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Abstract: Network Slicing and Deep Reinforcement Learning (DRL) are vital enablers for achieving
5G and 6G networks. A 5G/6G network can comprise various network slices from unique or multiple
tenants. Network providers need to perform intelligent and efficient resource management to offer
slices that meet the quality of service and quality of experience requirements of 5G/6G use cases.
Resource management is far from being a straightforward task. This task demands complex and
dynamic mechanisms to control admission and allocate, schedule, and orchestrate resources. Intelligent
and effective resource management needs to predict the services’ demand coming from tenants (each
tenant with multiple network slice requests) and achieve autonomous behavior of slices. This paper
identifies the relevant phases for resource management in network slicing and analyzes approaches
using reinforcement learning (RL) and DRL algorithms for realizing each phase autonomously. We
analyze the approaches according to the optimization objective, the network focus (core, radio access,
edge, and end-to-end network), the space of states, the space of actions, the algorithms, the structure of
deep neural networks, the exploration–exploitation method, and the use cases (or vertical applications).
We also provide research directions related to RL/DRL-based network slice resource management.

Keywords: admission control; resource allocation; resource scheduling; resource orchestration;
network slicing; deep reinforcement learning

1. Introduction

A major goal of 5G and 6G networks, from now on called 5G/6G, is to deliver a
wide variety of services with distinct performance requirements under a (physical/virtual)
shared infrastructure [1]. All 5G/6G networks must offer high-speed connections, very high
reliability, and extremely low latency for empowering different verticals and enabling new
business models [2,3]. These networks promote realizing novel use cases, including ultrareli-
able low-latency communication (uRLLC), massive machine-type communication (mMTC),
enhanced mobile broadband (eMBB), strengthened enhanced mobile broadband (sEMBB),
ultramassive machine-type communications (umMTC), massive ultrareliable low-latency
communications (mURLLC), mobile broadband reliable low-latency communications (MBR-
LLC), and extremely reliable and low-latency communications (ERLLC) [1,4–6].

Network slicing (NSL) and deep reinforcement learning (DRL) are two key enabling
technologies of 5G/6G [7]. A 5G/6G network can comprise one or more network slices
belonging to single or multiple tenants. A slice is a customized and isolated logical network
conceived to support strict quality of service (QoS) and quality of experience (QoE) re-
quirements [8,9] such as those demanded by, for instance, remote surgeries and immersive
media. Network providers need to perform intelligent and efficient resource management
to realize slices that meet the requirements of 5G and 6G use cases. Resource management
is far from being a straightforward task since it requires mechanisms for its constitutive
phases: admission control (accept/reject multitenant network slice requests—NSLRs) [10],
resource allocation (assign resources to admitted NSLRs) [11], resource scheduling (pro-
gram the timely use of allocated resources) [12], and resource orchestration (instantiate
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and manage the life cycle of slices) [13]. In each phase, the mechanisms must meet di-
verse performance requirements (e.g., reliability, throughput, latency, packet loss), while
increasing provider profits, improving network utilization, and guaranteeing resource
provisioning (or re-provisioning) dynamically [14]. Furthermore, intelligent and effective
resource management involves predicting the demand coming from many tenants (each
tenant with multiple NSLRs) and achieving autonomous behavior of slices.

Although many studies have proposed solutions to manage resources in NSL using,
for instance, different heuristics [15–17] and genetic algorithms [18], this paper surveys
network slicing resource management approaches based on reinforcement learning (RL)
and DRL techniques. RL and DRL will play a critical role in turning 5G/6G into a reality.
Remarkably, they allow evolving resource management in NSL from techniques based on
models to those without models, which learn deeply by interacting with the environment
to satisfy experience level agreements (XLA) related to QoE and service level agreements
(SLA) associated with QoS. In RL, an agent makes decisions considering the environment’s
states (e.g., set of computing and networking resources available to attend slices). Decisions
are made to select actions (e.g., allocate and instantiate a node for an accepted NSLR)
to apply in an environment. A RL agent monitors the result (expressed as a reward,
for example, optimized network utilization) of its interaction with the environment (e.g., a
5G/6G physical network) to adjust its strategy to achieve an optimal policy automatically
(e.g., optimize the action selection to support requirements of MBRLLC slices) [19,20]. RL
approaches slowly converge to the optimal policy when exploring and acquiring knowledge
in large-state action sets, making it difficult to use in large-scale 5G/6G deployments. Deep
learning (DL) has been used to face RL limitations, leading to DRL [21,22]. From a high-
abstraction level, DRL uses RL to train deep neural networks (DNNs), such as feed-forward
neural networks (FNNs) [23] and recurrent neural networks (RNNs) [24], to quickly learn
accurate optimal policies.

Though there are various surveys involving DRL and resource management [14,25–29],
this survey is purposefully different. Reference [25] reviews DRL techniques without focus-
ing on the networking domain. Unlike [14], which presents a comprehensive survey on
ML for networking, and [27–29], which introduces a complete revision on DRL techniques
for networking, communication networks, and HetNets, our work focuses on approaches
using RL and DRL for realizing resource management in NSL. Reference [26] presents,
as we do, a survey on network slicing resource management. However, it does not discuss
resource management from the perspective of its constitutive phases (admission, allocation,
scheduling, and orchestration), includes only a constrained research directions section, and
is outdated (published in 2018). To sum up, in contrast to the existing surveys, this paper
addresses the following research questions: (i) What are the phases of network slicing
resource management and which RL/DRL-based approaches are useful in each phase? (ii)
What are the research directions on RL/DRL-based network slicing resource management?.

The contributions of this paper are:

• A comprehensive view of RL/DRL-based resource management in NSL. The literature
published in peer-reviewed venues over the past four years that have a high impact
and have been well received by peers is explored and analyzed from the perspective of
the main resource management phase in which each proposed approach operates. In
addition, the elements used per the RL/DRL technique are detailed for each approach.

• Identification of challenges and research directions in network slice resource man-
agement. The presented discussion on RL/DRL-based resource management in NSL
uncovers fundamental research challenges to achieve cognitive and autonomous 5G,
6G, and beyond networks. The discussion motivates performing future work to push
the boundaries of cognitive networking.

The rest of this paper is organized as follows. Section 2 presents the methodology used
to compile our survey and the fundamental concepts needed to understand it. Sections 3–6
describe works that use RL and DRL to perform admission control, resource allocation,
resource scheduling, and resource orchestration, respectively. Section 7 raises challenges
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and future research directions on RL/DRL-based resource management in NSL. Section 8
concludes this survey. For the sake of readability, Abbreviations provides the list of
acronyms and definitions used in this survey.

2. Methodology and Foundations

This section introduces the methodology used to carry out this survey. Furthermore,
the fundamental concepts around network slicing, resource management, RL, and DRL are
presented briefly.

2.1. Methodology

To address the research questions raised in this paper, we initially define the network-
slicing resource management process by considering admission control, resource allocation,
resource scheduling, and resource orchestration phases. Then, we classify the existing
RL/DRL-based resource management approaches into one of the phases mentioned. Lastly,
we provide research directions in the RL/DRL-based network slicing resource manage-
ment area.

To select the works presenting network-slicing resource management approaches
based on RL and DRL, we introduced search keywords on three electronic databases:
SCOPUS, IEEE, and Web of Science. The keywords used: “Resource management on
network slicing”, “(DRL or RL) and network slicing”, “(DRL or RL) and 5G”, and “(DRL
or RL) and 5 GB”. Not many publications were found because resource management
on network slicing is a relatively new research field. Therefore, an additional search
using the following keywords was carried out: “admission control and (DRL or RL) and
network slicing”, “resource allocation and (DRL or RL) and network slicing”, “resource
Scheduling and (DRL or RL) and network slicing”, and ”resource orchestrating and (DRL
or RL) and network slicing”. The searches resulted in 150 works. Titles and abstracts were
reviewed to eliminate works with no relation to the area. Furthermore, recent works from
nonrecognized conferences and low-impact journals were filtered. As a result, we chose
50 works for a full-text review.

The details of the literature review and the analysis performed is presented in Sections 3–6.
Tables 1–5 summarize the works selected to review; the first four works of each table and
Sections 3.1, 4.1, 4.2, 5.1 and 6.1 correspond to papers published in journals and confer-
ences with the highest impact factor. In those tables, the works are analyzed according to
optimization objective, network focus (i.e., E2E, RAN, CN, Edge), space of states, space of
actions, RL/DRL algorithm, DNN structure, exploration–exploitation method, use case (or
vertical application), training, dataset, and development.

2.2. Resource Management in Network Slicing

5G is envisioned as a network to support multiple services with specific performance
requirements in highly heterogeneous environments [30,31]. Furthermore, 5G is charac-
terized by supporting multiple types of access technologies and shared infrastructures
for minimizing service deployment costs, improving network utilization, and increasing
network providers’ revenue [32]. Technologies such as network functions virtualization
(NFV), software-defined networking (SDN) [33], and NSL [34] are pivotal for realizing
5G networks. NFV allows accomplishing 5G virtual network functions (VNFs) on virtual
machines and containers running on commodity hardware [11]. SDN enables flexible man-
agement and a global view of 5G network functions, collecting various network data [35].
NSL permits serving 5G services by end-to-end slices defined as logical networks, mutually
isolated on shared infrastructure [9,36,37]. Usually, a slice comprises one or more service
chains formed by network functions (virtualized or not) and the (physical/virtual) links
connecting them [8].
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Table 1. Admission control based on RL and DRL.

Ref. Algorithm Focus Optimization Objective Explore-Exploit NN Structure Use Case/Vertical App Training Dataset Development

[38] N3AC RAN Meet service guarantees while maximizing
profit ε− greedy FNN Elastic and inelastic * Emulation (Keras-TensorFlow)

[39] SARSA E2E (RAN, TN,
CN, Edge)

Maximize revenue while minimizing
dropping probability of NSLRs ε− greedy Non Apply QoS and best effort slices * Simulation (Undeclared tool)

[40,41] DQN RAN & TN Maximize revenue while minimizing slice
degradation Undeclared FNN High and low priority * Emulation (Python-NetworkX)

[42] DQN RAN Maximize revenue while minimizing costs
related to SLA violations ε− greedy Target NN,

Online NN eMBB, uRLLC, and mMTC Centralized Synthetic Simulation (Undeclared tool)

[43] Q-learning
R-learning CN Maximize long-term average profit ε− greedy Non Apply Undeclared Simulation (Undeclared tool)

[44] DQN RAN Enhance resource utilization and slices
isolation ε− greedy

Target NN,
Online NN,
replay memory,
and mini-batch

Best effort, constant
bit-rate, and minimum
bit-rate

Simulation (Undeclared tool)

[45] Q-learning DQN RAN Achieve a trade-off between the blocking and
dropping probability of service requests ε− greedy Target NN and

Online NN
Drop-sensitive and
best-effort *

Simulation (3D Urban
Macro—available [46,47])

*: non-5G/6G terminology is used for the use case or vertical application.

Table 2. Resource allocation based on RL.

Ref. Algorithm Focus Optimization Objective Explore-Exploit Use Case/Vertical
App Training Dataset Development

[48] Q-learning RAN Maximize resource utilization while meeting
haptic communication performance requirement ε− greedy Haptic Centralized Simulation (Undeclared tool)

[49]
Q-learning, SARSA,

Expected SARSA, & Monte
Carlo

RAN Guarantee efficient resource utilization while
meeting low-latency requirements ε− greedy IoT Centralized Simulation (Undeclared tool)

[50] Q-learning RAN Minimize end-to-end latency and maximize
computing resource utilization Undeclared mMTC Centralized Simulation (5G K-SimNet)

[51] Q-learning RAN Maximize profit and QoS satisfaction ε− greedy Undeclared Centralized Synthetic Emulation (Mininet)

[52] Multiagent PPO E2E (RAN, TN,
CN, Edge) Maximize resource efficiency while meeting QoS ε− greedy Undeclared Distributed Emulation (Python-Pytorch)

[53,54] Q-learning RAN Maximize resource utilization So f tmax V2X Centralized Simulation (MATLAB)

[55] Monte Carlo & Q-learning Edge Maximize social welfare / Maximize power
allocation ε− greedy Undeclared Centralized Simulation (Undeclared tool)

[56] Q-learning RAN Optimize latency, energy consumption, and cost Undeclared mMTC Centralized Simulation (Undeclared tool)

[57] Multiagent Q-learning RAN Maximize profit while meeting end-to-end delay ε− greedy Undeclared Distributed Simulation (Undeclared tool)
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Table 3. Resource allocation based on DRL.

Ref. Algorithm Focus Optimization Objective Explore-Exploit NN Structure Use Case/Vertical App Training Dataset Development

[58,59] DDQN & Dueling DQN RAN Maximize long-term profit while meeting diverse multitenants’
service demands ε− greedy

Target NN, Online NN,
replay memory,
and mini-batch

Utilities, automotive,
and manufacturing Centralized Synthetic Emulation (TensorFlow)

[60] DQN RAN Maximize radio resource utilization while QoS satisfaction ε− greedy
Target NN, Online NN,
replay memory,
and mini-batch

eMBB, uRLLC, mIoT Centralized Synthetic Simulation (Undeclared tool)

[61] DQN E2E (RAN, TN, CN,
Edge) Optimize VNFs positioning while meeting SFC traffic variations ε− greedy FNN eMBB Centralized Real-

available [62] Emulation (openAI gym)

[63] DQN Edge, RAN & TN Optimize resource utilization at the edge network ε− greedy DNN, replay memory,
and mini-batch Internet of vehicles and smart cities Centralized Synthetic Simulation (Undeclared tool)

[64] Dueling GAN-DDQN RAN Maximize profit and resource utilization ε− greedy

Target NN, Online NN,
Discriminator NN,
memory replay,
and mini-batch

VoLTE *, Video, and uRLLC Centralized Synthetic Simulation (Undeclared tool)

[65] LSTM-A2C RAN Maximize spectral efficiency, SLA satisfaction ratio, and profit So f tmax Policy RNN and Value
RNN VoLTE *, eMBB, and uRLLC Centralized Synthetic Simulation (Undeclared tool)

[66] Constrained DQN RAN
Maximizing resource utilization and throughput during
orchestration and network slice management under service
constraints

So f tmax FNN Video, VoLTE *, and uRLLC Centralized Synthetic Simulation (Undeclared tool)

[67–69] DDQN RAN Minimize number of allocated radio resource blocks while
meeting diverse and dynamic slice performance requirements ε− greedy Ape-X and replay

Memory Undeclared Centralized Synthetic Simulation (NS3)

[70] DQN E2E (RAN, TN, CN,
Edge) Maximize QoE satisfaction and resource utilization ε− greedy FNN V2X Centralized Synthetic Simulation (Undeclared tool)

[71] DQN RAN Maximize long-term revenue while ensuring QoS satisfaction ε− greedy
Target NN, Online NN,
replay memory,
and mini-batch

Bandwidth sensitive * Centralized Synthetic Simulation (MATLAB)

[72] DQN CN Maximize QoS satisfaction and minimize deployment costs
while meeting bandwidth and computing resources Undeclared FNN Bandwidth sensitive * Centralized Real-

available [73] Emulation (TensorFlow)

[74] DQN & DDQN RAN Maximize spectral utilization and minimizing costs ε− greedy Target NN, Oline NN,
and replay memory Elastic and real-time Centralized Synthetic Simulation (Undeclared tool)

[75,76] DQN RAN Maximize QoE satisfaction and resource utilization ε− greedy
Target NN, Online NN,
replay memory,
and mini-batch

Delay constrained, rate constrained,
rate and delay constrained, and rate
and delay nonconstrained *

Centralized Synthetic Simulation (MATLAB)

[77] DQN Edge Maximize resource utilization and QoS satisfaction ε− greedy
Target NN, Online NN,
replay memory,
and mini-batch

Bit rate sensitive * Centralized Synthetic Emulation (TensorFlow)

[78] Variation of Actor-Critic RAN Maximize the total throughput over the time Gaussian distribution
Policy NN and Value NN,
replay memory,
and mini-batch

Undeclared Centralized Synthetic Simulation (Undeclared tool)

[79] DQN RAN Maximize the data rate for eMBB and URLLC ε− greedy
Online NN, Target NN,
replay memory,
and mini-batch

eMBB, and uRLLC Distributed Synthetic Simulation (PyTorch)

*: non-5G/6G terminology is used for the use case or vertical application.
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Table 4. Resource orchestration based on DRL.

Ref. Algorithm Focus Optimization Objective Explore-Exploit NN Structure Training Dataset Environment

[80] DDPG CN and Edge Optimize placement of VNFs and service routing paths while ad-
dressing the enormous number of real-time traffic requests

Gaussian noise Target NN and Online
NN Centralized Synthetic Emulation (TensorFlow)

[81] DDQN RAN Maximize the expected long-term needs of tenants ε− greedy
Target NN, Online NN,

replay memory,
and mini-batch

Distributed Synthetic Emulation (TensorFlow)

[82] Online DQN CN Making chain placement decisions across geo-distributed data cen-
ters while minimizing deployment costs

ε− greedy LSTM Centralized Real-
available [83] Emulation (Google data center)

[84] TD3 RAN Reconfigure computing resources autonomously while minimiz-
ing latency, energy consumption, and deployment costs

Gaussian Policy Network and
Value Network Centralized Synthetic Emulation (OpenAI gym)

[85] DDPG E2E (RAN, TN, CN,
Edge)

Maximize resource utilization while meeting SLAs Decay Gaussian
Target NN, Online NN,

memory replay,
and mini-batch

Centralized Real-
available [86] Emulation (Open air interface and open daylight)

[87] Decentralized DQN E2E (RAN, TN, CN,
Edge)

Maximize slices’ performance under networking and computing
resources constraints

Decay Gaussian
Target and Online NNs

with actor–critic and
replay memory

Distributed Real-
available [88] Emulation (Open air interface and open daylight)

Table 5. Resource scheduling based on RL and DRL.

Ref. Algorithm Focus Optimization Objective Explore-Exploit NN Structure Use Case / Vertical App Training Dataset Environment

[89] A3C RAN Maximize resource utilization while guaranteeing slices
isolation Gaussian LSTM Undeclared Distributed Emulation (TensorFlow)

[90,91] Q-learning CN & TN Minimize SFC’s delay ε− greedy Undeclared Delay and none delay sensitive * Centralized Simulation (Undeclared tool)

[92]

QV-learning,
QV2-learning,

QVMAX-learning,
QVMAX2-learning

RAN Minimize packet delay and packet drop rate ε− greedy and Boltzmann Distributed NNs Undeclared Centralized Simulation (LTESim)

[93] DQN E2E (RAN, TN, CN, Edge) Minimize SLA violations while maximizing physical nodes’
resource utilization So f tmax CNN eMBB, uRLLC, mMTC Centralized Synthetic Emulation (Python-Theano)

[94] Q-learning CN & TN Achieve adaptive and cost-effective SFC ε− greedy Undeclared Undeclared Centralized Simulation (Java-based)

[95] DQN RAN Minimize latency ε− greedy FNN uRLLC Centralized Simulation (Undeclared tool)

[96] DQN RAN Maximize the long-term QoE So f tmax Target NN, Online NN,
and replay memory Video streaming Centralized Simulation (Undeclared tool)

*: non 5G/6G terminology is used for the use case or vertical application.
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Network slices support the provisioning of 5G use cases defined by the International
Telecommunications Union, each with specific performance requirements [97]. The 5G
use cases are known as eMBB, mMTC, and uRLLC [98,99]. The eMBB refers to services
demanding high data traffic and a bit rate of 20 Gbps and 100 Mbps for user experiences
in urban zones. The mMTC covers services requiring the connectivity of a wide gamma
of devices and simplifies operational processes for providing a long battery lifetime. The
uRLLC comprises services needing ultrahigh reliability and extremely low latency [100].
Although 5G networks have been widely deployed since 2020 [101], 6G networks appear
on the horizon. This appearance is to address the exponential growth of emerging telecom-
munications services demanding more ambitious performance requirements. Furthermore,
5G features cannot entirely support extremely demanding services such as remote surgery
and immersive media.

The 6G networks propose highly heterogeneous environments that are expected to
provide global coverage, enhanced spectral/energy/cost efficiency, higher data rate (Tbps),
10 times lower latency, 100 times higher connection density, and full automation compared
with 5G networks [102]. Technologies such as novel air interface and transmission tech-
niques and architectures based on the IoT-Edge-Cloud continuum are fundamental for
accomplishing 6G [1]. Potential 6G use cases include: sEMBB embraces EMBB services de-
manding high QoE; umMTC comprises services needing a much more massive number of
simultaneous connections per space than mMTC; mURLLC covers mission-critical services
requiring high reliability, low latency, and high availability; MBRLLC includes classical
URLLC and eMBB services; ERLLC comprises services that merge URLLC and mMTC
demands. These use cases are essential to accomplish intelligent home systems, smart cities,
mission-critical applications, self-driving cars, and remote surgeries [36,103]; notably, they
require approaches capable of performing dynamic network slicing resource management.
Figure 1 shows different 5G/6G end-to-end slices built on a shared network infrastructure.

Edge Cloud

Radio Access
Network

Core Network

Cloud

VNF VNF VNF

VNF VNF VNF

VNF VNF VNF

5G/6G network infrastructure

Ultra-Reliable Low Latency Communications

Extremely Reliable and Low Latency
Communications

VNF VNF VNF

Augmented and Virtual Reality

Enhanced On − Board Communications

5G

6G

5G/6G

6G

Figure 1. 5G/6G network slices.

NSL follows an architecture formed by the infrastructure layer, the network function
layer, and the service layer [104]. The infrastructure layer represents all physical elements
(involving RAN, CN, and the edge network) needed by slices and the functions for control-
ling, operating, maintaining, and managing them. The network function layer encapsulates
all configurations and life cycle management functions of the service function chains (SFCs)
needed to realize end-to-end services that fulfill use cases’ performance requirements. NFV
and SDN are fundamental technologies in this layer [105]. The service layer comprises
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the vertical applications, business models, XLAs/SLAs, and performance requirements of
network slices. Intelligent and efficient resource management is fundamental for accom-
plishing the layers mentioned.

Resource management involves four phases (see Figure 2): admission control, resource
allocation, resource scheduling, and resource orchestration. It is noteworthy that a phase
can provide feedback to another one, and, as a result, they should operate coordinately.
Admission control decides which slice requests coming from tenants (or a single one) can
be accepted or not according to one or various network policies related to avoiding idle
resources, increasing network providers’ revenue, and prioritizing services [10], for instance.
Resource allocation quantifies the resources to assign per slice to fulfill, among others,
the tenant demands, to meet QoS/QoE, and to maximize the long-term economic benefits of
network providers [11]. Resource scheduling programs the time in which the network must
allocate resources to each slice to, for instance, minimize the total execution and operation
time of the network services, thus guaranteeing improved performance [12]. Resource
orchestration mainly manages the service chains, their life cycle management, and the
dynamic adjusting of assigned resources, taking into account, for example, performance
requirements and network status [106,107]. The phases mentioned above are detailed in
Sections 3–6.

Admission Control

Resource Allocation

Resource
Orchestration

Resource
Scheduling

AGENT

Figure 2. Resource management phases.

2.3. Deep Reinforcement Learning

DRL involves two fields of knowledge, namely RL and DL. RL is a machine learning
(ML) approach appropriate for decision-making problems that need automatic handling
based on trial and error. An RL agent periodically interacts with an environment by taking
actions and receiving a reward (related to observations of the environment’s states) that
indicates if the action was good or not [25,108]. RL can be understood as a Markov decision
process (MDP) comprising a space of states S, a space of actions A, and an immediate
reward function R(st, at, st+1) [109]. RL algorithms intend to find an optimal policy for
maximizing the long-term reward in the environment by considering its states and the
actions available per state.

RL algorithms can be model-based or model-free. A model-based RL algorithm [110]
learns an optimal policy by having access to an environment’s model (a function able to
predict the state, actions, and rewards) or obtaining it purely from experience. Model-free
RL algorithms learn an optimal (stochastic or deterministic) policy (also known as on-policy
algorithm) or optimal Q-value function (also known as off-policy algorithm) [26,27]. Actor–
critic [20], state–action–reward–state–action (SARSA) [111], and proximal policy optimiza-
tion (PPO) [112] exemplify on-policy RL algorithms. Q-learning [113] is the most popular
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off-policy RL algorithm. For further information about RL and its algorithms, we refer the
reader to [20,114,115].

RL algorithms realize many interactions to achieve an optimal policy according
to design requirements. The increasing number of iterations generates an expensive
process due to the amount of information stored and the computational cost required.
To overcome this challenge, ML proposes DRL that combines RL and DL to resolve high-
dimensional and infinite-state problems [116]. DRL uses RL to train DNNs (e.g., FNNs
and RNNs) that timely learn optimal policies [25,117]. Some of the most relevant DRL
algorithms are deep Q-network (DQN—also known as deep Q-learning) [118,119], double
DQN (DDQN) [120,121], deep Q-learning with prioritized experience replay (prioritized
DQN) [122], Dueling DQN [123], and distributional DQN [124]. DRL and RL algorithms
have been proposed in the 5G network in applications such as SDN routing [22], Internet
of Things (IoT) [125], HetNets [126], and unmanned aerial vehicle (UAV) [127]. For further
information about DRL and its algorithms, we refer the reader to [25,27,128].

The next Sections detail research papers that use RL and DRL to perform one or
various resource management phases in NSL.

3. Admission Control

Recently, resource management literature has reported diverse admission control
approaches centered on NSL. Those approaches have applied techniques such as dynamic
programming [129,130], heuristics [131,132], and stochastic models [133–136] to accept
slices in environments involving mainly a unique tenant. Figure 3 presents an admission
control architecture using RL and DRL to make acceptance decisions in a multitenant
environment. This architecture operates as follows. Tenants send diverse NSLRs (network
slice requests) to the admission control module of 5G/6G use cases. The module decides
the admission or preadmission (in this case, the allocation phase takes the final admission
decision) of NSLRs by employing a RL/DRL agent and a prioritizer. The agent determines a
normalized weight value for each 5G/6G use case. The prioritizer uses the agent’s outputs
to sort the NSLRs and establish the order in which resources should be allocated in the
corresponding phase. The weight values should lead to achieving a goal, for instance,
obtaining the maximum profit. For example, in the raised example, the agent selects
an action that, if taken, maximizes the profit. The agent learns to select actions that
increase profit by considering the information on states and rewards from interaction with
the environment by using, for instance, Q-learning or DQN. It is relevant to highlight
that an RL-based admission control solution can be specified by defining its state space,
action space, exploration and exploitation method, and reward function. In addition,
the specification of a DRL-based admission control approach includes further defining its
DNN structure. Note that these two points apply for specifying RL/DRL-based solutions
of allocation, scheduling, and orchestration of resources.

3.1. Admission Based on RL and DRL

The following paragraphs review recent RL and DRL investigations in NSL or related
technologies that perform admission control. Ref. [38] introduced an admission control
algorithm called N3AC designed to maximize the price per time unit paid by inelastic
and elastic network slices. Inelastic network slices were associated with uRLLC services.
Elastic network slices were related to eMBB and mMTC services. N3AC trained two DNNs
without a ground truth sequence (the proper sequence is unknown a priori); a DNN was
used to estimate the revenue for each state when the action is to accept. The other DNN is
for the rejecting action. In addition, N3AC modeled the state space as a three-sized tuple
(Ne, Ni, k), where Ne and Ni are the numbers of inelastic and elastic slices, and k is the
next event that indicates the arrival request or departure of a network slice. The space of
actions was represented binary to admitting or rejecting new inelastic and elastic requests.
The performance evaluation was performed in Keras/TensorFlow and included two elastic
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and two inelastic slices arriving by following a Poisson process. The time life of slices
followed an exponential distribution.
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Figure 3. RL/DRL-based admission control architecture.

Ref. [39] presented a SARSA (state-action-reward-state-action)-based cross-slice admis-
sion framework devised to maximize the operators’ revenue taking into account constraints
related to communication, computing, and storage resources. The framework modeled
the space of states considering demanded and deployed slices (best-effort and supporting
QoS) and the resources available in the RAN and CN of 5G. The SARSA agent operated
with a space of actions conceived as the number of slices to accept; it selected actions using
the e-greedy method. The performance evaluation involved simulations in a nonspeci-
fied tool and six templates of slices not following the 5G use cases’ specific requirements.
Refs. [40,41] proposed a RL-based admission control approach that uses DQN to maximize
the providers’ total profit when dealing with low-profit services (e.g., on-demand media
streaming and file transfer) and high-profit services (e.g., immersive media). The approach
modeled the space of states regarding the available resources in the 5G-RAN. The DQN
agent employed a space of actions involving holding time, service priority, and resources
required. The performance evaluation included a custom-built Python-based event-driven
simulator that used a networkX library for the graph representation and management of
network resources and the Keras tool to implement the stochastic policy network.

Ref. [43] introduced an admission control mechanism based on R-learning [137] and Q-
learning to maximize the long-term average profit in multidomain 5G-CNs. The mechanism
modeled the space of states regarding the demand in the consumer and provider domains.
The space of actions was defined as accepting service requests when the available capacity
in the provider is greater than the total amount of demanded resources and rejecting in other
cases. Ref. [44] proposed a DQN-based admission control approach for improving 5G radio
resource management and enhancing isolation in three types of slices: best effort, constant
bit-rate, and minimum bit-rate. The approach included two DNNs (online and target) in the
DQN model to generate a learning policy that maximizes the cumulative reward. Online
and target DNNs used an ReLU [138] with three layers of 50, 50, and 100 neurons and were
employed to reduce errors in estimations. The DQN model defined the space of states
in terms of key performance indicators (e.g., throughput, dropping rate, and admission
rate). The space of actions was modeled considering control parameters for increasing or
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decreasing resources to the slices. Ref. [42] presented an admission control mechanism
based on DQN with online and target DNNs for maximizing the providers’ revenue
and minimizing the penalty cost caused by SLA violations in 5G-RAN. The DQN model
used a space of states representing the number of slices requested of type eMBB, uRLLC,
and mMTC and the type of the last slice request. The space of actions was modeled binary
indicating whether the new arrival slice requests must be accepted or rejected.

Ref. [45] presented a Q-learning and DQN-based admission control approach for
minimizing both the blocking probability of new requests and the dropping probability
of admitted requests. The approach modeled the space of states regarding the resources
used in the cells, the number of arriving requests, and the availability in neighboring
cells. The space of actions was defined as blocking or accepting new requests from the
users’ devices.

3.2. Remarks

Table 1 presents approaches using RL and DRL to perform admission control disjointly
in RAN, TN, and CN of 5G. RL-based approaches (e.g., [43,45]) used SARSA and Q-learning
to admit slices in RAN. They mainly consider maximizing the operator revenue and
minimizing the total network cost as the optimization objective. The worst-case complexity
of these algorithms is O(|S| × |A|) [39], where S and A are the sizes of the space of states
and actions, respectively. RL-based approaches generally present scalability shortcomings
when dealing with large state and action spaces. This shortcoming is relevant for slices of
5G/6G and beyond networks envisioned to support highly dynamic and complex services.
DRL-based approaches [38,42,44,45] employed algorithms such as N3AC and DQN with
one or two DNNs to admit slices in RAN while optimizing the operator revenue and
network utilization as well as facing scalability issues. The worst-case complexity of these
algorithms is O(|H| × |N|) [38], where H and N are the number of hidden layers and
neurons, respectively.

Unfortunately, few works [39] have been developed to perform admission control
involving end-to-end network slices. Indeed, most research has focused on proposing
admission control approaches for 5G-RAN NSLs, neglecting the relevance of modeling
aspects from the transport network and CN, for instance. In contrast, the TN, like the
works [39–41], did by considering communication resources such as bandwidth and link
optical backhaul and fronthaul. Since NSL is an end-to-end concept, novel admission
control solutions in multitenant environments involving RAN, TN, CN, and edge networks
are necessary to optimize revenue and utilization across the whole network. Since all
cited works in Table 1 use centralized training, synthetic datasets, and nonperforming real
deployments, it is essential to explore in-depth admission control based on decentralized,
multiagent, and online RL/DRL to get a complete network view and cope with the dynamic
of 5G/6G network slices. The use of datasets with real traces is essential to promote
the deployment of approaches in real networks, which is, in turn, another imperative
necessity. Furthermore, similar to [38,42], the admission control solutions should consider
the QoS/QoE performance requirements of 5G/6G vertical applications in their models
and operate coordinately with resource allocation approaches.

4. Resource Allocation

Lately, resource management literature has reported diverse NSL resource alloca-
tion approaches. Those approaches have applied techniques such as linear program-
ming [139–142], (meta)heuristics [143–146], and game theory [10,147,148] to assign re-
sources to slices in environments involving mainly a unique tenant. Figure 4 presents
an architecture using RL and DRL to make resource allocation decisions in a multitenant
environment. This architecture operates when the resource allocation module allocates
RAN, CN, and edge network resources to preadmitted NSLRs (received from the admission
control module) by employing a RL/DRL agent, a RAN resource allocator, an edge network
resource allocator, and a CN resource allocator. The agent determines normalized weight
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values for each preadmitted NSLR belonging to a 5G/6G use case. Those values determine
the allocation priority and the number of resources to assign per preadmitted NSLR and
should lead to achieving a goal, for instance, obtain the minimum delay and maximum
reliability. For example, in the raised example, the agent selects an action that, if taken,
minimizes the delay and maximizes the reliability. The agent learns to select actions that
decrease delay and increase reliability by considering the information on states and rewards
from interaction with the environment by using, for example, policy gradient or DDQN.
In the example, the allocators use the agent’s outputs to assign resources according to the
priority and resources available in the network substrate.
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Figure 4. Resource allocation architecture using RL/DRL.

4.1. Allocation Based on RL

The following paragraphs review modern investigations using RL to allocate resources
in NSL or related technologies. Ref. [48] presented a radio resource allocation approach
based on Q-learning and centered on 5G haptic communications for maximizing the
utilization of scarce radio resources according to dynamism and the requirements of
vertical haptic applications. The approach represented the space of states considering the
allocated resources, application performance requirements, and resource utilization in each
haptic vertical slice. The Q-learning agent modeled the space of actions in a binary way to
denote the allocation or nonallocation of slices. The performance evaluation was performed
in a nonspecified tool and conceived by a seven-cell hexagonal grid layout model with
two vertical slices: a radio slice for the connectivity service to haptic communications
and the other for human-to-human communications. The haptic devices were randomly
distributed throughout the radio slice, while the users requesting the vertical applications
followed a Poisson distribution. Ref. [49] presented a resource allocation framework
based on various RL algorithms, such as Q-learning, SARSA, expected SARSA, and Monte
Carlo, and devised to maximize the efficient utilization of resources in 5G Fog-RAN while
guaranteeing the low-latency requirements of IoT applications. The framework modeled
the space of states as resource (computing and processing) blocks occupied in fog nodes and
IoT applications’ characteristics (latency, throughput, and channel capacity). The actions
decided the appropriate layer (fog or cloud) to assign resources to provide IoT applications.
The performance evaluation involved an IoT environment, including 10 applications from
diverse domains (smart farming, smart retail, smart home, wearables, entertainment, smart
grid, smart city, industrial Internet, autonomous vehicles, and connected health) with
different latency requirements and profit features.
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Ref. [50] introduced a Q-learning-based resource allocation method to minimize end-
to-end latency and improve computing resource utilization in 5G Fog-RAN. The method
modeled the space of states regarding the user requests, request arrival rate, percentage
of allocated resources, percentage of unused allocated resources, minimum allocation
requirements, and the maximum delay allowed. The Q-learning agent operated a space of
actions defined to allocate or not compute resources. The method was evaluated in an open-
source 5G K network simulator based on NS3 while openAI gym served to implement the Q-
learning algorithm. In low-orbit satellite networks, Ref. [51] proposed a dynamic resource
allocation approach based on Q-learning for maximizing the provider’s revenue (also
known as system utility) and improving the users’ QoS satisfaction. The approach modeled
the space of states considering the allocated and utilized resources per slice in a specific
time t. The Q-learning agent used the actions to indicate whether the resource unit must
be allocated (or not) for a particular user. The evaluation included two low-orbit satellite
slices containing fixed radio resource pools. Mininet emulated the abovementioned slices.

Refs. [53,54] introduced an efficient resource allocation scheme based on Q-learning,
focused on eMBB and vehicle-to-everything (V2X) services on 5G-RAN, and devised to
maximize the overall resource utilization taking into account the services’ performance
requirements and traffic dynamism. The scheme considered a space of states modeled as
the number of resource blocks of cell bandwidth in the uplinks and downlinks. The ac-
tions were represented regarding allocation ratios of eMBB and V2X slices. Ref. [55]
proposed an approach based on Monte Carlo [149] and Q-learning in an edge-computing
and multitenant environment seeking to provide social welfare, meet QoS requirements,
and maximize power resource allocation per network slice. The approach operated with a
binary space of states where one indicated interference in the resource block assigned to a
small cell base station of a particular tenant and zero the contrary. The action space was
defined as the power level to allocate. Ref. [56] presented a Q-learning-based, dynamic,
and autonomous computing resource allocation scheme intended to optimize the latency,
energy consumption, and cost in 5G Fog-RAN. The scheme modeled the space of states
as a vector comprising the allocated compute resource, average CPU utilization, and CPU
reservation. The space of actions was defined regarding the resources to allocate at the
Fog-RAN node level.

Ref. [52] presented a dynamic resource allocation framework based on PPO (proximal
policy optimization) and intended to maximize resource efficiency while meeting QoS in
end-to-end NSL in multilayer mobile edge computing environments. The framework mod-
eled the space of states considering service type, the utilization of resources allocated in the
edge nodes, and the ratio of offloaded workload in the edge–cloud continuum. The actions
corresponded to tuning resources size (increased or decreased CPU and bandwidth) in a
chosen node. Ref. [57] introduced a resource allocation framework based on a two-stage
Q-learning algorithm for increasing operators’ revenue in a multitenant 5G network slicing
environment. The first stage was devised to perform VNF mapping using a space of states
based on the number of server nodes and computing resources available. The space of
actions represented the association between a VNF and a physical server node. The second
stage was conceived to carry out user association and power allocation, including a space
of states associated with available radio resources and actions modeled as a set of vectors
composed by the users and their corresponding power.

4.2. Allocation Based on DRL

The following paragraphs review modern investigations using DRL to allocate re-
sources in NSL or related technologies. Refs. [58,59] presented a framework that allocates
computing, storage, and radio resources to manufacturing services for maximizing the
providers’ long-term incomes. The framework used DDQN and dueling DQN agents
trained by the stochastic gradient descent (SGD) algorithm [150] and modeled their states
considering requested resources, available computing resources, and connectivity capa-
bilities of data centers responsible for storing virtualized radio resources. The agents
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operated with actions defined as the resources to assign per request. Using TensorFlow,
the environment was emulated by creating three slice classes (i.e., utilities, automotive,
and manufacturing) under different parameter settings. The slice requests followed a
Poisson distribution.

Ref. [60] proposed a DQN-based strategy that allocates the radio and backhaul
resources in a virtualized RAN to balance the QoS satisfaction and resource utilization of
slices. The strategy considered the space of states as a vector involving the satisfaction
ratio and the resources allocated to a slice. The DQN agent operated with actions modeled
as percentages representing optimal resource provisioning. The evaluation involved an
emulated mobile network with four classes of slices (enhanced-user equipment broadband,
ultralow-latency communications, massive Internet of Things, and high-definition TV)
following an exponential distribution. Ref. [61] proposed a resource allocation method
based on a proprietary RL algorithm and a DNN to optimize the positioning of functions
forming service function chains in metro-core optical networks. Four hidden layers formed
the DNN with 100 nodes per layer. The method modeled the space of states regarding three
layers (optical, IP/MPLS, and service slicing) and the space of actions as a decision state
that indicates if one or more service function chains need reconfiguration. The emulation
environment and algorithm were created using openAI gym; the proposed algorithm was
trained using a mobile traffic dataset of the Milan urban area [62].

Ref. [66] introduced a resource allocation framework based on constrained DQN
formed by a DNN (composed of two fully connected layers with 64 and 32 nodes) trained
with various RL algorithms, and devised to meet performance requirements of video,
VoLTE, and uRLLC slices in 5G-RAN. The framework modeled the space of states as the
number of active users per service. The space of actions defined the bandwidth to allocate
for each service. Ref. [64] introduced a resource allocation approach based on powered
DDQN to meet SLAs as well as maximize resource utilization and provider revenue accord-
ing to the dynamics of service requests on 5G-RAN. The approach used two generative
adversarial networks (GANs) trained by the gradient descent (GD) algorithm [151] to
minimize the difference between the estimated action–value distribution and the target
action value distribution. Dueling GAN-DDQN represented the space of states as the
service demands within a specific time window and modeled the space of actions as the
bandwidth to assign to each slice. Refs. [67–69] presented an approach based on DQN that
flexibly allocated resources on 5G-RAN to maximize network slice requirement satisfaction
and improve resource blocks usage ratio. The approach modeled the space of states as the
available radio resource blocks and the space of actions as allocation or not of resource
blocks. Furthermore, the approach used the Ape-X method [152] to accelerate the learning
by processing multiple DQN agents.

Ref. [70] introduced a two-tier resource allocation approach aimed to meet QoE
requirements and achieve efficient utilization on 5G end-to-end slicing. The first tier
proposed a dynamic resource optimization problem for allocating the radio resources under
constraints on rate, power, and interference. The second tier employed DQN enhanced
with two FNNs to allocate radio, edge, and cloud resources considering the slices’ arrival
requests. The approach modeled the space of states representing available radio units and
QoE satisfaction. The space of actions clustered remote radio heads to form access units
intended to reduce intercell interference. Ref. [71] presented a DQN-based mechanism to
allocate bandwidth and 5G-RAN resources to slices serving mobile, videos, and vehicle
communications for increasing the long-term resource utilization and the revenue of virtual
network providers. The DNN used ReLU as an activation function. The mechanism
modeled the space of states as the requested bandwidth (arriving randomly) and the
consumed energy. The space of actions was represented as the slice selected by the mobile
virtual network operator to maximize profit.

Ref. [72] proposed a DQN-based approach to allocate bandwidth and virtual machines
to services queued in a time window or during their arrival seeking optimizing delays
and resource usage costs. The approach used a DNN activated by ReLu and designed
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the space of states as resource request arrivals and queueing levels from the last assign-
ment. The actions represented binarily the operation of allocating bandwidth successfully.
Ref. [74] introduced a resource allocation approach based on DQN and DDQN, focused
on elastic and real-time slices, and conceived to maximize spectral efficiency utilization
while reducing costs in 5G-RAN with many intelligent devices. The DNNs of DQN and
DDQN used two hidden layers trained by the GD algorithm [153]. The approach modeled
the space of states as the carrier power traffic assigned to each slice and the actions as a
binary representation of bandwidth allocation per slice.

Refs. [75,76] proposed a DQN-based and dynamic framework that reserves and
assigns unused bandwidth resources to virtualized RAN to maximize QoS satisfaction and
resource utilization. The framework used a FNN with 4 neurons in the input layer, 2 hidden
layers, and 20 neurons in the output layer. The space of states was defined considering the
percentage of allocated virtual resources and the average resource utilization of each slice.
The space of actions was modeled as the percentage for decreasing or increasing assigned
resources. Ref. [77] presented a DQN-based resource management approach to reserve and
allocate cache resources at the edge network for maximizing QoS satisfaction and network
utilization to mobile virtual network operators. The DQN agent used a FNN with 4 and
11 neurons in the input and output layers and 2 hidden layers. The approach conceived
the space of states regarding resource utilization, QoS satisfaction, reserved resources per
slice, and allocated cache resource. The space of actions was defined to increase or decrease
resources to cache slices. Ref. [65] introduced a bandwidth allocation strategy that uses a
LSTM-based advantage actor–critic (A2C) [154] algorithm (i.e., it combines policy-based
and value-based RL techniques) to maximize spectral efficiency, SLA satisfaction ratio,
and profit in RAN. The LSTM-based A2C agent used Softmax [155] as activation function
in the output layer. The strategy modeled the space of states as the number of slice arrival
requests within a specific time window and the space of actions as the bandwidth to allocate
to each slice.

Ref. [63] presented a DQN-based solution for allocating Internet vehicular and smart
city applications. The DQN model included a fully connected DNN with an input layer,
two hidden layers activated through ReLU, and an output layer activated through a linear
activation function. The DQN agent operated with a space of states based on the number of
resource blocks used at time t. The actions employed by the DQN agent allow for deciding
if the user requests with heterogeneous latency demands and diverse computing loads
must run at the cloudified RAN or edge network. Ref. [78] used a constrained discrete-
continuous soft actor–critic algorithm to maximize the throughput in an environment with a
discrete channel and continuous energy-harvesting time division. This actor–critic variation
modeled the space of states considering the channel, battery and queue state. Furthermore,
it represented its actions regarding the subchannel allocation and the harvesting time
duration. Ref. [79] proposed a resource allocation mechanism that uses multiagents DQN
and an SDN controller to allocate radio resources to uRLLC and eMBB to maximize the
data rate. The DQN agents represented the space of states regarding the set of end-users,
preallocated radio resource blocks, the channel gain, the minimum data rate, and the
maximum delay. The agents operated with actions intended to assign the preallocated
resource blocks to the end-users and request additional blocks from other agents.

4.3. Remarks

Tables 2 and 3 present approaches using RL and DRL, respectively, to perform re-
source allocation mainly and separately in RAN and fog/edge network. RL-based ap-
proaches [48–57] used Q-learning, SARSA, expected SARSA, Monte Carlo, and actor–critic
mainly to allocate radio or edge/fog resources to network slices efficiently, regarding oper-
ator revenue maximization, QoS satisfaction, and resource (computing and networking)
utilization. Similar to Q-learning and SARSA (including variations), the worst-case com-
plexity of Monte Carlo is O(|S| ∗ |A|) showing a dependence on the size of spaces of states
and actions [49]. DRL-based approaches [58–60,64–69,71,72,74–78] employed algorithms
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such as DQN with one or two NNs, DDQN, dueling DQN, and LSTM-based A2C to allocate
resources to RAN and (fog) edge network slices while optimizing the operator revenue
and network utilization, and deal with scalability issues faced by RL-based approaches.
Particularly, in [58,59] the worst-case complexity of DDQN and dueling DQN is O(|S|2),
where S is the size of the space of states. Furthermore, as mentioned earlier, the worst-case
complexity of DQN is O(|H| ∗ |N|), which depends on the number of hidden layers and
their neurons [60].

Regrettably, few works (e.g., [52,61,63,70]) have been developed to allocate resources
to end-to-end network slices. Indeed, the investigations primarily focused on proposing
resource allocation approaches for RAN and (fog) edge networks, disregarding the impor-
tance of TN and CN when accomplishing NSL. As NSL is an end-to-end concept, novel
allocation solutions in multitenant ecosystems should involve elements from RAN, CN,
edge networks, and TN (like [61,63] did by considering the availability of optical resources
as wavelengths and links). They need to optimize revenue and utilization across the entire
network and meet the QoS/QoE performance requirements demanded by 5G/6G use cases.
Furthermore, the solutions should operate jointly with admission control approaches. Since
almost all cited works in Tables 2 and 3 use centralized training and synthetic datasets, it is
needed to investigate the limitations and advantages of using multiagent (like [79] did) and
online RL/DRL techniques to allocate resources to slices of multiple tenants dynamically.
In addition, it is crucial to test the existing approaches with real datasets (such as in [61,72])
and networks (no work uses an actual deployment) to corroborate their practicability.

5. Resource Orchestration

In recent years, resource management literature has reported approaches that orches-
trate resources in NSL by using techniques such as optimization [156–159] and (meta)heuris-
tics [160–162]. Figure 5 presents an architecture using RL and DRL agents to orchestrate
network slices. In this architecture, the resource orchestrator module composes RAN,
CN, and edge network resources to form an end-to-end slice that follows the structure
of admitted and scheduled NSLRs by employing a RL/DRL agent, a RAN composer,
an edge composer, and a CN composer. The agent determines normalized weight values
for composing services according to NSLRs of 5G/6G use cases. These values determine
the orchestration priority, the (re)composition of service chains in RAN, CN, and edge
networks, and traffic paths between the elements forming the end-to-end service (network
slice in operation). Moreover, those values should lead to achieving an optimization goal,
for instance, maximizing network utilization while meeting XLA. In the raised example, the
Agent selects an action that, if taken, permits meet XLA and maximize network utilization.
The agent learns to select actions that increase network utilization to avoid resource waste
and allow meeting experience requirements by considering the information on states and
rewards from interaction with the environment by using, for example, TD3 or online DQN.
In the example, the composers use the values defined by the agent to build up and manage
the life cycle of end-to-end network slices.
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Figure 5. Resource orchestration architecture using RL/DRL.

5.1. Orchestration Based on DRL

The following paragraphs review recent DRL investigations to perform resource or-
chestration in NSL or related technologies. Ref. [80] proposed a framework based on
DQN, policy gradient, and actor–critic to orchestrate service function chains dynamically.
The framework determines the placement of VNFs (cloud or edge) that form the ser-
vice chains and the paths to connect them while guaranteeing real-time traffic requests.
The DQN agent considered the space of states as the traffic flow rate of services and the sta-
tus of VNFs. The framework defined the space of actions regarding the number of VNFs to
activate and traffic flow to schedule. The performance evaluation included heterogeneous
NFV/MEC-enabled IoT network scenarios emulated with the networkX tool. The authors
used the scenarios to create a synthetic dataset helpful to train the framework’s algorithms
in the TensorFlow framework. Ref. [81] introduced a DQN-based cross-slice resource
orchestration approach to improve performance and maximize the expected long-term
revenue in RAN slicing where multiple tenants compete for channel resources. The DQN
agent used two DNNs with 2 hidden layers of 16 neurons; the Tanh function [163] was
employed to activate the output layer. The approach defined the space of states as a tuple
comprising data about mobile users (status and location) and arriving packets during a
scheduling slot. The space of actions was modeled as the wireless radio resources to allocate
to each tenant. The approach proposed was emulated using TensorFlow and trained with
5000 episodes. The environment comprised a physical RAN with 4 base stations covering
400 locations each. The requests raised by the mobile users followed a Poisson distribution.

Ref. [82] introduced a framework that scales and places service chains (composed of
VNFs) seeking to achieve lower system costs in 5G networks. The framework used Online
DRL extended with an actor–critic method that employed two LSTMs activated by ReLU.
The online DRL agent operated with a space of states modeled considering data about the
VNFs deployed in previous and current times and upcoming flows from the traffic model.
The DRL agent defined the space of actions as the placement of service chains to serve
all flows in a time t. The authors evaluated their framework using real-world Web traffic
obtained from Huawei Inc., Hong Kong, China. [83]. Eight Google locations comprised
the data center network used in the actual evaluation. Ref. [84] proposed a multiobjective
approach based on TD3 (i.e., is a model-free, online, off-policy DRL method [164]) to orches-
trate the computing resources in small cells connected to a central unit while minimizing
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the latency, energy consumption, and VNF instantiation costs (maximize profit). The TD3
agent used two DNNs activated by ReLu and modeled the space of states as the number of
requested services per slice, the computing resources allocated to each VNF in the service
chains, and the number of instantiated VNFs. According to traffic fluctuation, the approach
defined the actions to increase or decrease the computing resources assigned to each VNF.
The approach proposed used six deep neural networks implemented in PyTorch. The per-
formance evaluation was realized in openAI gym considering two-tenant scenarios with
different latency and CPU constraints requirements. The UE packet arrival followed a
Poisson distribution.

Ref. [85] introduced a resources orchestration approach based on a constraint-aware
online DRL algorithm devised to optimize resource utilization while meeting SLAs in
end-to-end network slices. The DRL agent used two DNNs activated by Leaky ReLU [165].
The approach modeled the space of states considering the average traffic of slices, the num-
ber of users waiting in the queue, and the slice performance in the last time slot. The space
of actions was defined regarding the resources (i.e., uplink and downlink physical re-
source blocks in RAN, bandwidth in the transport network, and computing resources in
edge servers) to assign to each slice at a time slot. Ref. [87] also presented a decentral-
ized approach based on deep deterministic policy gradient (DDPG integrates DQN and
actor–critic) to efficiently orchestrate end-to-end resources regarding overhead and delay
minimization while considering SLA violations and resources limitation in edge slices.
The coordinator agent managed the resource orchestration policies and multiple orchestra-
tion agents. The decentralized agents estimated the resource demands of network slices
and allocated the orchestrated resources locally. All agents operated with a space of states
modeled regarding the status of network slices in queue and performance information
provided by the coordinator and orchestration agents to estimate the resource demanded
by network slices and orchestrate resources. The action space was defined as the resources
to assign to network slices in the base stations and edge servers.

5.2. Remarks

Table 4 shows approaches successfully applying DRL to perform resource orches-
tration in NFV-based CN [80,82] and RAN [81,84]. Those DRL-based approaches used
algorithms such as DQN, DDPG, online DQN, and TD3 to maximize provider revenue and
decrease deployment costs while meeting performance metrics such as latency and energy
consumption. The worst-case complexity of these algorithms is O(HN) and depends on H
(number of hidden layers) and N (number of neurons). Further approaches considering a
broader set of QoS and QoE performance metrics are needed.

Unlike the works cited above, Refs. [85,87] orchestrated resources in NSL from an
end-to-end perspective. It is noteworthy that those works emulated the transport network
with OpenDayLight and managed the resource allocation as a function of the available
bandwidth to connect RAN, CN, and edge networks. Nonetheless, more investigations
in multitenant environments involving RAN, CN, TN, and edge networks are needed
to turn 5G/6G network slices into a reality. It is also necessary to provide NSL orches-
tration solutions for vertical application domains such as UAV, IoT, and tactile Internet.
Moreover, providers need multiagent and noncentralized RL/DRL solutions to orchestrate
slice resources to multiple tenants using a global network view and provide resource
management capabilities inside the slice (i.e., in-slice management). It is noteworthy that
various orchestration approaches were tested with real datasets and emulated in controlled
scenarios. Therefore, the next step to determine their practicability is to evaluate them in
more complex and realistic testbeds.

6. Resource Scheduling

Recently, resource management literature has reported diverse scheduling approaches
centered on NSL. Those approaches have applied techniques such as (meta)heuristics [166,167],
genetic algorithms [168,169], and job-shop problem [170,171] to program the execution time
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of elements composing a network slice. Figure 6 presents an architecture using RL and DRL
to make resource scheduling decisions in a multitenant environment. In this architecture,
the resource scheduling module schedules RAN, CN, and edge network resources to
admitted NSLRs (after admission and allocation phases) by employing a RL/DRL agent,
a RAN scheduler, an edge scheduler, and a CN sthe cheduler. The agent determines
normalized weight values for each admitted NSLR belonging to a 5G/6G use case. Those
values determine the scheduling priority, the time at which resources must be assigned,
and the duration of each service offered by the admitted NSLR. Such values should lead
to achieving a goal, for instance, meet performance requirements defined in SLA. In the
raised example, the agent selects an action that, if taken, permits meeting the mentioned
agreement. The agent learns to select actions that improve performance metrics included
in SLA by considering the information on states and rewards from interaction with the
environment by using, for example, A3C or dueling DQN. In the example, the schedulers
use the values defined by the agent to program resource usage according to the priority,
time and duration of slices, and resources available in the network substrate.

AGENT

Resource Scheduling
Module

RAN Scheduler

t1-t2-t3

t1-t2-t3-t4-t5-t6...

t1-t2-t3-t4-t5-t6-t7-t8...
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eMBB

uRLLC

t1-t2-t3-t4-t5-t6-t7-t8...
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Networking Processing Storage
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Radio Access
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Resource
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NSLRs  
Scheduled 
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Figure 6. Resource scheduling architecture using RL/DRL.

6.1. Scheduling Based on RL and DRL

The following paragraphs review latter investigations using RL and DRL to perform
resource scheduling in NSL or related technologies. Ref. [89] presented an intelligent
resource scheduling approach based on Asynchronous Advantage Actor-Critic (A3C) [172]
(i.e., one of the most recent and powerful DRL algorithms) for improving resource uti-
lization while guaranteeing isolation between slices in 5G-RAN. The approach operated
with slices created on a substrate mobile network based on SDN and NFV. The A3C agent
operated with a space of states represented as the set of users per slice and the assigned
spectrum resources. The approach used a Gaussian probability distribution function to
derive a stochastic policy for selecting actions modeled as resources programmed to each
slice. The A3C was simulated in TensorFlow and trained with synthetic data traffic gener-
ated from Gaussian distribution. Refs. [90,91] presented a scheduling approach based on
Q-learning to program the execution of VNFs composing a service function chain while
minimizing delay. The approach considered delay as the difference between the end exe-
cution time of the first VNF and the end execution time of the last VNF belonging to the
chain. The Q-learning agent employed a space of states modeled from the state of network
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function virtual infrastructure. The agent’s actions defined the VNF chosen for execution in
a time t. The evaluation of the proposed approach considered a system composed of four
NFV nodes and five network services delay-sensitive with different setting parameters.
The packets of service arrived at the NFV nodes following a Poisson distribution.

Ref. [92] introduced a packet scheduler framework based on various RL algorithms
and intended to minimize packet delay and packet drop rates in RAN slices sharing radio re-
sources at each transmission time interval. The scheduler used QV-learning, QV2-learning,
QVMAX-learning, and QVMAX2-learning [173,174] to achieve the optimal action–value
function. The algorithms considered a space of states based on the quality indicator of
channels, active users at each transmission time interval, arrival rates in data queues,
and performance demands of network services. The framework modeled the state of
actions as the number of resource blocks to allocate per transmission interval. The authors
implemented the proposed framework in the LTE-Sim simulator with the RRM-Schedules
C/C++ tool. For the evaluation, they used constant bit rate and variable bit rate to model
the traffic of specific applications such as video, VoIP, FTP, and Web browsing. Furthermore,
they generated constant traffic in random periods and variable traffic from a Pareto distribu-
tion. Ref. [94] proposed a Q-learning-based resource scheduling approach to achieve VNF
chaining that is adaptive and cost-effective in 5G optical networks. The approach modeled
the space of states regarding vCPUs used by each server node. The space of actions was
represented as the physical server node selected for deploying VNFs in a time t.

Ref. [93] introduced an end-to-end NSL resource scheduling scheme based on DQN
and intended to minimize the SLA violations of slices (guarantee performance and service
reliability) and maximize resource utilization. The DQN agent learned to dynamically
manage the resources of 5G network slices depending on the perceived demands by using
a convolutional neural network (CNN) [175,176] composed of four convolutional layers;
the output layer was activated by ReLU and Softmax functions. The scheme modeled the
space of states regarding the number of allocated resources and the percentage of usage
of all available resources scheduled for the slices. The space of actions was defined as
the percentage in which the resources of each slice must be increased or decreased in a
time t. Ref. [95] proposed a scheduling approach based on DQN and aimed to guarantee
low-latency requirements and maximize data transmission downlink time in 5G-RAN
when spectrum resources are insufficient. The DQN agent used a DNN formed by three
and two neurons in the input and output (using ReLU) layers and three hidden layers.
The approach considered the space of states as the total spectrum requirement, low-latency
data delay constraints, and available spectrum. The space of actions was defined to assign
5G spectral resources during time intervals. Ref. [96] presented a DQN-based video stream
scheduling solution to maximize the long-term QoE satisfaction of drones running on a 5G
network. The DNN agent activated the output layer of DNN using the Softmax function
and modeled the space of states regarding packet arrival rate, packet service rate, service
slot duration, startup delay, traffic intensity, and packet arrival probability. The space of
actions was defined to reconfigure the packet prefetching strategy and the startup delay.

6.2. Remarks

RL and DRL have been applied successfully to perform resource scheduling in NFV,
RAN, and optical networks disjointly, as shown in Table 5. RL-based approaches [90–92,94]
used algorithms such as Q-learning, QV2-learning, and QVMAX2-learning to schedule
packets in service function chains as well as in radio and optical network slices to minimize
cost, delay, and packet drops primordially. DRL-based approaches [89,95,96] employed
algorithms such as DQN and A3C to schedule resources to 5G-RAN and UAV network
slices while optimizing network utilization, SLA satisfaction, QoE meeting, and dealing
with scalability issues of RL-based approaches. As the worst-case complexity of Q-learning
and DQN was introduced in the early sections of this paper, here we show the complexity of
the A3C algorithm [89]: O((N ∗ (1/Nu) ∗ Tc ∗M ∗ (∑La

i=0 ua
i ∗ ua

(i+1) + ∑Lc
j=0 uc

j ∗ uc
(j+1)))

where N: number of neurons, Nu: number of CPU threads used to train the algorithm, Tc:
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number of training steps, M: number of slices, i and j: number of units in the ith and jth
layer of the DNN, and ua and uc: number of units of the actor–critic network.

Unfortunately, few works (e.g., [90,91,94]) have investigated the scheduling of physical
and virtual links to connect RAN, CN, and edge networks to guarantee the QoS of slices and
providers’ profit or investigated resource scheduling NSL from an end-to-end perspective
(like [93] did). Indeed, most research has focused on proposing scheduling approaches
for 5G-RAN, disregarding the importance of TN, CN, and edge networks for realizing
NSL. Since NSL is an end-to-end concept, more sophisticated solutions in multitenant
environments involving elements from RAN, TN, CN, and edge networks are necessary to
make 5G/6G network slices a reality. As in Table 5 only [89] used a distributed RL/DRL-
based approach, novel solutions should consider multiagent, noncentralized, and online
RL/DRL to handle the dynamism of 5G/6G networks and avoid making decisions with
incomplete network views; the network overhead and consensus protocols are pivotal to
assessing the feasibility of such solutions. Furthermore, the mentioned table corroborates
and highlights the necessity to advance the RL/DRL-based scheduling approaches to
operate with datasets containing real traces and evaluate them in real or testing networks.
The need to obtain NSL solutions for other vertical application domains such as immersive
media and remote surgery is also noteworthy.

7. Challenges and Future Research Directions

This section introduces some of the key unresolved challenges in network slicing
resource management.

7.1. End-to-End and Coordinated Resource Management

As Tables 1–5 show, on the one hand, it is necessary to propose solutions that face
the resource management problem in NSL from an E2E perspective. As most solutions
are principally RAN-centered, they disregard one or more resources (mainly CN and edge
network resources) needed to build network slices during their modeling. In this way, it
is fundamental to investigate how to model, evaluate, and deploy E2E slices considering
the three-dimensionality of 6G-RAN (nonstatic base stations based on UAV), fog-native
architectures, and CNs supported on data center networks. On the other hand, collaborative
solutions involving more than one resource management phase also are required to achieve
E2E network slices. Notably, we consider that scheduling and orchestration phases in the
RL/DRL-based network slicing resource management domain are still in their infancy
in 5G/6G and beyond networks. We highlight that it is pivotal to study how to deploy
RL/DRL-based solutions to operate E2E slices.

7.2. Multitenant and Vertical Oriented Resource Management

Considering 5G promotes realizing use cases such as uRLLC, mMTC, and eMBB and
6G advocates achieving sEMBB, umMTC, mURLLC, MBRLLC, and ERLLC, it is necessary
to introduce new resource management solutions able to meet the requirements of such
diversity of use cases. Indeed, Tables 1–5 show network slicing resource management
solutions have not addressed 6G use cases to the best of our knowledge, opening the
port for research on 6G resource management by using RL and DRL techniques. It is also
remarkable that few solutions presented in Sections 3–6 operate in multitenant environ-
ments and, worst, some of them do not use 5G or 6G terminology, resulting in a research
gap to fulfill. Furthermore, novel resource management solutions will be needed to meet
vertical applications’ QoE and QoS requirements such as remote surgery, immersive media,
industrial IoT, and intelligent microgrids.

7.3. Incremental and Online Learning

Despite DRL, algorithms are practical for extremely high-dimensional application
domains such as data center and 5G/6G networks. They usually operate with environments
that remain unchanged during learning, as a result, they may present shortcomings when
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coping with dynamic environments where the reward function, state transition function,
or state action spaces change over time. Incremental DRL [177,178] and online DRL [179]
have been proposed recently for enhancing DRL. Incremental DRL algorithms can learn
continuously, adapt their models without forgetting the learned earlier, and produce
faster forecasting than traditional DRL algorithms operating with minibatches. Online
DRL algorithms are incremental, operate in environments with restricted resources and
hard run-time constraints, and have lifelong learning with limited data. As incremental
DRL and online DRL are still in their infancy in the networking domain, we consider
it worth investigating their benefits to a dynamic application domain such as 5G/6G
network slicing resource management in depth. Several critical questions need an answer
during those investigations: 1 Which online/incremental DRL algorithms match resource
management (or a particular phase)? 2 What is the performance of these algorithms when
solving resource management tasks? 3 How do we optimize existing online/incremental
algorithms for resource management phases?

7.4. Distributed and Federated Learning

Distributed ML algorithms create accurate models using multiple servers usually
containing datasets of around the same size with independent and identically distributed
samples. These algorithms aim to improve the learning process regarding time, mem-
ory, and bandwidth. Federated learning is a particular distributed learning approach in
which ML algorithms build accurate models from vast decentralized and heterogeneous
datasets residing on resource-constrained devices (e.g., gateways, edge devices, smart-
phones, and autonomous vehicles). A federated learning process can be coordinated by a
centralized node (e.g., a 5G/6G network data analytics function or an SDN controller) or
collaboratively by distributed nodes (e.g., in-slice managers or programmable switches).
Multiagent DRL [180] and federated DRL (FDRL) [181,182] have been proposed recently for
enhancing DRL. It is worth exploring these DRL variations in 5G/6G networks since they
could revolutionize the network-slicing resource management. Multiagent DRL and FDRL
would learn deeply by interacting with the environment to meet XLAs and SLAs in multi-
tenant and even multinetwork provider environments. Although some admission control
and resource allocation approaches [183–188] have touched on these DRL variations, many
research challenges have arisen (mainly related to scheduling and orchestration phases):
1 Achieve an optimal trade-off between processing, memory, bandwidth, and accuracy

requirements in the resource management solutions to facilitate their deployment in ar-
chitectures based on microservices; 2 Support concurrent and coordinated decisions in
solutions involving more than one resource management phase in multitenant scenarios.
3 Build up open solutions and experimentation platforms to facilitate comparison and

evaluation of FDRL-based solutions; 4 Combine online and federated learning to obtain
resource management models that learn distributed and continuously when new data ap-
pear; 5 Provide security to FDRL, including securing the central coordinator, collaborator
nodes, and updates of the shared model.

7.5. Explainable Models

RL and DRL have proven to successfully solve a range of sequential decision-making
problems in networking and resource management. However, all approaches reviewed in
this paper operate as black boxes (nontransparent and hard to interpret). They obfuscate
their decision-making policy through complex Q-value functions or DNNs. Very few
works concentrate on eXplainable RL (XRL) or eXplainable DRL (XDRL) that particularize
the eXplainable AI concept (XAI). XAI intends to make AI-based solutions interpretable,
manageable, and trustworthy [189]. XRL/XDRL is a relatively novel research field aimed at
developing techniques to extract concepts from the RL/DRL agent’s (e.g., perception of the
environment, intrinsic/extrinsic motivations/beliefs, Q-values) [190]. We consider XRL and
XDRL to be essential to achieving real deployments and commercial success of RL/DRL-
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based solutions in 5G/6G resource management since operators and tenants can gain access
to explanations and justifications of the outcomes given by XRL/XDRL solutions.

7.6. Practicability

RL/DRL solutions in networking have usually been evaluated in simulated scenarios,
hindering their practical deployment. It is pivotal to evaluate those solutions, initially
in emulated environments and, later, in real networks for commercial acceptance. Initial
questions to address are 1 How do novel ML advances test in network emulators? 2 How
can RL/DRL-based solutions be scaled from emulators to real-networks? As the real
world is very different from simulations/emulations, it is necessary to answer additional
questions. 3 How do RL/DRL-based solutions adapt to real dynamic data traces? 4 How
do RL-DRL-based solutions scale in real dynamic networks? The raised questions constitute
research gaps to make network resource management into a reality.

8. Conclusions

Recent years have witnessed explosive growth in using ML to solve networking issues.
In particular, RL and DRL have been successfully applied in various networking areas.
Specifically, this survey provides a comprehensive view of the applicability of RL and
DRL techniques to perform resource management in 5G/6G network slicing. We reviewed
representative research works and explored and discussed the feasibility and practicality
of the proposed solutions in addressing admission control, resource allocation, resource
scheduling, and resource orchestration challenges.

Future networks will have to support diverse QoE and QoS performance require-
ments from emerging use cases and vertical applications in multitenant environments.
Although RL/DRL-based network slicing resource management solutions have shown
promising results in simulated or (some few) emulated scenarios, their scalability and
practicability need to be evaluated with the envisioned volume of data, ultrahigh num-
ber of devices, and applications (especially with real-time constraints) in small, medium,
and large scale networks. On the other hand, current RL/DRL-based approaches for net-
work slicing resource management offer mainly centralized and offline learning. To meet
resource management on 5G/6G and beyond networks that are distributed in nature and
operate with highly-dynamic data, existing RL/DRL approaches should be enhanced or
re-architected to realize E2E network slices. This survey discussed the above issues along
with several other challenges and opportunities. Our findings motivate the need for more
research to advance the state-of-the-art seeking to achieve the vision of zero-touch network
resource management.
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ANN Artificial Neural Network
CN Core Network
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E2E End-to-End
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NSLR Network Slice Request
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SGD Stochastic Gradient Descent
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V2X Vehicle-to-Everything
VNF Virtual Network Function
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