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Abstract: The application of α-mangostin (AMG) in breast cancer research has wide intentions.
Chitosan-based nanoparticles (CSNPs) have attractive prospects for developing anticancer drugs,
especially in their high flexibility for modification to enhance their anticancer action. This research
aimed to study the impact of depolymerized chitosan (CS) on the cytotoxicity enhancement of AMG
in MCF-7 breast cancer cells. CSNPs effectivity depends on size, shape, crystallinity degree, and
charge surface. Modifying CS molecular weight (MW) is expected to influence CSNPs’ characteristics,
impacting size, shape, crystallinity degree, and charge surface. CSNPs are developed using the
method of ionic gelation with sodium tripolyphosphate (TPP) as a crosslinker and spray pyrolysis
procedure. Nanoparticles’ (NPs) sizes vary from 205.3 ± 81 nm to 450.9 ± 235 nm, ZP charges range
from +10.56 mV to +51.56 mV, and entrapment efficiency from 85.35% to 90.45%. The morphology of
NPs are all the same spherical forms. In vitro release studies confirmed that AMG–Chitosan–High
Molecular Weight (AMG–CS–HMW) and AMG–Chitosan–Low Molecular Weight (AMG–CS–LMW)
had a sustained-release system profile. MW has a great influence on surface, drug release, and
cytotoxicity enhancement of AMG in CSNPs to MCF-7 cancer cells. The preparations AMG–CS–
HMW and AMG–CS–LMW NPs considerably enhanced the cytotoxicity of MCF-7 cells with IC50

values of 5.90 ± 0.08 µg/mL and 4.90 ± 0.16 µg/mL, respectively, as compared with the non-nano
particle formulation with an IC50 of 8.47 ± 0.29 µg/mL. These findings suggest that CSNPs can
enhance the physicochemical characteristics and cytotoxicity of AMG in breast cancer treatment.

Keywords: anticancer; molecular weight; nanoformulation; nanoparticles; sustained release

1. Introduction

Advances in biomaterials-based drug delivery systems (DDS) are urgently needed and
have expanded available options for effective, efficient, cost-effective, and bio-compatible
alternative medicine and warrant eradication of the resistant cancer cells [1]. Cancer is
a life-threatening disease which is one of the greatest health challenges of mankind and
requires a positive treatment plan [2]. The most frequently diagnosed cancer worldwide is
breast cancer (2.26 million cases) [3–5], and it is the fifth leading cause of cancer death in
women [6]. However, there are disadvantages of various therapies hindering the success of
clinical treatment [2]. Surgery, chemotherapy, and radiotherapy have become the mainstay
of cancer treatment. The problems that arise are metastasis, drug resistance, toxicity, and
unwanted side effects [7], and the incidence of cancer relapse that results from remaining
malignant cells and the presence of cancer stem cells is still frequently encountered [1].
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However, the lingering challenges in cancer therapy persist, and a major snag has
been the resistance of cancer cells towards synthetic drugs [8]. The ongoing quest for better
and more efficient chemoprevention and chemotherapeutics is important. Phytochemicals
have recently gained expanded interest as chemoprevention and chemotherapeutics [9–11].
Our previous study shows that AMG, as a natural medicine, is a potential chemopreventive
and chemotherapeutic substance used for cancer treatment [12]. The antitumor activity
of AMG can act at almost all major stages of tumor development, leading to cell cycle
arrest and cellular apoptosis in several human cancer cell lines and has better selectivity,
but the application of AMG is limited due to its hydrophobic properties, poor solubility,
and stability in water. Therefore, AMG has low bioavailability and accumulation in target
organs [12,13].

Polymeric NPs have great potential for hydrophobic drug delivery, increase drug
solubility, prolonging drug residence time, and improving stability [14,15]. Polymeric NPs
are among the most scientifically investigated and have more benefits, such as low manu-
facturing costs, harmonious design, less harmfulness [16], use as controlled release vehicles,
the ability to shield drugs and other biologically active molecules from the environment,
and the improvement of their bioavailability and the therapeutic index [17].

CSNPs in cancer therapy are expected to increase drug accumulation in tumors, accuracy
of drug delivery to target sites, higher solubility of pharmaceutical properties, and lower
systemic toxicity [7]. Among NPs, biopolymeric NPs such as CS are mainly used for cancer
therapy goals because of their substantial advantages such as cost-effectiveness, ease of
manipulation, biocompatibility, mucoadhesiveness, biodegradability, enhanced permeation,
eco-friendly properties [18–21], stability, solubility, and pH-sensitive CS nanoparticles [8].

The physicochemical and biological characteristics of CSNPs are strongly influenced
by their MW and surface charge [22–25]. The surface charge of the NPs impacts the accu-
mulation of NPs at the target site, stability, cellular uptake, protein adsorption applications,
and distribution throughout the body. The positive charge of CS has a significant inter-
action with a variety of substrates and cells in the body, especially tumor cells [23]. In
nanomedicine, size also plays a significant influence in shaping its biological function.
The distribution of particle size (PS) is determined by several variables, such as mixing of
CS/TPP, the concentration of CS, degree of deacylation (DDA) and MW, ionic strength,
and pH of the medium [23,26,27]. As a type of water-soluble CS, low MW¬–CS (CS¬–
LMW) has shown outstanding advantages as a drug carrier, nontoxicity, biocompatibility,
biodegradability, and ability to increase absorption [26]. CS has three different functional
groups that can take part in various chemical and physical reactions [27]. The hydrophilicity
of the polymer is due to the hydrophilic groups such as amine, hydroxyl, and carboxylate,
which are distributed throughout the polymer structure [28].

Various techniques have been used to prepare CSNPs. Most of the major crosslinkers,
surfactants, and certain grafting agents used in the preparation of CSNPs are not free
from toxicity, which is important to account for long-term exposure. The ionic gelation
method is based on ionic interactions between positively charged amino groups of CS
and negatively charged polyanion groups. The most frequently used crosslinking agent is
tripolyphosphate [29], so that the resulting NPs are more stable and strong [30].

Modified CS can be made into multilayer composites by combining with polymers
and other parts to change the properties of CS for certain biomedical applications, such as
sodium alginate and chitosan [31]. CS can be encapsulated using kappa carrageenan [22]
and Diethyl curcumin disuccinate [32]. CS–NPs were modified with either biotin or
biotin and avidin [33]. CS coating can improve the physical stability of NPs [34] and
overcome poor solubility in water and low selectivity against cancer cells. AMG in CS-
kappa carrageenan can increase potential cytotoxic activity [22]. Modification of MW–CS
affect the molecular weight, size, surface smoothness, porosity, shape, and charge of
CSNPs, then change the kinetics of the effect of increasing permeability and retention (EPR),
increasing AMG cytotoxicity (Scheme 1). This work contributes to the further development
of nanosystems for treating breast cancer with AMG–CS.
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2. Materials and Methods
2.1. Materials

AMG was purchased from Chengdu Biopurify Phytochemicals (Shincuan, China).
CS–HMW with 300 kDa (82% DDA) was purchased from Interlab, Ltd. (Jakarta, Indonesia).
Acetic anhydride was purchased from Interlab, Ltd. (Jakarta, Indonesia). All analytical
grades of concentrated sodium hydroxide and absolute ethanol were provided from local
suppliers. All chemicals were used as received without further purification. Zeta potential
was performed using a Zetasizer SZ 100 Horiba (Kyoto, Japan). MCF-7 cancer cell was
provided from the American Type Culture Collection (Manassas, VA, USA).

2.2. Preparation of Different Molecular Weights of Chitosan

Variation of CS molecular weights was obtained by the depolymerization of CS using
sodium nitrite in acid media, dissolving 9.0 g of CS in each 450-mL (v/v) acetic acid
(2%) solution and allowing for overnight at room temperature (RT). Two sets of separate
solutions for CS were prepared. CS solutions were applied to 0.5% w/w NaNO2 at 500 rpm
for 3.5 h at 30 ◦C, the solutions were slowly stirred and then neutralized with 5 M NaOH.
The solutions were concentrated at 50–60 ◦C by rotary evaporator (Buchi Labortechnik,
Flawil, Switzerland) until a volume of approximately 60 mL of concentrated solutions was
obtained. The condensed solutions were poured into 100 mL methanol to remove the CS
samples, washed with acetone, then dried overnight at RT. The CS samples were kept in the
refrigerator before assessing the degree of deacetylation and the average molecular weight.

2.3. Characterization CS–LMW
2.3.1. Characterization of CS DDA

Fourier-transform infrared spectrophotometer was used to characterize CS DDA
(Model IR Prestige-21, Kyoto, Japan) and measured at 4000−400 cm−1. The DDAs of CS
and LMW CS were calculated according to the following Equation (1) [35]:

DDA = 100 × (1 − (A1655/A3450)/1.33) (1)

which was derived for these absorbances.

2.3.2. CS Molecular Weight Characterization

An acetic acid/sodium acetate buffer solvent was prepared by mixing equal volumes
of 0.25 M acetic acid and 0.25 sodium acetate solutions. The pH of the buffer was measured
and then readjusted to pH = 4.0 using sodium hydroxide solution. One gram of chitosan
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sample was dissolved in 125 mL of the buffer solvent system. The resulting solution
(0.8 g/dL) was continuously stirred for 3–4 h until the chitosan had completely dissolved.
The average molecular weight of chitosan was calculated by applying the Mark–Houwink’s
Equation (2) [36].

[η] = k Mvα (acetic acid) (2)

where k = 1.64 × 10−30 × (DDA%)14, and α = −1.02 × 10−2 × (DDA%) + 1.82.

2.3.3. Fourier-Transform Infrared Analysis

Fourier-transform infrared spectrophotometer was used to characterize CS–LMW
(Model IR Prestige-21, Kyoto, Japan) and measured at 4000−400 cm−1 [30].

2.3.4. X-ray Diffraction Analysis

X-ray powder diffraction (XRD) method (X-pert MPD diffractometer type, Rigaku
International, Tokyo, Japan) was used to identify CS crystalline phase in the samples. The
molecular arrangements of CS–LMW and the initial CS system were observed over the
angular range (2θ) of 5–60◦ [37,38].

2.4. Preparation of CS NPs

A modified ionic gelation technique was used in synthesizing CSNPs. The formulas
of the nanoparticles are shown in Table 1. CS was dissolved in an acetic acid (0.2 mg/mL)
to obtain a CS concentration 0.5 mg/mL. At a pH of 4.7–4.8, the CS solution was agitated
overnight at room temperature using a magnetic stirrer. After filtering the CS solution
using a syringe filter (0.45 µm), it was warmed in a water bath at 60 ◦C for 10 min. TPP
was dissolved in distilled water at various concentrations, filtered through a syringe filter
(0.22 µm), and chilled to 2–4 ◦C in another beaker. Finally, five milliliters of TPP solution
were added to ten milliliters of CS solution and mixed for ten minutes [39]. Spray pyrolysis
equipment was used to obtain NPs [40]. This method was performed for the manufacture
of CS–LMW NPs.

Table 1. AMG–CS–NPs formulation.

Formulation F1 F2 F3 F4

AMG (mg) 20 20 20 20
CS–HMW (mg) 200 100
CS–LMW (mg) 200 100

Sodium tripolyphosphate (mg) 50 50 50 50

2.5. Characterization of CS NPs
2.5.1. Particle Size (PS) and Zeta Potential (ZP)

The mean PS and ZP of the NPs were measured using a Zetasizer SZ 100 Horiba
(Kyoto, Japan). All measurements were carried out in triplicate [41].

2.5.2. Nanoparticles Morphology

The surface morphology characterization of nanoparticles was carried out using scanning
electron microscopy (SEM). The nanoparticle powder is placed on a stub using adhesive on
both sides. Then, the powder is made to be electrically conductive with a beam of thin
platinum (coating) for 30 s at a pressure of 10 mA. The photo is taken at 10 kV with the
desired magnification. SEM (Thermo Scientific, Braunschweig, Germany) and TEM (Thermo
Scientific, Braunschweig, Germany) were used to study the morphologies of all CSNPs. Before
analysis, the samples were coated in carbon film and examined under a microscope.

2.5.3. Fourier-Transform Infrared Analysis

Procedure 2.3.3 for AMG, CS, TPP, and AMG–CS NPs.
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2.5.4. X-ray Diffraction Analysis

Procedure 2.3.4 for AMG–CS NPs.

2.5.5. Encapsulation Efficiency and Drug-Loading Capacity

EE of AMG and DL of NPs was determined by UV-VIS spectroscopy. A total of 25 mg
of sample NPs was dissolved in ethyl acetate and then was centrifuged (3000 rpm, 10 min).
The absorption of supernatant was measured by a UV-visible spectrophotometer at 245 nm
to determine free AMG [42]. The sediment was resuspended in ethanol to determine the
encapsulated drug to find the total amount of AMG. A standard curve was obtained using
the different concentrations (2–20 µg/mL) measured at 245 nm. The EE and DL of AMG
present in NPs were calculated using the following Equations (3) and (4) [43,44]:

Entrapment efficiency (%) =
mass of mangostin present in nanoparticle (mg)

mass of mangostin used (mg)
× 100% (3)

Drug loading (%) =
mass of mangostin present in nanoparticle (mg)

total mass of nanoparticle (mg)
× 100% (4)

2.6. In Vitro Drug Release Study

The release activity of AMG from NPs was investigated at pH 4.0 (pH in endosomes or
lysosomes), pH 6.0 (pH around the tumor), and pH 7.4 (pH of physiological blood) [45–47].
AMG–CS NPs were dispersed in PBS and transferred into a dialysis membrane tube (Ward
Science, West Henrietta, NY USA, MW cut-off 14000 Da). The 20 mg NPs were immersed
in 60 mL of PBS for the in vitro release test and incubated at 37 ◦C. Each sample of PBS
was 5 mL in volume, and samples were obtained at intervals of 2, 4, 6, 8, 10, and 12 h. The
AMG content was evaluated by UV-spectrophotometry [48,49]. The release profile was
determined by graphing the cumulative AMG release from the matrix as a function of the
time spent immersing in the PBS liquid.

2.7. In Vitro Cytotoxicity

The metabolism of the tetrazolium substratum MTT (3-[4,5-dimethylthiazol-2-yl]-2,5
diphenyl tetrazolium bromide) determined MCF-7 cell growth. A total of 10,000 MCF-
7 cells/well were seeded onto a 96-well plate for 24 h. Subsequently, the medium was
replaced with extracts at varying quantities and incubated for 12 and 24 h. The medium
was withdrawn and incubated with MTT solution at 5 g/L in PBS, pH 7.4, for 4 h. There
was no more cultivated media; 150 microliters DMSO was added. After dissolving the
formazan precipitate, the plate. Was gently agitated. On average, 570 nm absorbance is
used compared with 630. A dip in absorption indicated a loss in cell viability. The 50%
median lethal concentration (LC50) was taken from the best-fit line obtained through linear
regression analysis [50].

2.8. Statistical Analysis

All the measurements were made in triplicate, and the mean ± standard error of the
mean was represented as all values. The findings were subjected to review by the t-test/t-
student. If the p-value was 0.05, the findings were considered statistically significant.

3. Results and Discussions
3.1. Characterization of CS–LMW
3.1.1. DDA and MW Characterization

The MW and DDA of the initial CS were determined and found to be 300 kDa.
Furthermore, CS–LMW was prepared by adding NaNO2 solution.

The depolymerization reaction of CS–HMW to CS–LMW can be carried out enzymati-
cally, physically, and chemically [51]. Industrially, chemical treatment for acid degradation
is preferred because it is convenient, low-cost, fast, scalable, and produces reproducible
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CS–LMW mixtures [52,53]. The use of NaNO2 showed the best performance for CS degra-
dation [39]. Variations in the amount of NaNO2 and reaction time obtained two samples of
CS with Mw 20 kDa (Table 2). Samples prepared from the initial CS (Mw 300 kDa) were
then used to compare the properties.

Table 2. DDA and Mw Value of CS–HMW and CS–LMW.

CS NaNO2 (mg/mL) DDA Mw (kDa)

CS–HMW 0 80.0 300
CS–LMW 9 75.0 20

In this study, the Mark–Houwink equation was used to calculate the average MW [54].
The percentage of DDA is calculated from the FTIR spectrum, using this equation:
DDA = 100 × (1-(A1655/A3450)/1.33). The CS–LMW was 20 kDa with a DDA of 75.0%.
This CS was classified as CS–LMW (<50 kDa) [51]. CS–LMW with high DDA is expected
to dissolve in a much wider pH range than CS–HMW. The DDA of CS influences the
polymer’s biodegradability by describing the fraction of free primary amino groups. CS is
mildly cytotoxic and non-biodegradable over 90% DDA but is destroyed by macrophages
and neutrophils between 50% and 85% DDA. DDA and MW impact in vivo biodegrad-
ability. High MW degrades slowly in vivo, increasing its propensity to accumulate in
tissues [51].

3.1.2. Fourier-Transform Infrared Analysis

The CS–HMW and CS–LMW were characterized using a Fourier-transform infrared
spectrophotometer (Shimadzu, Japan) and measured 4000−400 cm−1.

FTIR is an excellent method to identify chemical bond forms in a molecule by creating
a spectrum of infrared absorption like a “molecular fingerprint“ [55]. FTIR spectroscopy
has been shown to differentiate CS–HMW and CS–LMW (Table 3) [41].

Table 3. FTIR wavenumber and corresponding functional groups.

Material Result Literature Functional Groups Reference

CS–HMW

350,954 347,868 O–H stretch dan N–H stretch
289,424 292,413 C–H stretch
165,302 165,688 C = O

1597 157,105 N–H bend [38]
141,963 142,253 C–H bend
137,816 137,816 C–N
115,731 115,731 C–O–C stretch

1079 102,518 C–O

CS–LMW

350,954 347,868 O–H stretch dan N–H stretch
289,424 292,413 C–H stretch
165,302 165,688 C = O

1597 157,105 N–H bend [38]
141,963 142,253 C–H bend
137,816 137,816 C–N
115,731 115,731 C–O–C stretch

1079 102,518 C–O

Graphs A (blue line) and B (red line) in Figure 1 show the differences in the IR spectra
of CS–HMW and CS–LMW. For stretching, vibrations O-H and N-H are represented in the
band of about 3422 cm−1. At 1599 cm−1, the absorption peak correlated with the binding
vibration of the amido group. The remaining acetyl is due to a clear carboxyl band (−C = O)
at 1654 cm−1. Bands in the range of 1157 cm−1 to 896 cm−1 belong to the specific −1.4
glycosidic bond absorption peak in CS. The properties described above were also found
in the CS–LMW FTIR spectrum. The presence of a new absorption peak at 1720 cm−1
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was observed in the CS–LMW spectrum, which was determined for the absorption of the
carboxylate group (-COOH) (green box) to be the difference between the two [56]. The
findings confirmed that cleavage of the (−1, 4) glucoside bond in macromolecules is the
basic mechanism of acid defense during the CS amino group without contributing to the
ring-opening oxidation of repeated glucosamine units [24,41].
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3.1.3. X-ray Diffraction Analysis

XRD results (Figure 1) of CS–LMW show an amorphous pattern. Four crystal re-
flections in the range 2 (5–80◦) are seen on the original CS–LMW X-ray diffractogram,
indexed as 14.50◦, 20.1◦, 31.5◦, and 36.75◦. The profile of the diffraction peak shows certain
modifications. However, the CS–LMW power from the diffraction angle is reduced. CS
is the first to be reduced to water-soluble molecules in the amorphous region, and the
solubility of CS in water increases [57].

CS has very strong intramolecular and intermolecular hydrogen bonds, making it
a crystalline or semicrystalline material with various allomorphs [57]. Intramolecular
interactions between O3 and O5 atoms can occur through glycosidic bonds stabilized by
acetyl groups, whereas intermolecular interactions can occur through glucosamine units
between N2 and O6 atoms. The decrease in the degree of crystallinity of CS is due to
depolymerization [58–61]. Hydrogen bonds are believed to play an important role in the
crystal structure. Functional groups such as hydroxyl and amine CS are excellent hydrogen
bond donors and acceptors [62]. The increase in the N-glucosamine sequence increases
the amorphous part of the structure because the removal of the acetyl group promotes
the destabilization of the hydrogen bonds (HO3···O5) between the acetamide groups. The
deterioration begins predominantly in the amorphous area and then moves very slowly
from the crystal zone’s border to its center [49,51,62,63]. The crystal structure is broken, and
crystallinity decreases with deeper damage [41,63]. In ideal circumstances, characterization
of initial CS and LMW-CS revealed no change in chemical structure, while crystallinity
reduced after degradation [41].

The mechanical strength, swelling, hydrolytic, and biodegradation rates of CS depend
on the crystallinity, which is determined by the nature of the monomer. When the polymer
chains have a stereoregular structure, the linear polymers with high MW can be rearranged
into crystallites. Amorphous regions separate the crystalline domains because the polymer
never reaches 100% crystallinity and is therefore semicrystalline. Crystallinity has less
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impact on drug release [64]. The amorphous character and large surface area of these
particles compared with commercial HMW CS alter the solubility [49].

3.2. Preparation of CS NPs

Through the ionic gelation process, stable NPs dispersions of CS samples with different
MW were prepared. The most popular preparation of CS NPs is ionic gelation. The use of
TPP is a CS crosslinker, which can be relied on to produce stable NPs in relatively large
and safe quantities. The CS-TPP method can obtain NPs with PS around 100 nm and a
positive charge [48]. Under acidic conditions, CS (pKa 6.3) is polycationic and displays
NH3

+ sites and Sodium tripolyphosphate (Na5P3O10) dissolved in dissociated water [65].
Optimal pH 4.0–6.5 forms electrostatic interactions of positively charged amino groups
of protonated CS with trivalent tripolyphosphate anions. With this method, it is possible
to control the properties of the NPs, the absence of side reactions, and the safety of the
tripolyphosphate [66].

Since CS cross-linking is based on the availability of cationic sites and negatively
charged species, it is thought that pH plays an important role in the cross-linking process.
Only phosphate ions are present when the pH of the TPP is converted to acid, CS-TPP
complex occurs optimally at lower pH [67]. Among these modifications, cross-linking
impacts valuable properties, for instance, chemical stability, inherent mechanical strength,
swelling capability, solubility, and drug release, modifying aspects of CS. Cross-linked
CS derivatives (CL-CS) show a pH-adaptive swelling tendency with hindered solubility
in their porous structure. The loaded drug can be released from CL-CS by swelling the
CS matrix on the gastric acidic pH and drug diffusion through the pores in a sustained
release manner [54]. Drug delivery from polymer systems is influenced by several factors:
polymer molecular weight, degree of deacetylation and substitution of polysaccharides,
nanoparticle size, and porous structure. Polysaccharide chain length and conformation
affect the accessibility of CS functional groups by drug molecules, which is critical for
establishing electrostatic interactions and subsequent incorporation of drug molecules into
this system [49]. The spray pyrolysis method gives denser NPs due to air drying. In the
case of low heating, the evaporation of the solution and the progress of crystallization are
slow. As a result, solid (solid) particles are generated [68].

3.3. Characterization of CSNPs (HMW/LMW)
3.3.1. TEM, SEM, Zeta Potential (ZP), Particle Size (PS), Entrapment Efficiency (EE), Drug
Loading (DL), and Poly Disperse Index (PDI)

The TEM images of the AMG–CS NPs are seen in Figure 2. Morphological characteri-
zation of both AMG–CS NPs formulas formed spherical shapes. The PS, ZP, shape, EE, DL
of NPs, and Poly Disperse Index (PDI) are shown in Table 4.

Morphologically, CSNPs are identified by most studies as spherical particles [10,69].
This study showed that the shape of the NPs of CS–LMW and CS–HMW is spherical, as
depicted in Figure 3. The spherical morphology of the particles was not affected by the
increase in MW of CS [51]. Because of the complexation between oppositely charged species,
CS undergoes ionic gelation and precipitates to form spherical particles [56]. All NPs
formed in this study exhibited a spherical shape verified by SEM. The uptake of particles
by cancer cells is determined by the intricate interactions between the physicochemical
properties of the particles, such as shape, size, and surface functionalization [70]. The size
varies from 5 to 200 nm depending on the length and shape of the polymer carrier. NP
design (size, shape, surface, and stiffness) is critical for delivery efficacy due to several
biophysical barriers, which prevent the circulation of NPs in the vascular flow and their
accumulation at the tumor site [71].
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Table 4. The mean EE and DL of the NPs.

Formula PS (nm) ZP (mV) Shape Entrapment Efficiency (%) Drug Loading (%) PDI

F1 450.9 ± 235 +51.56 ± 2.4 Spherical 90.45 ± 1.20 6.93 ± 0.87 0.487 ± 0.04

F2 305.3 ± 120 +15.69 ± 2.3 Spherical 89.35 ± 1.10 6.51 ± 0.54 0.394 ± 0.05

F3 228.3 ± 110 +25.56 ± 3.4 Spherical 88.36 ± 1.12 7.10 ± 1.70 0.435 ± 0.04

F4 205.3 ± 81 +10.56 ± 2.2 Spherical 85.35 ± 1.74 6.12 ± 0.86 0.375 ± 0.02
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Figure 3. SEM images of (a) F1 (AMG–CS–HMW) and (b) F2 (AMG–CS–LMW).

The MW of CS affects the average PS and ZP. The increase in particle diameter is
directly proportional to the increase in MW CS. The resulting AMG–CS–HMW NPs have a
PS range of 228.3± 110 (nm), a ZP of 25.56± 3.4 (mV), and an EE of 88.36%± 1.12 for AMG.
AMG–CS–LMW NPs ranged in size from 205.3 ± 81 nm, with a ZP of 10.56 ± 2.2 (mV).
For CS unloaded NPs, the diameters of prepared NPs were under 200 nm.

The NPs coated with CS¬–HMW usually showed a marginally higher mean diameter
than CS–LMW (p > 0.05), possibly due to the higher MW, higher viscosity of the CS during
the water process [72], and cross-links between TPP and CS. The rising PS with pH might be
attributed to agglomeration as repulsive forces between CSNPs are reduced. The decrease
in protonation of the NH2 groups on the CS contour led to reduced repulsive forces. The
PS impacts drug dissolution. The Noyes–Whitney equation shows that more surface area
or lower PS leads to quicker particle dissolution. In polymeric hydrogel particles, gradual
drug dissolution followed by particle dispersion is expected. PS and surface area are
important in material–biological interactions. The surface area of nanomaterials seems to
expand exponentially with decreasing size, making them more reactive to themselves and
their surroundings. Biological response and elimination are governed by PS and surface
area [58,60,73]. Due to the EPR effect, as a “passive” target, such ranged NPs can aggregate
more accurately in the tumor. The NPs increase in size marginally after the addition of the
linker but retain the comparable ZP due to the negative charge of the NPs.
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At pH 4.5, AMG–CS–HMW NPs had a higher mean ZP than AMG–CS–LMW NPs.
This is because AMG–CS–HMW includes more positively charged NH3

+ groups on the
CS chain, which increases the surface charge of CSNPs. Moreover, during crosslinking,
TPP ions were neutralized by the positively charged NH3

+ groups of CS–HMW, which
outnumbered TPP phosphoric groups. However, AMG–CS–LMW has fewer NH3

+ groups
to offset TPP’s negatively charged phosphoric groups. MW and CS types showed no
significant influence on NP surface charge at pH levels other than 4 and 6.

NP sizes increased when CS MW fell because of the external phase’s viscosity. Less
CS MW means less viscosity and hence smaller NPs. MW raised ZP. To understand this,
consider the relationship between strand length and surface charge density. The amount
of amine groups per strand decreases with strand length. Because amine groups must
have a positive charge, the ZP falls with molecular weight. The PDI was higher in all NPs
produced with low MW CS than in high MW CS [10,41,51,57,59]. The presence of free
amino groups raised the surface charges and ZP of the NPs, strengthening the electrostatic
contacts between the NPs and the drug, maintaining the spherical shape of the beads, and
decreasing their size.

TEM images gain additional details, such as particle aggregation and agglomeration.
Abdullah et al. reported TEM images of CNPs having a uniform spherical solid structure
and having a nearly uniform particle size distribution. However, crosslinked CNPs (5%)
tend to be low-aggregate [73]. In our case, it is possible that there are differences in ionic
strength that affect the number of cross-links in the amino functional group of CS and
differences in active substances. These two things are interesting to study further. The
3D SEM images of the CNPs show good dispersion of the nanoparticles to form a larger
open surface area, making the CNPs particularly suitable for adsorption. The 2D TEM
images unquestionably show that the CNPs exhibit highly porous surfaces due to their low
agglomeration attributes. These porous CNPs and deagglomeration have been considered
as key phenomena for the synthesis of novel CNPs, thereby maximizing their usefulness as
nanomaterials in biomedical and agricultural applications, where their porous nature can
effectively absorb harmful chemicals and antagonize pathogens, in our case useful in the
release of active substances and enhancement of cytotoxicity [73,74]. Agglomeration and
adsorption phenomena of CS NPs were observed by Mikušová et al. to reduce agglomera-
tion; they physically fused CS NPs with fine lactose-PEG3000 microparticles, Lac/PEG3000
MPs (~5 µm), to reduce their agglomeration via the surface adsorption phenomenon [40].
The addition of microparticles in increasing cytotoxicity needs to be studied further.

3.3.2. FTIR Analysis

By using FTIR to assess AMG–CS interactions, the ability of the ionic gelation mecha-
nism to form AMG–CS–NPs was evaluated (Figure 4). Hydrogen-bonded O-H stretching
vibration is due to the high and broad peak in the CS spectrum in the 3500–3300 region.
In the same area, the peaks of N-H stretching from primary amine and amide form II
are superimposed. The C-O-C asymmetric stretch peak is located at about 1150 cm−1,
and the 1317 cm−1 peak belongs to the amine type I C-N stretching vibration. The tip
of the peak of 3438 cm−1 has a shift to 3320 cm−1 in CS-TPP NPs and becomes wider
with increased relative intensity, indicating an increase in hydrogen bonding. The amine
I N-H bending vibration peaks at 1600 cm−1, and amide II carbonyl stretch at 1650 cm−1

changed to 1540 cm−1 and 1630 cm−1, respectively, in NPs. At 1170 cm−1, the crosslinked
CS also shows a P = O peak. The linkage between phosphoric and ammonium ions has
been attributed to these effects. Thus, we infer that the TPP tripolyphosphoric groups are
related to the CS ammonium groups. In CSNPs, the inter-and intramolecular activities are
improved [30,75].
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3.3.3. XRD Analysis

Figure 5 illustrates the XRD analysis findings. The XRD analysis of AMG–CS–LMW
NPs demonstrated an amorphous pattern. AMG and TPP show crystalline patterns from
diffractogram data with peaks from 2θ angles of 14–31.5◦, and amorphous patterns are
shown. The dissolution and solubility enhancement mechanism proposed in this study is
“spring and parachute”, where amorphous drugs are often rapidly released upon dissolu-
tion, and the subsequent drop of supersaturation is caused by drug crystallization [76,77].
Water molecules can pass across amorphous areas, which are permeable. The monomers’
composition regulates the crystallinity and affects flexibility, swelling, solubility, and degra-
dation rates. When low MW polymers are used, A high crystalline degree leads to slower
drug release conditions. In high MW, the effect on drug release is reduced [23].
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3.4. In Vitro Studies
3.4.1. In Vitro Release

The need for effective medical therapy prompted the idea of controlled medication
release. Targeted controlled release technologies outperform traditional medication delivery
approaches [65]. In vitro studies in PBS were used to assess the AMG release pattern
from NPs. In vitro release assays are required to predict if these systems would sustain
a sufficient quantity of medication for the desired period of time AMG–CS NPs were
tested for 20 h in vitro [78]. Drugs showed sustained release behavior for 12 h and then
improved total drug release over 20 h (Figure 6). Due to the NPs’ small size, the formulation
displayed an initial burst release. The true surface area grew as particle diameter dropped
and distance to drug surface decreased. Due to their lower PS, AMG–CS–LMW NPs
released quicker. The second is the HMW NPs’ resilience. The number of amino groups
that undergo ionic interaction with TPP rises with CS molecular weight, increasing cross-
linking density. Increased crosslinking enhances structural hardness and decreases active
substance release. As shown, polymer concentration lowered active substance release. The
density of TPP cross-linking rises with CS quantity, leading to more intensive microsphere
structure development, and active drug release is reduced [58].
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Figure 6. In vitro drug release profiles from CSNPs.

As seen in Figure 6, drug release was affected by pH. Protonation happened at a
lower pH, releasing active substances into the medium. The positive surface of CSNPs
at lower pH also reduced the drug–CSNP electrostatic interaction and promoted drug
release. These data indicate the new DDS’s pH-triggered opioid releasing action. Most of
the drug is expected to remain in the carrier for a long time (pH 7.4), reducing negative
effects on normal tissues. However, once drug-loaded tumor cell CSNPs are endocytosed,
the more rapid release may occur at lower local pH, at the tumor site, or within tumor cell
endosomes and lysosomes, increasing the efficacy of cancer therapy. The pH of lysosomes,
which destroy foreign particles and allow fast drug release inside cells, is 4.0–5.0 [78].
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The CS–LMW significantly increased the AMG release, compared with the CS–HMW
in CSNPs. To understand the kinetic release of AMG from the CSNPs in the first 24 h, we
performed an analysis using Higuchi’s model [79,80]. The correlation coefficients (r) of the
CSNPs (Table 5) suggests that the release type of AMG from the CSNPs was matrixtype
based on a Fickian diffusion. Previously, we reported that the CS–LMW has a porous
structure in the lack of NH3

+. Therefore, the porous structure in CS–LMW may induce
water uptake and promote the release of the AMG. Furthermore, the slope of the CS–LMW
is higher than the CS–HMW, indicating the enhancement of AMG release rate.

Table 5. Higuchi regression parameter of release percentage of drugs versus square root of time
curves for release of AMG from CSNPs in PBS in 24 h.

Parameter
pH 7 pH 6 pH 4

CS–HMW CS–LMW CS–HMW CS–LMW CS–HMW CS–LMW

Slope (%h−0.5) 23.33 ± 0.21 23.79 ± 0.72 23.40 ± 0.23 23.65 ± 0.21 20.80 ± 0.20 21.02 ± 0.21

Correlation
coefficient (r) 0.98 ± 0.02 0.98 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.02

3.4.2. In Vitro Cytotoxicity

The cytotoxicity of CS-TPP, AMG, AMG-CHLMW, and AMG-CHHMW NPs was
determined by incubating with MCF-7 cells for 24 h (Figure 7). CS-TPP had no cytotoxic
impact on cells. The cytotoxicity of AMG, AMG–CS, and AMG–CS LMW NPs was signifi-
cantly different (Figure 7). AMG, AMG–CS–LMW, and AMG–CS–HMW had IC50 values of
8.47 ± 0.29, 5.90 ± 0.08, and 4.90 ± 0.16 g/mL respectively.
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MCF-7 cells based on the MTT assay.

Cancer cells used in the MTT test have MCF-7 cells because of their sensitivity to
estrogen receptors (ER) expression, so MCF-7 is good for studying hormone responses.
MCF-7 cells have morphological-like epithelial and monolayer forming dome structures
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due to fluid accumulation between the culture disk and the monolayer of cells. Cytotoxicity
assay was carried out using the MTT assay method (Figure 7). The redox reaction in
cells is the basis of this approach. The succinate dehydrogenase enzyme present in live
cells reduces MTT to formazan salt. After 4 h, a stopper reagent was introduced. The
stopper reagent lyses the cell membrane and dissolves the formazan salt. The formazan
salts produced were measured using a spectrophotometer. The greater the absorbance, the
more viable cells [81] because of CS polymer’s mechanism as drug delivery has a very high
amine group, which increases the CS affinity through electrostatic interactions to the cancer
cell membrane.

The size of CSNPs is controlled by the MW and conformation of polymer CS. The
smaller the NPs, the simpler it is to penetrate the cancer cell membrane, increasing the con-
centration of AMG in cancer cells. The cytotoxicity of AM-CS NPs formulations increased
with increased concentration in cancer cells. Notable is the rise in vascular permeability
from 200 to 780 nm in the developing solid tumor. They are tiny enough to pass via these
pores from the blood to the interstitial tumor space. The EPR effect transports the pH-
sensitive polymer micelles to the tumor site, where they are intracellularized by endosomes
(pH 5.5–6.0) or lysosomes (pH 5.0) [82].

Large-scale studies of NPs in cancer treatment have shown that they may improve
poorly soluble chemotherapeutic drug solubility, lengthen circulation duration in vivo, and
increase accumulation in tumor locations [38,83].

The IC50 of NPs decreased from 8.47 ± 0.29 to 4.90 ± 0.16 µg/mL, indicating that CS
MW affects anticancer cytotoxicity. The formulation of CSNPs with LMW significantly
(p < 0.05) increased the cytotoxicity of αM against MCF-7 cells.

The CS MW (300 KDa and 20 KDa) of NPs altered their pharmacological capabilities.
For example, CS MW and water viscosity impacted NP size. Using lower MW CS might
minimize PS. Moreover, CS–LMW has increased water solubility, contributing to smaller
particles and shorter polymer chains. The polysaccharide coating is evident by the positive
ZP of all formulations [84].

4. Conclusions

Many approaches have been taken to improve the properties and expand the appli-
cation window of CSNPs, including modifying the MW of CS. The properties of CSNPs
such as the MW of CS affects size, charge, and release pattern of drugs and cytotoxicity.
This research indicate that modified MW of CS may enhance AMG compounds’ physic-
ochemical characteristics and cytotoxicity, so AMG–CS NPs can be the potential breast
cancer treatment agents. Additional research is needed to clarify how various MWs of CS
in CSNPs act on other breast cancer cell lines and normal cell lines and their feasibility for
clinical application. This study still requires confirmation in vivo and selectivity tests on
normal cells.
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