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Herpes simplex virus 1 (HSV-1) infection of the cornea leads to a potentially blinding disease, termed herpetic stromal keratitis
(HSK) that is characterized by lesions of an immunoinflammatory nature. In spite of the fact that HSK typically presents as a
recurrent disease due to reactivation of virus which latently infects the trigeminal ganglia, most murine studies of HSK have
employed a primary and not recurrent model of the disease. This report documents the several recurrent models of HSK that
have been developed and how data generated from these models differs in some important aspects from data generated following
primary infection of the cornea. Chief among these differences is the fact that recurrent HSK takes place in the context of an animal
that has a preexisting anti-HSV immune response, while primary HSK occurs in an animal that is developing such a response. We
will document both differences and similarities that derive from this fundamental difference in these models with an eye towards
possible vaccines and therapies that demonstrate promise in treating HSK.

1. Opening Comments

Herpetic stromal keratitis (HSK) is a potentially blinding
corneal inflammation that accompanies herpes simplex virus
type 1 (HSV-1) infection of the eye. The disease course in
HSK begins with a primary infection by HSV followed by a
period during which the virus enters latency in sensory and
autonomic ganglia. Many studies have shown that clinical
disease is the result of a cocktail of inflammatory cells, con-
sisting of PMN’s, macrophages, and T cells (both CD4+ and
CD8+) that are recruited to the corneas of patients with HSK
[1–4].

Most animal studies of HSK have focused on primary
ocular infection. The major drawback with extrapolating
data from primary HSV infection in mice is that it often does
not manifest corneal lesions characteristic of human primary
or recurrent HSK [5]. We believe that there are four advan-
tages in using a recurrent model of HSK. The first is that
recurrent human disease is most often associated with
corneal scarring [6, 7]. Second, the clinical profile in the

murine recurrent model mimics many of the symptoms
observed in human disease [8]. Namely, that primary infec-
tion resulted in multiple epithelial dendrites, followed by
diffuse stromal opacification, while recurrent infection pre-
sented clinical features that included microdendrites, focal
stromal opacities, disciform endotheliitis, and corneal neo-
vascularization, which were more similar to those observed
in human disease. Third, the model allows reactivation to
occur in the context of an immune host. This is also the
case in humans where disease takes place in a host that
has developed an adaptive immune response against HSV-1.
While it is not suggested that such adaptive responses will
be identical, they will likely be more similar than extending
what occurs following primary infection, where an adaptive
response is initially developing (most murine studies),
to what is taking place in an “immune host” following
reactivation. Finally, a recurrent model lends itself to testing
the efficacy of HSV vaccines. Since human disease typically
occurs following reactivation, identifying vaccines that are
effective when used therapeutically would be very valuable
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and a recurrent model allows for that evaluation. This is
critical as many vaccines which show efficacy in primary HSK
models fail when tested in a reactivation paradigm [9].

There are several different protocols that have been used
to reactivate mice from latency. One of the first methods used
to reactivate mice latently infected was treating mice with
the immunosuppressive drug cyclophosphamide (CycloP)
[10]. Later Shimeld et al. developed a model in which mice
are infected with the McKrae strain of HSV-1 and given
passive immunization in the form of pooled serum. The
eyes of these latently infected mice are exposed to UV-B
irradiation at least 30 days following primary infection to
induce reactivation [11–14]. The reason for the addition of
passive immunization is that this reduced the high incidence
of mortality and also prevented acute HSK, which would lead
to permanent corneal damage [13]. It was also noted that the
latent infection was restricted to the ophthalmic part of the
trigeminal ganglia [13]. When Shimeld et al. [12] and later
Laycock et al. [14] compared UV-B irradiation to CycloP
+ dexamethasone, the incidence of virus shedding from the
cornea was greater for the UV-B-treated mice and recurrent
disease did was more easily apparent in UV-B-treated mice
[12]. Different virus strains were compared for their ability to
reactivate, and the McKrae strain of HSV-1 demonstrated the
most consistent reactivation phenotype [11–13]. In addition,
various strains of mice have been tested for their ability to
reactivate following UV-B irradiation and the NIH strain
of mice consistently displays the highest rate of reactivation
(70–90%) as determined by detection of infectious virus in
tear film [9, 14, 15]. In addition, severity of disease also varies
between different mouse strains with NIH and BALB/c mice
showing severe disease and C57BL/6 mice with much less
disease [9, 15, 16]. Other investigators have also developed
other means of reactivating a latent HSV-1 infection by
using hyperthermia shock [17, 18] and most recently sodium
butyrate [19]. The hyperthermia shock model is used to
determine reactivation within the infected ganglion neurons
and thus is a very good model to study molecular events that
occur there following reactivating stress [17, 18]. However it
has not been exploited to study corneal disease. The sodium
butyrate model, which does result in viral shedding from the
corneal surface [19], has also not been exploited to study
corneal disease. Thus, while each of these techniques has
their own distinct advantages and disadvantages, the UV-B
model has been used much more extensively for pathogenic
and immunological studies of recurrent HSK. Thus this
paper will restrict itself to the reactivation model whereby
UV-B light is used to reactivate virus from latency. This was
chosen as the vast majority of data concerning the pathogen-
esis of recurrent disease has used that model.

As a basis for comparison, a few factors should be
mentioned. The first being that different investigators use
a variety of strains of HSV-1 when studying primary HSK.
The virus strains that have been used for these studies
include, but are not restricted to, RE [4, 20, 21], Strain
17 [19], McKrae [8, 15, 22], CH394 [23], and KOS [15,
24]. In addition to a variety of HSV-1 strains being used,
various mouse strains have also been used for these studies.
Most studies employ C57BL/6 or BALB/c mouse strains or

gene-targeted mice that are bred to these two strains. It
should be noted that while infections with these various
strains of HSV-1 display differences in corneal pathology and
neurovirulence, the immunological components of corneal
disease are remarkably similar when compared on the basis
of virus strain used or the strain of mouse being infected as
the following discussion will illustrate.

2. Characteristics of Herpetic Stromal Keratitis

As previously mentioned, HSK is at its core an inflammatory
disease with chemokines involved in migration of leukocytes
to sites of infection and inflammation [25, 26] and cytokines
responsible for the activation of cells which mediate the cel-
lular destruction following their activation. Primary models
have shown that during disease, a diverse set of host inflam-
matory cells infiltrate the cornea following HSV-1 infection.
Included among these cells are macrophages [8, 9], natural
killer cells [27], T cells [8, 20, 28–33], polymorphonuclear
neutrophils (PMNs), which are the predominant cell type
early during primary infection with HSV-1 [34, 35], and
corneal Langerhans Cells [36]. While the exact mechanism
for primary HSK has not been conclusively determined, the
disease is believed to be the result of the interaction of virus
and host immune cells and components and not due to direct
viral cytolysis of corneal cells [23]. Since much fewer studies
have employed the recurrent model, even less is known about
the mechanisms responsible for recurrent HSK.

3. Role of Chemokines in HSK

Chemokines are important factors in viral infections [37]
and HSK [21, 38–40]. These are small proteins which are
made by resident tissue cells and/or immunocompetent cells
and whose primary function is to direct the movement or
chemotaxis of cells that bear receptors for the chemokine that
is being produced. Thus during infection chemokines are
released by cells at the site of infection to activate the
migration of particular cells bearing appropriate chemokine
receptors to that site of infection. Chemokines have also
been implicated in activation and polarization of certain
immunocompetent cells [41]. Due to these activities, they
are potential targets for therapeutic intervention to reduce
or prevent disease (see Table 1 for cells responsive to chemo-
kines and references related to HSK). During primary HSK
it has been shown that the production of IL-6 stimulates
resident corneal cells to produce CCL3 and CXCL2 [42].
Studies have shown that targeting of CCL3 significantly
reduces disease [39, 43], suggesting that it plays a role in
corneal pathology during primary HSK. In contrast, when
CCL3 is neutralized or absent during recurrent HSK, the
resulting disease is worse [40]. Likewise, targeting CCL2
reduced primary [44–46] but did not affect recurrent disease
[40]. Eo et al. [45] coimmunized mice with a plasmid
encoding gB of HSV along with various plasmids containing
CCL1, CCL3, CCL4, and CXCL2, which are known to be
produced by the cornea [42, 45, 47], to determine if the
adaptive immune response generated was affected by the
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Table 1

Chemokine
Chemotactic

activity
Reference to HSK

CCL1 (Kit ligand)
Monocytes,

NK cells, DC
[45]

CCL2 (MCP-1)
Monocytes, T

cells, DC
[40, 44–46]

CCL3 (MIP-1α) Neutrophils [39, 40, 42, 43, 45, 48]

CCL4 (MIP-1β)
Monocytes,

NK cells
[45]

CCL5 (Rantes)
Eosinophils,
NK cells, T

cells
[48]

CXCL1 (KC) Neutrophils [47, 49]

CXCL2 (MIP-2) Neutrophils [42, 45]

CXCL10 (IP-10)
Monocytes,
NK cells, T
cells, DC

[50–52]

presence of specific chemokines. Their data indicates that
the chemokines CCL1 and CCL4 biased immunity to a
Th2-like response, while CXCL2 and CCL3 activated a Th1
response. Mikloska et al. observed increased levels of CCL4
and, to a lesser extent, CCL3 and CCL5 in human vesicle
fluid from patients with herpetic corneal lesions [48].
Similar studies evaluating CXCL1 expression have shown
that infection of corneal-derived cells with HSV-1 leads to
significant increases in CXCL1 production, which stimulates
neutrophil chemotaxis [47, 49]. It has been reported that
CXCL10 is very important in recruiting activated T cells
into sites of inflammation [50]. However, CXCL10 has been
shown to be a mediator of IL-12-mediated antiangiogenesis
during primary HSK [51, 52]. Thus it is possible that
CXCL10 might be involved in both promoting disease, by
attracting activated CD4+ T cells, and in preventing disease
by inhibiting corneal angiogenesis. The role of murine
CXCL1, CXCL10, and IL-6 play during recurrent HSK has
not been determined; however, they are currently being
investigated in our laboratory at this time.

4. Cytokine Profile Expressed during HSK

In addition to chemokines, HSK is also the result of the
action of various cytokines. Some of these cytokines (IL-1,
IL-6, IL-17, and TNFα) are found early following virus
infection [38, 53–55] and some (IL-1 and TNFα) found
shortly after reactivation [56]. Staats and Lausch detected
increased levels for proinflammatory cytokines, IL-1α, and
IL-6 following primary HSV-1 infection [53]. In addition,
targeting IL-1 during primary HSV-1 significantly reduced
disease indicating its central role following acute infection
[54]. During recurrent HSK our laboratory also detected sig-
nificant increases in both IL-1, and TNFα [56]. Furthermore,
when these cytokines were neutralized in vivo, they were
shown to be required for the development of recurrent HSK
[56].

Following this proinflammatory period, a somewhat
overlapping set of cytokines (IFN-γ, IL-12, IL-17, IL-4 and
IL-10) are found later during primary HSK [38, 53, 54, 57,
58], while during this same time period recurrent HSK the
cytokines IFN-γ, IL-12, IL-4, and IL-10 are reported to be
expressed [59–61]. These cytokines can be very informative
as they will be indicative of the phenotype of the T cell
that is orchestrating the response at that time point. The
profile of cytokines made by antigen-specific T cells in an
immune response indicates whether it is mediated by Th1,
Th2, or Th17 T cells. A Th1 response is characterized by
the production of IL-2, IL-12, and IFN-γ [62], Th2 cells
produce IL-4, IL-5, IL-6, and IL-10 [62], while Th17 cells
produce IL-17A, IL-17F, and IL-22 [63]. It has been reported
that significant levels of IFN-γ, IL-2, and TNF-α/β, but not
IL-4 or IL-10, are found in mouse corneas with primary
HSK, suggesting that CD4+ T cells in the eye are Th1 [31].
Similar conclusions were derived from studies demonstrating
that treatment with anti-IFN-γ and anti-IL-2 antibodies, but
not with anti-IL-4 antibodies, protected mice from primary
HSK [64]. It has been reported that IL-2 not only stimulates
Th1 development but also is chemotactic for and maintains
the viability of polymorphonuclear neutrophils [65], which
are an early component of primary HSK [34, 35]. Further
evidence supporting Th1 cell involvement comes from
studies using STAT4 KO mice [66]. STAT4 is a transcription
factor that is activated by the presence of IL-12 and directs
the polarization of T cells to become Th1 cells [67, 68].
When infected with HSV-1, these STAT4 KO mice did not
develop significant primary HSK lesions, though they were
more susceptible to developing encephalitis [66]. In contrast
to these results, it has been shown that when IFN-γ KO mice
were used to confirm the role of this cytokine during primary
HSK surprisingly displayed similar disease to that seen in
wild-type mice [67]. This was surprising as one would have
expected that such mice would display less corneal disease as
IFN-γ is an integral cytokine associated with Th1 responses
[62, 68]. Interestingly, a very similar phenotype was observed
in mice undergoing recurrent HSK [69]. In these studies
both IFN-γ KO mice and wild-type mice treated with anti-
IFN-γ were subjected to recurrent HSK and the disease was
indistinguishable from recurrent HSK in control antibody-
treated wild-type mice [69].

In a completely different set of studies to determine the
role of IL-10 during HSK, it was reported that intraocular
treatment of mice with IL-10 reduced corneal disease from
95% to 36% [43, 70]. This treatment, while not effecting the
production of IL-1α in the cornea, led to a 10-fold reduction
in IL-2 and a 50-fold reduction in IL-6 [70]. It has also been
reported that IL-10 DNA administration during primary
HSK significantly reduced disease [71]. Our laboratory also
evaluated the role that IL-10 plays during recurrent HSK, and
similar to what was reported during primary HSK [43, 70],
lack of IL-10, as determined by neutralizing IL-10 or using
IL-10 KO mice, resulted in very severe corneal disease [72].
Furthermore, treating mice with recombinant IL-10 led to
significantly reduced corneal disease [72]. Taken together,
these studies, both in primary HSK and recurrent HSK,
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demonstrate that IL-10 is associated with amelioration of
disease [72].

Within the past several years, a new T-cell player has been
added to the mix, namely, Th17 cells. These cells were termed
Th17 because of their production of the cytokine IL-17 [63].
They have been shown to be involved in autoimmunity and
host defense [63]. It was first reported that mice lacking IL-
17 receptor displayed reduced neutrophil infiltrate and less
corneal disease [73]. This observation was followed by a
report that showed that treatment with Resolvin E1 reduced
clinical disease and at the same time reduced the numbers
of both Th1 and Th17 cells in the cornea [74], further
indicating that Th17 cells might be playing a role in primary
HSK. That role was further supported when IL-17 KO mice
and wild type mice treated with neutralizing antibodies
were infected with HSV-1. These studies demonstrated that
primary HSK was significantly inhibited thus indicating that
both Th1 and Th17 cells likely act in concert to produce the
corneal lesions seen during primary HSK [54]. The role that
Th17 cells, and thus the cytokine IL-17, play in recurrent
HSK has yet to be evaluated.

5. T-Cell Functions during HSK

As the aforementioned research implies, T cells are critical to
the development of corneal lesions during both primary and
recurrent HSK. In fact, T-cell deficient mice do experience
HSK [28], unless T cells are adoptively transferred [29].
During primary HSK, the preponderance of data suggests
that CD4+ T cells of the Th1 subset are the likely mediators of
disease [30, 31, 64, 70, 71] while CD8+ T cells play a minor
role in disease [22, 30, 31, 33, 75] or possibly are involved
in reducing disease [15]. Studies attempting to determine if
the classical CD4+ FoxP3+ Treg cells are involved in reducing
corneal disease have not conclusively demonstrated that they
do so in vivo [4]. Another means of determining the func-
tional role of T cells is the measurement of DTH responses,
which are most often mediated by the Th1 subset of
CD4+ T cells. Using this readout, decreased disease is most
often associated with reduced DTH responses [76, 77],
though in one case where both Th1 and Th2 responses
were allowed to develop, HSK was reduced, but DTH was
unaltered [78]. During recurrent HSK, the T-cell profile
is somewhat different. Whether by targeting these T-cell
subsets by antibody depletion or by using CD4KO and
CD8KO mice, these mice expressed a decreased HSK disease
phenotype as compared to wild-type and untreated mice
[79]. Thus it would appear that both CD4+ and CD8+ T cells
contribute to clinical disease during recurrent HSK [79]. In
addition, when the cytokine pattern was investigated, both
Th1 and Th2 cytokines were present in the cornea shortly
following reactivation [60]. These results should not be
surprising as it should be recalled that recurrent HSK occurs
in mice that have developed an immune response against
HSV-1. That immune response will include antigen-specific
CD4+ T cells of both Th1 and Th2 subsets as well as HSV-1-
specific CD8+ T cells. Thus the mixed T-cell infiltrate may, at
least in part, explain why focal stromal opacities, rather than

the diffuse opacity, as typically seen in primary HSK, char-
acterize recurrent HSK in mice [8]. That said, while there is
a report implicating cytotoxic T cells in primary disease [80],
recurrent disease is most often associated with strong DTH
responses [72, 81].

Since T cells clearly play a central role in mediating
disease, identifying those factors that are involved in their
activation is very important. A critical factor for activation
of T cells is the engagement of costimulatory molecules.
The best characterized of these costimulatory interactions are
between CD28 or CTLA-4 on the T cell and B7-1 or B7-2
expressed by the APC [82]. Studies have shown that blocking
the CD28 interaction with CTLA-4Ig significantly reduced
primary HSK by inhibiting Th1 but not Th2 cells [83]. When
only B7-2 was blocked, there was a significant reduction in
CD8+ cytotoxic T-cell response and these mice experienced
delayed viral clearance at the cornea [84]. However, these
treated mice did not display an impact on corneal disease,
suggesting that naı̈ve CD4+ T cells are being costimulated
via B7-1 [84]. The Hendricks laboratory demonstrated that
targeting the CD40-CD154 interaction changed the cellular
nature of the inflammatory response but did not result
in reduced primary HSK [85], while targeting the OX40-
OX40L interaction did not significantly alter primary HSK
in any way [86]. When the CD137-CD137L costimulatory
pathway was targeted, reduced primary HSK was observed
[87]. However, it is interesting to note that this same group
later demonstrated that this interaction led to increased
CD8+ T-cell responses that better controlled HSV-1 infection
of the skin [88]. We are currently addressing the role that
costimulation plays in recurrent HSK. We hypothesize that
since recurrent HSK occurs in an animal that possesses
an anti-HSV-1 immune response, we believe that CD28-
mediated costimulation will primarily be associated with the
initial T-cell activation that occurs shortly after infection and
likely is not involved in subsequent stimulation of preexisting
anti-HSV-1 T cells that will be present when reactivation of
virus from latency occurs. However, it is possible that other
costimulatory interactions that occur subsequent to CD28
activation might be important in recurrent HSK. It will be
those interactions (CD40-CD154 and CD137-CD137L) that
are the focus of ongoing studies in our laboratory.

6. Role of T Cells in Maintaining Viral Latency

In addition to their role in mediating corneal disease, T cells
have also been implicated in maintaining viral latency in the
infected trigeminal ganglia (TG). This role for T cells comes
primarily from work done in the laboratory of Robert
Hendricks, who reported that CD8+ T cells surround latently
infected TG neurons in mice infected with HSV-1 [89–92]. In
a similar fashion, clinical studies performed on recently de-
ceased individual who know to have infections with HSV-
1, found both CD8+ and CD4+ T cells surrounding neurons
that are also stained for HSV-1 antigens [93, 94]. These
cells expressed surface markers indicating that they were late
effector memory T cells. As was seen in mice, they expressed
granzyme markers but no cytolytic function was detected



Clinical and Developmental Immunology 5

[94]. It has since been reported in murine studies that the
production of IFNγ, granzyme, and perforin by T cells is
important to this maintenance of latency [95, 96]. It was
further shown that these infected neurons were not under-
going apoptosis, but that the target of granzyme B released
by T cells was the HSV-1 immediate early protein, ICP4 [95],
which is essential for further viral gene expression and thus
production of infectious virus [97]. More recently the TCR
usage of these T cells found in latently infected C57BL/6 TG
was characterized [98]. It was demonstrated that the majority
were specific for a glycoprotein B peptide, but that CD8+ T
cells specific for at least 18 other subdominant determinants
could be found [98]. One caveat to these studies is that mice
lacking CD8+ T cells display a similar latency phenotype
as normal mice [14]. None the less, taken together, these
observations indicate that CD8+ T cells are likely involved in
maintaining latency but that other factors are also involved.

7. Vaccination in HSK

Many attempts have been made to develop a vaccine that
is effective in preventing HSK. While most vaccines prevent
primary HSK in animal models when given prior to infection
[99–103], they typically fail when delivered therapeutically
to prevent recurrent HSK [9, 104]. Nesburn et al. reported
that periocular vaccination of latently infected rabbits with
recombinant HSV-2 gB/gD in MTP-PE adjuvant resulted in a
2-3-fold decrease in spontaneous corneal viral shedding but
had no effect on corneal scarring [105]. They also reported
that periocular vaccination with gD1 or gD2 inhibited
recurrent dendritic keratitis [106]. Likewise, we and others
have shown that vaccination with certain HSV-1 components
limits both viral pathogenesis and prevents primary and
recurrent corneal disease only when administered prior to
infection [9, 104]. If administered following infection these
vaccines are ineffective in preventing recurrent disease [9].
These studies illustrate the difficulty of developing effective
vaccines for both primary and recurrent infections of HSV.
The development of such a vaccine would be of great clinical
significance since most patients who present with HSK are
latently infected [1, 6, 7]. This was illustrated by a clinical
trial in which the vaccine was only effective in women
who had never been infected with either HSV-1 or HSV-2
and ineffective in those who had a history of infections
with either HSV-1 or HSV-2 [107]. That said, we reported
that vaccination with a vhs-defective mutant of HSV-1
[108], which had previously been shown to significantly
reduce the rate of reactivation [103, 104], would also reduce
recurrent HSK when constructed with [109] or without
ICP8 [81]. The important thing about these studies was
that the vaccine was administered intraperitoneally after
infection and thus would have therapeutic value for latently
infected individuals. It should be noted that another vaccine
construct that consisted of defective vhs and ICP8 to which
was cloned B7-1 or B7-2 was also effective prophylactically
[110] and might also show efficacy when used therapeutically
since it is very similar to previous vaccine constructs [81,
109]. Similar results were also seen in studies by Richards

et al. who nasally vaccinated latently infected mice with a
mixture of HSV-1 glycoproteins and recombinant E. coli
heat-labile enterotoxin B subunit as an adjuvant [111].

The mechanism responsible for the therapeutic success of
these vaccine constructs has not been fully defined. However,
the mechanism could be similar to what was reported
in studies involving Theiler’s virus- (TMEV-) mediated
demyelinating disease in mice. This disease, which is asso-
ciated with a Th1 antiviral response, was shown to be signif-
icantly reduced in infected mice following vaccination with
TMEV-coupled spleen cells [112, 113]. These investigators
went on to demonstrate that protection is accompanied by
a preferential reduction in the Th1 antiviral response and a
concomitant increase in the Th2-mediated antiviral response
[113]. Thus it appears that protection involves alteration of a
Th1-mediated immune response to one primarily mediated
by Th2 cells. Results from our vaccination studies using a vhs
defective replication incompetent virus show similar changes
as evidenced by lower DTH responses and increased anti-
HSV-1 neutralizing antibody titers in vaccinated mice as
compared to mice receiving a control vaccine [81]. Ocular
HSV-1 infection typically stimulates an immune response
that protects the animal from lethal disease by this virus
but also leads to a significant inflammatory response in the
cornea that can result in corneal damage. A similar type
of immune response also protects latently infected animals
that are reactivated from lethal viral disease but can result
in significant corneal disease. The mechanism underlying
this alteration in the immune response might involve the
activation of T regulatory cells. Both conventional CD4+ T
cells [114, 115] and CD8+ T cells [15] have been implicated
in regulating the anti-HSV-1 response during primary HSK.
However, when Devito and Hendricks tested this, they did
not observe an association for T regulatory cells within the
cornea and decreased corneal lesions [4]. Thus the case for
T regulatory involvement in reducing or resolving primary
HSK remains to be established.

8. Concluding Remarks

Ocular disease associated with HSV-1 infection (HSK) is
the leading cause of infectious blindness and is clearly the
result of an immune-mediated inflammatory attack of the
cornea. We present data comparing primary and recurrent
murine models that are used to study this disease. As
should be evident from this discussion, these two model sys-
tems, while sharing many characteristics, are not the same.
We have learned a lot about this disease from studies of
primary HSK. These studies have identified many factors that
are responsible for the corneal damage associated with this
disease. In fact, these studies have also suggested many poten-
tial therapeutic means of treating primary HSK. However, we
would argue that without testing these therapies in a recur-
rent model of HSK, we might be chasing things that ulti-
mately will not prove useful in the clinic. Consequently, due
to the paucity of studies investigating recurrent HSK, much
research remains to be performed. Particularly concerning
those aspects of primary HSK that are reflected in recurrent
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HSK and also those things that are not, we contend that
a better understanding of the immunological factors, both
cellular and cell-free, that underlie the development of re-
current HSK will enable us to identify potential therapies that
might prove to be most effective in treating human HSK.
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