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Background/Aims: Ozone is an environmentally reactive oxidant, and pycno-
genol is a mixture of f lavonoid compounds extracted from pine tree bark that 
have antioxidant activity. We investigated the effects of pycnogenol on reactive ni-
trogen species, antioxidant responses, and airway responsiveness in BALB/c mice 
exposed to ozone.
Methods: Antioxidant levels were determined using high performance liquid 
chromatography with electrochemical detection. Nitric oxide (NO) metabolites 
in bronchoalveolar lavage (BAL) fluid from BALB/c mice in filtered air and 2 ppm 
ozone with pycnogenol pretreatment before ozone exposure (n = 6) were quanti-
fied colorimetrically using the Griess reaction.
Results: Uric acid and ascorbic acid concentrations were significantly higher in 
BAL fluid following pretreatment with pycnogenol, whereas γ-tocopherol concen-
trations were higher in the ozone exposed group but were similar in the ozone 
and pycnogenol pretreatment groups. Retinol and γ-tocopherol concentrations 
tended to increase in the ozone exposure group but were similar in the ozone and 
pycnogenol pretreatment groups following ozone exposure. Malonylaldehyde 
concentrations increased in the ozone exposure group but were similar in the 
ozone and pycnogenol plus ozone groups. The nitrite and total NO metabolite 
concentrations in BAL fluid, which parallel the in vivo generation of NO in the 
airways, were significantly greater in the ozone exposed group than the group ex-
posed to filtered air, but decreased with pycnogenol pretreatment. 
Conclusions: Pycnogenol may increase levels of antioxidant enzymes and de-
crease levels of nitrogen species, suggesting that antioxidants minimize the ef-
fects of acute ozone exposure via a protective mechanism.
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INTRODUCTION

The lung interfaces with the external environment 
and is frequently exposed to airborne pollutants such 
as ozone and particulates, and is prone to oxidant-
mediated cellular damage [1-7]. The production of 
reactive nitrogen species (RNS) and reactive oxygen 
species (ROS) associated with oxidative stress are im-

portant factors in lung disease [2]. Ozone, a component 
of photochemical air pollution, is formed from volatile 
hydrocarbons, halogenated organics, and oxides of ni-
trogen in the presence of sunlight [2-7]. Ozone can re-
act directly with unsaturated fatty acids and cell mem-
branes to produce lipid ozonation products, which are 
small, diffusible, and relatively stable [8]. Ozone also 
leads to the oxidative modif ication of surfactant 
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proteins, such as surfactant protein-A, which causes 
the lung to be more susceptible to lipid peroxida-
tion and inflammation, and results in a reduction in 
phagocytosis [9]. Exposure of human airway epithelial 
cells to lipid ozonation products in vitro leads to the ac-
tivation of eicosanoid metabolism, phospholipases A2, 
C, and D, and the induction of inflammatory media-
tors such as interleukin (IL)-6, IL-8, and prostaglan-
din E2 [10,11].

The dietary supplement pycnogenol is a water-sol-
uble mixture of flavonoid compounds extracted from 
French maritime pine bark. It is utilized throughout 
the world as a phytochemical remedy for various dis-
eases ranging from chronic inflammation to circula-
tory dysfunction. The f lavonoids in pycnogenol have 
antioxidant properties [12,13] and may also act as mod-
ulators of metabolic enzymes [14-16] and other cellular 
functions [12,16,17]. Pycnogenol is a very potent anti-
oxidant for scavenging ROS and RNS [16], has anti-in-
flammatory effects [18], may have efficient antioxidant 
activity [19-21], and shows some modulatory effects on 
the immune system [22].

Acute ozone exposure decreases pulmonary func-
tion, increases airway responsiveness, and induces air-
way inflammation [1-7,23-26]. There may be a common 
ozone adaptation mechanism that involves the regula-
tion of ascorbic acid in the fluid that lines the lungs [27]. 
Antioxidant transport contributes to the maintenance 
of normal airway tone and reactivity under conditions 
of oxidative stress [28]. In the present study, we evalu-
ated the effects of pycnogenol on ROS, RNS, and the 
antioxidant responses in BALB/c mice following acute 
ozone exposure.

METHODS

Animals and ozone exposure
Five- to 6-week-old female BALB/c mice, obtained 
from Daehan Laboratories (Daejeon, Korea), were 
maintained on ovalbumin-free diets. The mice were 
individually housed in rack-mounted stainless steel 
cages with free access to food and water. The mice 
housed in whole body exposure chambers were ex-
posed to normal ozone concentrations of 0 (f iltered 
room air) and 2 ppm for 3 hours (n = 6/group). Ozone 

was generated with Sander Model 50 ozonizers (Sander, 
Eltze, Germany). The concentration of ozone within 
the chambers was monitored throughout the exposure 
with ambient-air ozone motors (Model 49C, Thermo 
Environmental Instruments Inc., Franklin, MA, USA). 
Air sampling probes were placed in the breathing 
zone of the mice. The mean chamber ozone concentra-
tion (± SEM) during the 3-hour exposure period was 
1.89 ± 0.06 ppm. The temperature and humidity were 
maintained at constant levels within the chamber. 
Pycnogenol was purchased from Horphag Research 
Ltd. (Guernsey, UK). The mice housed in whole body  
exposure chambers were treated with pycnogenol (100 
mg/kg/day) orally for 5 days before ozone exposure. 
The study protocol was approved by the local research 
ethics committee of the Soonchunhyang University 
Bucheon Hospital research board.

Determination of airway responsiveness
An increase in the enhanced pause (Penh) was mea-
sured by barometric plethysmography using whole 
body plethysmography (Buxco, Troy, NY, USA) as an 
index of airway obstruction, immediately after ozone 
exposure while the animals were awake and breathing 
spontaneously [29]. Before taking readings, the box 
was calibrated by rapid injection of 150-µL air into the 
main chamber. The pressure differences between the 
main chamber of the whole body plethysmography-
containing animal, and a reference chamber (box 
pressure signal) were measured. This box pressure 
signal is caused by changes in volume and resultant 
pressure in the main chamber during the respiratory 
cycle of the animal. A pneumotachograph with de-
fined resistance in the wall of the main chamber acted 
as a low pass filter and allowed thermal compensation. 
The time constant of the box was determined to be 
approximately 0.02 seconds. Mice were placed in the 
main chamber, and baseline readings were taken over 
3 minutes and averaged.

Bronchoalveolar lavage (BAL) fluid preparation and 
analysis
BAL was performed immediately after the last mea-
surement of airway responsiveness. The mice were 
anesthetized intraperitoneally with 50 mg/kg pento-
barbital sodium and were sacrificed by exsanguination 



   

218

The Korean Journal of Internal Medicine Vol. 28, No. 2, March 2013

www.kjim.org http://dx.doi.org/10.3904/kjim.2013.28.2.216

from the abdominal aorta. The trachea was cannulat-
ed with a polyethylene tube through which the lungs 
were lavaged three times with 1-mL physiologic saline 
(4 mL total). The BAL fluid was filtered through a wet 4 
× 4 gauze. Trypan blue exclusion for viability and total 
cell counts were performed. The BAL fluid was centri-
fuged at 150 ×g for 10 minutes. The pellet was immedi-
ately suspended in 4-mL physiological saline, and the 
total number of cells in the BAL fluid was counted in 
duplicate with a Neubauer improved hemocytometer. 
A 100-γL aliquot was centrifuged in a cytocentrifuge 
(Model 2 Cytospin, Shandon Scientific Co., Pittsburg, 
PA, USA). Differential cell counts were made from the 
centrifuged preparations stained with Diff-quick; at 
least ≥ 500 cells per animal were counted at a × 1,000 
magnification using oil immersion.

Determination of antioxidant levels
BAL fluid was assayed for ascorbic acid, uric acid, reti-
nol, γ-tocopherol, and γ-tocopherol. Malondialdehyde 
(MDA) was measured in lung tissue homogenates. Uric 
acid and ascorbic acid were determined simultaneous-
ly using reverse phase high performance liquid chro-
matography (HPLC) with electrochemical detection, 
based on the method of Mudway et al. [30]. HPLC de-
termination of retinol, γ-tocopherol, and γ-tocopherol 
were based on the method of Bieri et al. [31] and de-
scribed in detail for BAL fluid [32]. Lipid peroxidation, 
as a marker of oxidative damage, was determined 
based on the generation of thiobarbituric acid reactive 
substances in a 10-minute period and expressed as a 
concentration of MDA, based on the method of Ohka-
wa et al. [33]. Briefly, the reaction mixture containing 
8% sodium dodecyl sulfate, 20% acetic acid (pH 4.0), 
and 0.8% thiobarbituric acid, was heated at 90°C for 
60 minutes. After cooling, an n-butanol and pyridine 
mixture (15:1, v/v) was added and centrifuged at 1,000 
×g for 10 minutes. The absorption of the supernatant 
was measured at 532 nm at room temperature using 
1,1,3,3-tetramethoxypropane as an external standard.

Measurement of nitrite and nitrate production
Nitrite production was quantified colorimetrically af-
ter the Griess reaction as described by Greenberg et al. 
[34]. The BAL fluid supernatant, or a standard (100 µL), 
was combined with an equal volume of Griess reagent 

(1% sulfanilamide/0.1% naphthylethyllenedihydro-
chloride/2.5% phosphoric acid, Sigma Chemical Co., 
St. Louis, MO, USA) in duplicate in microtiter wells at 
room temperature. Chromophore absorbance at 540 
nm was determined. The nitrite concentration was 
calculated using sodium nitrite (BDH Chemical Co., 
Poole, UK) as a standard. To assay nitrate, 200 µL of 
BAL fluid supernatant, or a standard containing 100-
µL 200 mM ammonium formate (including 100 mM 
HEPES, Sigma Chemical Co.) was reduced to nitrite at 
37°C for 1 hour by adding 100 µL recombinant nitrate 
reductase (Escherichia coli [ATCC25922], American Type 
Collection, Rockville, MD, USA), followed by centrifu-
gation to precipitate nonreacting E. coli for 5 minutes, 
after which the nitrite was quantif ied as described 
above.

Statistical analysis
All data were analyzed using SPSS version 14.0 for 
Windows (SPSS Inc., Chicago, IL, USA). Data are ex-
pressed as the means ± SEM. Intergroup comparisons 
were assessed using the nonparametric Mann-Whit-
ney U test. A p value < 0.05 was considered to indicate 
statistical significance.

RESULTS

Antioxidant responses and RNS
Concentrations of uric acid and ascorbic acid were sig-
nificantly higher in BAL fluid following pretreatment 
with pycnogenol (uric acid, filtered air [4,831.9 ± 1,018.2 
nmol/mg protein] vs. ozone [13,120.4 ± 2,798.7 nmol/mg 
protein] vs. pycnogenol plus ozone [21,139.2 ± 2,033.0 
nmol/mg protein]; ascorbic acid [19,770.6 ± 4,551.2 
nmol/mg protein] vs. ozone [25,058.3 ± 3,365.8 nmol/mg 
protein] vs. pycnogenol plus ozone [39,319.0 ± 5,010.0 
nmol/mg protein], p < 0.05) (Fig. 1).
γ-tocopherol concentrations were higher in the 

ozone exposure group, but were similar in the ozone 
and pycnogenol pretreatment groups (f iltered air 
[1,572.8 ±248.7 nmol/mg protein] vs. ozone [3,395.6 ± 
248.7 nmol/mg protein] vs. pycnogenol plus ozone 
[3,097.9 ±273.0 nmol/mg protein]) (Fig. 1). Retinol and 
γ-tocopherol concentrations tended to increase in the 
ozone exposure group, but were similar in the ozone 
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and pycnogenol pretreatment groups following ozone 
exposure. MDA concentrations were higher in the 
ozone exposure group but were similar in the ozone 
and pycnogerol plus ozone groups (filtered air [2.97 ± 
0.08 nmol/mg protein] vs. ozone [3.29 ± 0.19 nmol/mg 
protein] vs. pycnogenol plus ozone [3.11 ± 0.05 nmol/
mg protein]). The concentrations of nitrite and total 
nitric oxide (NO) metabolites in BAL fluid, which in-
dicate the in vivo generation of NO in airways, were 
significantly greater in the ozone exposed group than 
in the group exposed to filtered air (nitrate metabo-
lites in filtered air [40.8 ± 12.9 µmol/L] vs. ozone [98.0 ± 
13.9 µmol/L], p < 0.05; total NO metabolites in filtered 
air [96.5 ± 20.3 µmol/L] vs. ozone [162.9 ± 16.4 µmol/L], 
p < 0.05), but decreased with pretreatment with pycno-
genol (nitrate metabolites, 49.8 ± 11.1 µmol/L; NO me-
tabolites, 116.0 ± 13.4 µmol/L; p < 0.05) (Fig. 2). 

Cell counts in BAL fluid and airway responsiveness
The recovery rates of BAL f luid were similar in all 
groups (2.65 ± 0.03 mL). Compared to that for filtered 
air, the proportion of neutrophils recovered in BAL 
f luid increased after exposure to 2 ppm ozone, and 
there were no differences between the ozone group 
and pycnogenol plus ozone group (filtered air [1.5% ± 
0.21%] vs. ozone [12.10% ± 1.3%] vs. pycnogenol plus 

ozone [12.15% ± 1.65%], p < 0.01). The increases in Penh 
after ozone exposure were significantly reduced due 
to pretreatment with pycnogenol in mice that were 
exposed to 2 ppm ozone relative to the ozone exposure 
group (filtered air [0.75 ± 0.10] vs. ozone [1.81 ± 0.07] vs. 
pycnogenol plus ozone [1.44 ± 0.02]).

DISCUSSION

The results of this study indicate that pycnogenol 
functions as an antioxidant that reduces airway ob-
struction following ozone exposure and may modify 
RNS and antioxidants to minimize the effects of acute 
ozone exposure. 

Oxidative stress is characterized by an imbalance 
between antioxidant defenses and damaging reac-
tive species. The lungs have an extensive antioxidant 
network to protect against tissue damage by ROS and 
RNS [35-43]. ROS and RNS can regulate a diverse ar-
ray of physiological processes, and deregulation of 
oxidant signaling may cause or accelerate a host of 
pathological conditions as it is an important regulator 
of physiological and pathophysiological outcomes [37]. 
The lungs have large epithelial surface areas that are 
exposed to inhaled airborne reactive  pollutants and a 
multitude of airborne microorganisms, which makes 
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Figure 1. Antioxidant levels in bronchoalveolar lavage fluid.
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them particularly susceptible to environmental oxi-
dant-mediated injury. Metabolic reactions and envi-
ronmental pollutants such as ozone, cigarette smoke, 
and particulate matter can produce an oxidizing lung 
environment, leading to endogenous and exogenous 
production of ROS [38]. Ozone imposes an oxidative 
burden on the lung directly as an oxidant during ex-
posure, and indirectly by inducing inf lammation. A 
single, acute exposure to ozone modifies the protective 
antioxidant defense network in the respiratory tract, 
with consumption of ascorbic acid and uric acid and 
reduced glutathione levels [26].

Protective compounds include small antioxidant 
molecules such as vitamin C, vitamin E, uric acid, the 
tripeptide glutathione, mucins, metal binding pro-
teins such as transferrin, lactoferrin, and metallothio-
neins, and a variety of enzymes, such as superoxide 
dismutases, glutathione dependent enzymes, catalase, 
and various thiol containing proteins that play an 
important role in protection against ROS [35-43]. The 
balance between oxidative burden and the body’s an-
tioxidant potential in the pathogenesis of airway ob-
struction has been the focus of recent investigations. 
Antioxidants in f luids that coat the lung epithelium 
constitute an initial line of defense against inhaled 
environmental oxidants such as ozone, nitrogen ox-
ides, and tobacco smoke. Ozone exposure is associated 
with adverse respiratory effects, in particular with re-
ductions in lung function [44]. 

Pycnogenol is a mixture of compounds extracted 
from the bark of pine trees (Pinus maritima) whose 
chromatographic prof ile is composed of phenolic, 
procyanidin/proanthocyanidin, and f lavonoid com-
pounds existing as monomers, dimers, and oligomers 
of five to seven units [12]. The oligomers are composed 
mainly of catechin and epicatechin units linked to-
gether by four to eight or four to six bonds [12,45]. 
Other minor constituents of pycnogenol include phe-
nolic acids, glucosides, and glucose esters [12,45]. Pyc-
nogenol lacks toxicity (pharmacologic LD50, 3 g/kg) and 
is nonteratogenic and nonmutagenic [46]. Pycnogenol 
is an efficient scavenger of ROS. Indeed, HO˙ and the 
superoxide radical anion (O2˙

–) scavenging activity are 
maintained after treatment with ascorbate oxidase, 
indicating that ascorbate, which may be present in the 
mixture, is responsible for the antioxidant activity. On 

the other hand, ultrafiltration affects O2˙
– scavenging 

activity, suggesting a contribution to the antioxidant 
activity of high molec ular weight compounds present 
in the mixture [47,48].

Because there are limited data on the effects of pyc-
nogenol and its mechanisms of action, we investigated 
its effects on RNS, as well as its antioxidant responses 
and airway responsiveness, following ozone exposure. 
Our data suggest that pycnogenol has a heightened 
antioxidant response in mice following ozone expo-
sure. In accordance with previous studies [24,25,44], 
we found that although the number of neutrophils in 
BAL did not decrease, increased airway responsiveness 
following ozone exposure was decreased following 
pycnogenol treatment after ozone exposure, suggest-
ing that the effect of pycnogenol be not sufficient for 
inflammatory cells and it could be effective for airway 
hyperresponsiveness via antioxidant mechanisms.

Antioxidant vitamins are free radical scavengers that 
can protect against photo oxidant exposure. Vitamins 
C and E are powerful antioxidants found in the lung 
that protect against oxidative damage [49]. Although 
vitamin E is predominantly membrane bound, there 
is a close interaction between vitamins C and E [50], 
because vitamin C not only functions directly as an 
antioxidant but also recycles the antioxidant capacity 
of oxidized vitamin E [51]. Taking a daily supplement 
(75 mg vitamin E, 650 mg vitamin C, 15 mg β-carotene)  
may have a residual protective effect on the lung [52]. 
Indeed, diet affords protection against ozone induced 
oxidant toxicity. Protection is mediated partially by 
increases in ascorbic acid in the f luid bathing the 
lung surface, thereby providing an antioxidant sink 
that minimizes the ability of ozone to reach biologi-
cal targets [53]. In the present study, although uric acid 
was increased in BAL fluid following ozone exposure 
and was increased further in BAL fluid following ad-
ministration of pycnogenol, our data suggest that uric 
acid may be a protective antioxidant and a marker of 
the effectiveness of pycnogenol. MDA in BAL fluid is a 
marker of oxidative damage [32]. In the present study, 
MDA levels did not change following pycnogenol 
administration, indicating that MDA may be a less 
valuable marker of antioxidant effects following ozone 
exposure.

Few studies have investigated antioxidant levels in 
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BAL fluid in relation to lung function [54,55]. Antioxi-
dant vitamins may play a role in respiratory health; 
vitamin E and β-cryptoxanthin appear to be stronger 
correlates of lung function than other antioxidant 
vitamins. Considerable uncertainty about the associa-
tion between BAL fluid antioxidants and lung function 
remains [55]. In the present study, airway responsive-
ness following pycnogenol treatment was decreased 
and the uric acid level was increased, suggesting that 
pycnogenol may increase the antioxidant response and 
decrease airway obstruction following oxidative ozone 
exposure. In conclusion, our data suggest that pre-
treatment with pycnogenol before ozone exposure may 
mitigate airway obstruction and the oxidizing effects 
of ozone.
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