [31]. This has led to an exploration of whether EUS-AI could help solve the above
diagnostic dilemma.

Knabe et al. developed an EUS-AI system based on a deep convolutional neural
network (DCNN), which retrospectively collected 1020 EUS images from 577 patients with
esophageal adenocarcinoma for training and internal validation. The results showed that
Al was able to identify mucosal carcinoma (T1a) with a sensitivity of 72%, specificity of
64%, and accuracy of 68%, while the sensitivity, specificity, and accuracy of identifying
submucosal carcinoma (T1b) were 31%, 78%, and 67%, respectively. The sensitivity, speci-
ficity, and accuracy of differentiating T1a and T1b were 66%, 49%, and 55%, respectively.
This study has shown that Al is likely to be able to help endoscopists detect and diagnose
early esophageal cancer in the future and may also provide guidance on the treatment for
esophageal cancer [32].

3.3. Early Gastric Cancer

Gastric cancer ranks fifth in cancer incidence and fourth in mortality [33]. The invasive
depth of tumor is a significant factor affecting the staging and survival of gastric cancer [34].
Accurate staging prior to treatment is crucial for the EGC. Meanwhile, the common treat-
ment options include endoscopic submucosal dissection (ESD) or endoscopic mucosal
resection (EMR) and surgery. The absolute indication for ER for EGC is a differentiated
intramucosal carcinoma <2 cm in diameter and without ulceration; regarding the criteria
for relative indication, they include (1) diameter >2 c¢m, intramucosal carcinoma, differenti-
ated, without ulceration; (2) intramucosal carcinoma, differentiated, with ulceration, <3 cm
in diameter; (3) intramucosal carcinoma, undifferentiated, without ulceration, <2 cm in
diameter [35]. Surgical treatment is recommended when submucosal infiltration is highly
suspected by preoperative evaluation [36]. So far, CT and EUS are the common imaging
methods for accurate preoperative staging of gastric cancer. CT manifestations of gastric
cancer present as focal or diffuse heterogeneous gastric wall thickening. EUS can visualize
the entire gastric wall and has higher accuracy in distinguishing EGC from advanced gastric
cancer. EUS has become the preferred tool for local staging of gastric cancer nowadays [37].
Previous studies have reported an accuracy of 67% to 72% in determining the depth of
infiltration by EUS for EGC. EUS are more dependent on operators’ experience, while the
prevalence of gastric cancer is closely related to the regional distribution of patients, which
has led to a worldwide imbalance in the operating experience and technical expertise of
endoscopists in diagnosing gastric cancer [38]; thus, EUS-AI in EGC has attracted more
and more attention.

The size, ulceration, differentiation, and location of the EGC are major factors that
affect the accuracy of the T staging of EUS. Kim et al. used decision tree analysis to
explore factors affecting the accuracy of EUS T staging and identify factors leading to
overestimation and underestimation of EGC diagnosis. The results showed that after
decision tree analysis, the accuracy of EUS T staging of EGC differed greatly under different
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conditions, fluctuating from 34.0% to 74.6%. For lesions >3 cm, the presence of ulcers
was associated with overestimation; for lesions <3 cm, the type of differentiation and the
location of the tumor had a greater impact on EUS T staging. In well-differentiated EGC,
location was the main factor affecting the accuracy of EUS T staging. EGC was easily
underestimated when the diameter was less than 3 cm and the lesion was located in the
upper and middle part of the stomach. The focus of this study was to predict the accuracy
of EUS T staging in patients with EGC, but the accuracy of prediction by influencing factors
was not particularly high, and the study did not provide answers about which patients
would benefit from EUS. Considering that the AI algorithm only used EUS findings and
excluded the results of gastroscopy, the researchers mentioned that it might be possible to
incorporate these with the results of gastroscopy in the decision tree, which could confirm
the necessity of EUS for patients in some cases, thus improving the prediction accuracy of
EUS [39].

3.4. Pancreatic Diseases

At present, the common examinations used to diagnose pancreatic diseases in clinical
practice are US, CT, MRI, positron emission tomography-computed tomography (PET/CT),
and EUS. The results of them are often very similar, differing only in subtle ways, but
the treatment and prognosis for different pancreatic diseases are widely divergent, which
requires a high level of expertise on the part of the physician. PET/CT is a kind of test for
functional activity of the lesion, which is mainly used to evaluate the efficacy of neoad-
juvant chemotherapy and recurrence of tumors after surgical resection. EUS not only
provides high-resolution images in real time, but also allows rapid on-site evaluation
(ROSE) by endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) and endo-
scopic ultrasound-guided fine-needle biopsy (EUS-FNB) to predict the types of diseases
and accurately characterize them when the pathology results are returned.

3.4.1. Pancreatic Cystic Lesions

Pancreatic cystic lesions (PCLs) are abnormal inflammatory or proliferative lesions of
the pancreas with a prevalence rate up to 42% [40,41]. Most of them are benign, but some
subtypes of PCLs are highly likely to develop into malignant tumors, and their pathological
features are often characterized by a mucinous phenotype. For example, intraductal papil-
lary mucinous neoplasm (IPMN) and mucinous cystic neoplasms (MCN) and so on [42].
Early identification of PCLs has significant value for the treatment and prognosis of the
diseases. However, there are limitations in identifying the types of PCLs by EUS alone, and
poor interobserver agreement due to the varying levels of endoscopists for EUS. Therefore,
EUS-Al is gradually coming into the limelight and has been studied by many investigators.
Nguon et al. developed a CNN model that retrospectively collected EUS images from
59 MCN and 49 serous cystic neoplasms (SCN) patients, and this model allowed for the
identification of two different types of isolated pancreatic cystic neoplasms. Their algo-
rithm achieved an overall accuracy of 82.75%, which is comparable to the performance of
classification by experienced endoscopists [43]. Vilas-Boas et al. focused more on Al for
the classification of groups and used a high-precision algorithm of CNN for the automatic
identification of mucinous pancreatic cysts. A total of 5505 EUS images were extracted,
among which, 3725 depicted mucous lesions and 1780 showed non-mucous lesions. All
images were divided into two data sets, namely the training data set and the validation
data set. The validation data set was used to evaluate the diagnostic effectiveness of the
CNN algorithm in distinguishing mucinous from non-mucinous lesions. The authors
ultimately concluded that the overall accuracy, sensitivity, and specificity of the model were
98.5%, 98.3%, and 98.9%, and the AUC was 1. This study provided a timely estimate of
the likelihood of lesion malignancy by distinguishing PCLs as mucinous or non-mucinous
lesions, which might make the EUS-AI an important tool for risk stratification of PCLs in
clinical practice, facilitating the management of patients and subsequent follow-up [44].
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IPMN is the precursor to invasive PC [45]. A retrospective study using the CNN model
collected static EUS images of 50 patients with IPMN to identify the diagnostic performance
of malignant tumors. It showed that the accuracy of predicting IPMN as malignant tumors
by Al was 94%, and its diagnostic accuracy was higher than that of conventional EUS
(40-60%) and endoscopists” diagnoses (56%) [46]. Endoscopic ultrasound-guided needle-
based confocal laser endomicroscopy (EUS-nCLE), as an emerging technology, enables
the confocal laser probe to enter the cystic cavity through a 19 G puncture needle to form
real-time tissue microscopic imaging, which further improves the diagnostic accuracy of
pancreatic cystic tumors [47,48]. Several studies have proved the feasibility of the EUS-
nCLE model to differentiate PCL types [49-51]. Therefore, a single-center prospective
study assessed the diagnostic performance of Al combined with EUS-nCLE for advanced
IPMN and explored whether it could be used for risk stratification of IPMN. Machicado
et al. designed two CAD algorithms based on CNN: one of the CNN-CAD systems
in the overall model automatically extracted all features of nCLE and predicted high-
grade dysplasia and/or adenocarcinoma (HGD-Ca); the other CNN-CAD system in the
segmentation model was trained to identify segments of papillary structures, and measure
the thickness and darkness of papillary epithelium to distinguish low- or intermediate-
grade dysplasia (LGD) from HGD-Ca. Compared with the Fukuoka and AGA guidelines
for risk stratification, this study found that the two nCLE-guided CNN-CAD algorithms
had higher sensitivity and accuracy with comparable specificity in diagnosing HGD-Ca. In
terms of IPMN risk stratification, the two CNN-CAD models were more accurate compared
to the guidelines, although with similar specificity. This study demonstrated that the two
CNN-CAD algorithms based on the n-CLE model could diagnose advanced tumors in
IPMN more accurately, while being feasible and accurate in terms of risk stratification [52].

3.4.2. Autoimmune Pancreatitis

AIP is an immune-mediated fibroinflammatory subtype of CP [53,54]. The typical AIP
takes diffuse pancreatic enlargement as its performance, but the atypical AIP is focused on
mass enlargement. Therefore, the distinction between atypical AIP (focal AIP) and pan-
creatic malignancies (especially PDAC) is extremely critical. Existing guidelines consider
MRI and CT as important tests for the diagnosis of AIP, and EUS is mainly used to ob-
tain cytohistological specimens despite providing a wealth of morphological features [55].
EUS-guided tissue acquisition techniques include EUS-FNA and EUS-FNB: EUS-FNA
indicates that cells are aspirated from the target tissue using a conventional straight needle,
and cytopathologists determine the type of lesion by observing the abnormal cells and
their characteristics in the aspirated sample. However, the diagnostic accuracy of this test
depends on the availability of ROSE and it is more dependent on the diagnostic experi-
ence of the cytopathologists; at the same time, EUS-FNB uses a new generation of coarse
needle that allows not only cytological evaluation but also histological examination by
preserving tissue structure, which makes an effective diagnosis of AIP possible. Therefore,
EUS-ENB is increasingly used as an alternative to EUS-FNA [56]. Thomsen et al. examined
the utility of pancreatic EUS-FNB based on a large single-center study of 852 specimens
from 723 patients, which found that pancreatic EUS-FNB for AIP had an accuracy of 0.992
(95% CI1 0.983-0.997). The sensitivity and specificity of EUS-FNB for AIP were 0.833 (95%
CI 0.586-0.964) and 0.995 (95% CI 0.988-0.999). This suggested the promising potential
advantages of EUS-FNB in diagnosing AIP [57].

The diagnostic accuracy of AIP is highly correlated with the operation of the endo-
scopists and the experience of the cytopathologists, while both EUS-FNA and EUS-FNB
operations are invasive. Even though the incidence of adverse events is rare, there is still
a risk of complications for patients. Therefore, some studies have used EUS images or
EUS videos in combination with Al to investigate the diagnostic accuracy of AIP. Guo
et al. conducted a retrospective study using multivariate stepwise logistic regression and
receiver operating characteristics (ROC) analyses. Ninety patients with focal autoimmune
pancreatitis (FAIP) and 196 patients with PC were collected and randomly divided into



Diagnostics 2023, 13, 2815

10 0of 18

two groups, the derivation group and the validation group. A predictive model was con-
structed based on all EUS characteristics from the derivation group and its effectiveness in
evaluating the two diseases was verified in the validation group. This study demonstrated
that diffuse hypoechogenicity, bile duct wall thickening, and hyperechoic foci/strands were
three independent predictors, with an AUC of 0.975 (95%/ClI, 0.959-0.990). Considering
the subjective nature of distinguishing diffuse or focal hypoechogenicity by endoscopists,
the authors excluded these two characteristics and designed another prediction model by
multivariate stepwise logistic regression analysis. The results showed that main pancre-
atic duct dilation, common bile duct dilation, bile duct wall thickening, and hyperechoic
foci/strands were independent predictors, with an AUC of 0.951 (95%/CI, 0.929-0.974).
According to the optimal cutoff value, the sensitivity and specificity of the model were
83.7-91.8% and 93.3-95.6% [58]. Marya et al. used static EUS images and video databases to
develop the CNN model. After training, the model could analyze EUS videos in real-time
and accurately distinguish AIP from PDAC and benign pancreatic diseases (CP and normal
pancreas). The sensitivity and specificity of differentiating AIP and PDAC were 90% and
93%, respectively. The sensitivity and specificity to distinguish AIP from CP were 94%
and 71%, respectively. The specificity between AIP and normal pancreas was 98%. The
sensitivity and specificity of AIP and non-AIP were 90% and 85%, respectively [59].

3.4.3. Pancreatic Cancer

PC is a highly lethal malignancy with a global five-year overall survival rate of less than
10%. It is difficult to detect while patients have mild or asymptomatic symptoms [60]. PDAC
is the most common type of PC, and the majority of diseases are diagnosed at an advanced
stage with poor prognosis. Early detection of small lesions and timely excision could improve
the five-year survival rate to 80.4% [61]. Traditional imaging techniques such as CT and MRI
may not be able to discover smaller lesions, while EUS is the most sensitive modality for the
recognition of small solid pancreatic lesions, especially for lesions smaller than 20 mm [62,63].
Therefore, several studies have evaluated EUS-AI in PC settings (Table 2).

In order to distinguish PC from noncarcinomatous pancreatic lesions, Kuwahara et al.
collected 22,000 EUS images of 933 patients to evaluate the diagnostic effectiveness of
the Al model developed by DL. The authors found that the AUC, sensitivity, specificity,
and accuracy (95%/CI) of the diagnosis of PC were 0.90 (0.84-0.97), 0.94 (0.88-0.98), 0.82
(0.88-0.92), and 0.91 (0.85-0.95), respectively. It was also indicated that the model could
be utilized to distinguish PDAC, pancreatic adenosquamous carcinoma, acinar cell carci-
noma, metastatic pancreatic tumor, neuroendocrine carcinoma, NET, solid pseudopapillary
neoplasm, CP, and AIP [64]. As we all know, further external validation is required in the
future. Tonozuka et al. developed a CAD system using EUS images and evaluated the
ability of the system to discriminate PDAC from CP and normal pancreatic patients. The
results presented excellent results of this model in detecting PDAC, with AUCs of 0.924 and
0.940 in the validation and test setting, respectively [11]. In addition, a systematic review of
11 studies investigating the role of EUS-Al in the diagnosis of PC found overall accuracy,
sensitivity, and specificity in the range of 80-97.5%, 83-100%, and 50-99%, respectively [65].

EUS-FNA and EUS-FNB are commonly used techniques for the diagnosis of pancreatic
diseases by cytohistopathology. The uneven level of practice and experience among endo-
scopists leads to differences in the quality of the tissue samples they obtain. To address this
challenge, Al has emerged in recent years as a promising tool to improve the accuracy and
efficiency of EUS-guided tissue sampling. Al potentially assists EUS-FNA /FNB through
real-time feedback obtained by the endoscopists during the procedure, helping to select the
appropriate type and size of the puncture needle, guiding the optimal location and depth of
the puncture, and providing feedback on the quality of the sample obtained. Thus, Al can
reduce the number of punctures required to obtain an adequate sample, improve puncture
accuracy, and minimize the risk of complications [66]. In addition, with the innovation of
image recognition by Al and the development of cytopathology, some researchers have
applied Al to analyze pathological specimens by EUS-FNA /FNB. Zhang et al. employed
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EUS-FNA to perform biopsies in a PC group and a non-PC (mild atypical lesions, other
tumors, or no tumor) group, and applied ROSE on detected specimens after staining.
Internal testing and external validation were conducted on pathological stained sections
by the deep convolutional neural network (DCNN) system. Both the AUCs of internal
testing and external validation were >0.9, which was comparable to the diagnostic ability of
cytopathologists. Considering that some hospitals might be short of cytopathologists, the
diagnostic accuracy of endoscopists who have received standardized training in pathology
was compared with the DCNN model, and the results showed that the sensitivity of the
DCNN model was higher than that of endoscopists [67]. Ishikawa et al. established that
the DL model’s diagnostic accuracy of unstained biopsy specimens of pancreatic diseases
was lower than that of macroscopic on-site evaluation (MOSE). Nevertheless, the diag-
nostic accuracy of the Al model after specimen staining was comparable to that of MOSE.
The sensitivity, specificity, and accuracy of MOSE after staining were 88.97%, 53.5%, and
83.24%, respectively. Comparatively, the sensitivity, specificity, and accuracy of Al-assisted
EUS-FNB were 90.34%, 53.5%, and 84.39%, respectively [68].

EUS has numerous modes, including B-mode, CH-EUS, endoscopic ultrasound-
elastography (EUS-EG), etc. CH-EUS and EUS-EG could be used as complementary tools to
characterize focal pancreatic lesions. Even though CH-EUS could not improve the detection
rate of lesions, it could assist in the antidiastole of the diseases [69-73]. CH-EUS, which
uses contrast agents combined with tissue harmonic imaging to depict the microvascular
system in real time, has shown promise in differentiating benign from malignant pancreatic
masses [74]. The steep learning curve of EUS requires the operators to be skilled in human
anatomy and manipulation [75], thus creating an urgent need for new techniques that
can emerge to objectively identify and classify CH-EUS images to assist in diagnosis. In
addition, based on the temporal change in echo enhancement intensity, a time-intensity
curve (TIC) can be generated. There is evidence that CH-EUS using TIC analysis is very
effective in differentiating various pancreatic lesions [76]. Tang et al. constructed a novel
Al-assisted diagnostic system (CH-EUS MASTER) based on DCNN and RF algorithms
and applied it to two models by retrospectively collecting images or videos of CH-EUS
to achieve: (1) identification and tracking of pancreatic masses dynamically in real time;
(2) differentiation between PC and CP by TIC analysis. The results showed that the average
overlap rate of model 1 was 0.708 with an accuracy of 87.8% at the image overlap threshold
of 0.50, compared to manual annotation by endoscopists. Model 2 identified PC with an
accuracy of 88.9%. This system is a promising Al system for diagnosing malignant and
benign pancreatic masses [77]. EUS-EG is a diagnostic approach based on tissue stiffness
measurement. Saftoiu et al. conducted a prospective, blinded, multicentric study using
Al-assisted EUS-EG to discriminate between CP and PC, and the authors observed that
the model had a training accuracy of 0.9114 (95% CI 0.8987-0.9242) and a test accuracy
of 0.8427 (95% C1 0.8309-0.8544). The sensitivity, specificity, PPV, and NPV of Al-assisted
EUS-EG were 0.88, 0.83, 0.96, and 0.57, respectively. This study suggests that ANN can
provide a rapid and accurate diagnosis of pancreatic malignancies [78].

Table 2. Studies assessing the sensitivity, specificity, and diagnostic accuracy of Al models for PC.

Study Study Design  AI Model Patient Population I(;;?Z‘::Ch ﬁ‘(‘)t;:lmes for the Al
Total Patients = 694
PC =524
Non-Cancer Recognition of PC:

Retrospective Patients = 170 Sensitivity = 94%
Kuwahara et al. [64] (Japan) DL (PDAC =518, EUS Images Specificity = 82%
P PASC =5,ACC =1, Accuracy =91%

MPT =8, NEC =6, AUC=0.90

NET =57, SPN =6,
CP =58, AIP = 35)
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Table 2. Cont.

. . . Research Outcomes for the Al
Study Study Design Al Model Patient Population Object Model
Total Patients = 139 Recognition of PC:
Retrospective PDAC =76 Sensitivity = 92.4%
Tonozuka et al. [11] (Japan) CNN CP =34 EUS Images Specificity = 84.1%
NP =29 AUC =0.940
. Total Patients = 2292 Recognition of PC:
Systematic ANN PC = 1409 EUSImages g sitivity = 83-100%
Goyal et al. [65] Review CNN EUS Videos e o
(United States)  SVM Non-Cancer FUS-EG Specificity = 50-99%
Patients = 883 Accuracy = 80-97.5%
Total Patients = 194 . Recogpljaon of PC: o
Retrospective PC =110 Staining Sensitivity = 92.8-94.4%
Zhang et al. [67] osp DCNN N EUS-FNA Specificity = 87.5-97.1%
(China) Non-Cancer . o
Patients = 84 Specimens Accuracy = 91.2-95.8%
AUC =0.948-0.976
Total Patients = 97
PDAC =66
Contrastive MFP =13 Recognition of
Retrospective Learnin AIP =11 Staining Pancreatic Diseases:
Ishikawa et al. [68] P & Pancreatic EUS-FNB Sensitivity = 90.34%
(Japan) (Unsupervised . . e o
Learning) Neuroendocrine Specimens Specificity = 53.5%
& Tumor =3 Accuracy = 84.39%
MPT =3
IPMC=1
Recognition of
Total Patients in Model Pancreatic Diseases in
12950 Model 1:
P(_f — 760 Model 1: the Average Overlap
Model 1: Beni_ '\ Pancreatic CH-EUS Rate = 0.708;
Prospective DCNN & Images Accuracy = 87.8%
Tang et al. [77] - . Masses = 190 . .
(China) Model 2: RF Total Patients in Model Model 2: Recognition of
Algorithm 2 =205 CH-EUS Pancreatic Diseases in
- Videos Model 2:
PC =167 . o
Pancreatitis = 128 Sensitivity = 100%
Specificity = 75%
Accuracy = 88.9%
Hue Histogram  Recognition of
Prospective Total Patients = 258 Data Extracted  Pancreatic Diseases:
Saftoiu et al. [78] (Eurc}: o) ANN PC =211 from Dynamic  Sensitivity = 87.59%
P CP =47 Sequences of Specificity = 82.94%

EUS-EG Accuracy = 84.27%

Abbreviation: Al, artificial intelligence; DL, deep learning; PC, pancreatic cancer; PDAC, pancreatic ductal
adenocarcinoma; PASC, pancreatic adeno-squamous carcinoma; ACC, acinar cell carcinoma; MPT, metastatic
pancreatic tumors; NEC, neuroendocrine carcinoma; NET, neuroendocrine tumors; SPN, solid pseudo papillary
neoplasms; CP, chronic pancreatitis; AIP, autoimmune pancreatitis; EUS, endoscopic ultrasound; AUC, area
under the curve; CNN, convolutional neural network; NP, normal pancreas; ANN, artificial neural network;
SVM, support vector machine; EUS-EG, endoscopic ultrasound elastography; DCNN, deep convolutional neural
network; EUS-FNA, endoscopic ultrasound-guided fine-needle aspiration biopsy; MFP, mass-forming pancreatitis;
IPMC, intraductal papillary mucinous carcinoma; EUS-FNB, endoscopic ultrasound-guided fine-needle biopsy;
RF, random forest; CH-EUS, contrast-enhanced harmonic endoscopic ultrasound.

4. EUS-AI in Quality Control

In addition to building CAD models from EUS images, EUS videos, and cytohisto-
logical smears after training to improve the diagnostic accuracy of benign and malignant
diseases of the pancreas, EUS-AI can also carry out quality control of the pancreatic scan
process to solve the problem of missed diagnosis of diseases due to the blind area of the field
of view. Existing studies have established a pancreatic scanning system with EUS as the
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standard procedure guided by systematic scanning in separate stations [79,80]. However,
the complex anatomical structure of EUS for diseases increases the hardship of the interpre-
tation of images. For this reason, Zhang et al. developed a system called BP MASTER to
create a station classification model and a segmentation model, which were then subjected
to internal and external verification. The classification model was utilized to determine the
current scan site and guide the operation of the next site, while the segmentation model
focused on monitoring the pancreas/abdominal aorta/portal confluence in real-time. If
the pancreas and important blood vessels continued to disappear, it was recommended to
return to the previous station for rescanning. The researchers found that the accuracy of
the classification model for site identification during internal and external verification was
94.2% and 82.4%, respectively. The mean F1 index (Dice) for the segmentation model was
0.836 and 0.715. Additionally, the researchers extracted 396 video clips and applied them to
the station classification model, achieving a per-frame accuracy of 86.2%. Moreover, the BP
MASTER system was shown to reduce the learning curve for inexperienced students using
EUS-AI to identify PC. On the basis of a previous study, a prospective study was conducted
involving eight students with one year of experience in gastroenterology. The students
had not participated in operation training for EUS. The trainees’ recognition accuracy of
processed EUS videos significantly increased from 67.2% to 78.4% (95%/CI, 0.058-1.663;
p <0.01) [75].

5. Discussion and Prospects

In summary, the diagnostic accuracy of EUS-ALI for digestive system diseases is compa-
rable to or even better than that of endoscopists. EUS, with its high-resolution imaging, can
effectively observe the lesion site and provide a diagnosis advantage over other imaging
tests such as US, CT, MRI, and PET/CT. Nevertheless, the diagnostic ability of endoscopists
is highly correlated with their knowledge reserve, clinical experience, and operation pro-
ficiency. With the increase in operation times, endoscopists may miss the diagnosis of
diseases due to fatigue or inattention. Manual diagnosis by endoscopists is also subjective.
EUS-AI which combines Al with EUS examinations, enables early diagnosis of disease
while accelerating the treatment process and improving patient prognosis. By imple-
menting quality control during the inspection process, EUS-AI could alleviate the overall
medical burden on individuals and healthcare systems worldwide. Moreover, the addition
of Al can shorten the learning curve for novice doctors, who typically require extensive
training by experienced endoscopists to standardize their EUS skills. Consequently, these
discoveries may eliminate the “automation bias” held by some individuals towards EUS-AI,
representing a significant advancement for CAD in clinical diagnosis.

In recent years, there has been a growing interest among researchers in the use of
EUS-FNA /FNB instead of postoperative cytopathology and histopathology. Al-assisted
EUS-FNA /FNB has shown promising results, as it allows for the precise localization of
lesions and avoids important vessels during puncture. By optimizing the sampling site,
angle, and number of times, the prognostic risk for patients can be significantly reduced.
Additionally, to address the issue of missed diagnosis resulting from the blind field of view
during operations, some studies have utilized EUS-AI to create pancreatic segmentation
and classification models. These models provide real-time information about the current
location and guide subsequent examination methods, representing a relatively novel and
valuable tool. If this technique is applied to examine other digestive diseases, this could be
a major step forward in the field of disease screening.

The applications of Al in EUS come with certain limitations. Firstly, most of the current
studies are retrospective single-center studies, which means that the data sources in the ob-
tained datasets lack universal representation. As a result, models built on such data might
be prone to information bias. Secondly, anonymized or de-identified data often need to be
traced back to the patient for diagnosis and treatment. This introduces a potential risk of
data breaches and unauthorized access to patient information. Thirdly, the standardization
of data collection and data analysis is insufficient. In order to ensure accurate diagnosis
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and broad applicability, standardized processing of data acquisition and analysis should be
established. Fourthly, the advent of EUS-AI, a machine-human collaborative examination,
has brought about a significant transformation in the conventional doctor—patient relation-
ship. The responsibility for any misdiagnosis resulting from the use of Al falls not only
on the doctors but also on the model developers and software platform vendors involved.
Active and flexible laws and regulations are still relatively lacking. Fifthly, the particularly
specifical limitation of Al is the “black box problem” [81], that is, only the input layers
and output layers are visible, and the operation and recognition in the hidden layers are
opaque. This makes it difficult for doctors and model developers to explain the reasons
for potential biases, errors, and unintended consequences, posing a great challenge in the
context of evidence-based medicine.

In the information age, emerging technologies such as Al are still at an early stage.
While there are limitations in the diagnosis of diseases through EUS-AI, researchers can
take certain steps to enhance its application in clinical settings. In the future, Al algorithms
should be refined to create visualized Al decision-making processes. Additionally, large-
sample, multi-center prospective studies should be conducted to cover a range of diseases.
The incorporation of high-quality images or videos should be maximized, and integrated
models should be flexibly applied. Furthermore, an open, quality-monitored data collection
server should be established to enable global sharing, while ensuring data confidentiality
to protect patient privacy. Clear accountability policies need to be developed to regulate
Al technology effectively, ensuring its reasonable and legal application, and minimizing
or avoiding harm caused by Al errors. It is important to note that EUS-AI exhibits great
potential in healthcare, but it does not imply that endoscopists will be replaced by Al
Instead, the collaboration between the two can lead to more accurate decision-making in
the diagnosis and treatment process, thus improving the efficacy of disease diagnosis and
facilitating the further development of individualized precision medicine.
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