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Approximately 50% of Escherichia coli strains causing extra-intestinal infections
in humans elaborate a cytolysin, designated E. coli hemolysin (ECH)t, which is
responsible for the characteristic zones of (3-hemolysis surrounding bacterial colo-
nies on blood agar (1-6) . Experimental support for a role of this cytolysin as a viru-
lence factor derives from numerous studies with isogenic bacterial strains conducted
in animal models (7-10) . A considerable amount ofmolecular genetic data are now
available on the toxin (10-15). The primary sequence of the 107,000-dalton protein
is known (16), and sequence homologies have been detected with three other cytolysins,
i.e., the cytolysin of Pasteurella hemolytica (17, 18) and the hemolysins of Proteus and
Morganella species (19, 20).

In contrast to the large amount of molecular genetical data available on ECH,
information on the mechanism of its cytolytic action and on its biological effects
in a physiological environment has been scarce . Following earlier reports that to-
gether had suggested a membrane-perturbating effect ofECHon erythrocytes (21-24),
we recently showed that ECH forms discrete hydrophilic transmembrane pores of
ti2 nm effective diameter both in erythrocyte membranes (25) and in planar lipid
bilayers (26) . These pores are probably generated by the insertion oftoxin monomers
into the bilayer; in this respect, they differ from oligomerizing pore-formers including
C5b-9 complement complexes (27), lymphocytolysins (28), and cytolysins of Gram-
positive organisms (29-33) .
The recognition that a bacterial cytolysin generates transmembrane pores does

not in itself explain its pathogenetic role in bacterial infections . Many pore-formers
including ECH apparently do not bind to cellular receptors, and they disrupt the
integrity ofprotein-free liposomes and planar lipid bilayers (33) . Poorly understood
cell surface factors mayinfluence the binding ofsuch toxins to cell targets; as a con-
sequence, various cell types may differ widely and unpredictably in their suscepti-
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bility toward a given toxin (33, 34) . Additionally, the cytolytic capacity of an exo-
toxin may be subject to considerable inhibition or modification by human plasma
proteins (e.g ., naturally occurring antibodies) . For these reasons, the necessity arises
to identify those cells that represent preferred targets for toxin attack under physio-
logical conditions . The simplest model that lends itselfto such studies is the analysis
of toxin interactions with blood cells in the presence of human plasma or serum .

Based on this reasoning, we recently conducted a study on the interaction ofStaphy-
lococcus aureus a-toxin with cells in human blood. Surprisingly, we found that 01-toxin
attacks human platelets in a selective fashion, thus promoting blood coagulation
(35) . Presumably due to the very rapid binding of the toxin to platelets, this process
was not prevented by otherwise effective plasma inactivators of a-toxin .

In the present study, we sought to determine whether ECH would similarly attack
a particular cell type in human blood . We found that several plasma proteins effec-
tively protected erythrocytes and platelets against the action ofthis cytolysin . In con-
trast, protection of polymorphonuclear leukocytes by the same proteins was quite
ineffective . As a result, ECH mounted a selective attack on granulocytes in human
blood . We will present quantitative data on this phenomenon that collectively iden-
tify ECH as the most potent leukocidin known to date.

Materials and Methods

Cells .

	

Granulocytes were isolated from heparinized blood following conventional proce-
dures . In brief, 1 vol of gummi arabicum (10 01o wt/vol in isotonic phosphate buffer, pH 7 .4)
was added to 4 vol (20-40 ml) whole blood (20 U heparin/ml), and cells were allowed to sedi-
ment in tilted plastic centrifugation tubes (10 ml) for 60 min at 37 °C . The erythrocyte-depleted
supernatants were applied in 4-ml aliquots to 4-ml Ficoll-Hypaque gradients (Pharmacia
Fine Chemicals, Uppsala, Sweden) and centrifuged for 45 min at 400 g, 20°C . The cell pellets
containing polymorphonuclear leukocytes (PMN) and contaminating erythrocytes were
resuspended in 0.2-0.3 ml PBS, and the erythrocytes were lysed by addition of ice-cold dis-
tilled water (3 ml) under vigorous agitation for 30 s . Re-isotonization was achieved through
addition of 1 ml 0 .6 M KCL. The PMN were resedimented (100 g, 10 min) and washed once
with PBS. They were resuspended to 1-5 x 10' cells/ml in PBS and kept on ice before use .
The cell preparations contained <317o contaminating lymphocytes, and <4% nonviable cells
as determined by staining with trypan blue .
Human erythrocytes were isolated from citrated blood and resuspended in PBS.
Plasma Proteins.

	

Human albumin was obtained as a 5 % solution from Plasmapharm Sera
GmbH, Leimen, FRG. Plasma HDL and LDL were isolated from pooled human serum
by centrifugation in KBr density- gradients following published procedures (36) . Protein con-
centrations were determined by the Folin method in the presence of 0.1% SDS . Concentra-
tions of the lipoproteins were adjusted to levels contained in pools of normal human sera
(LDL : N1 mg protein/ml ; HDL: -2.5 mg protein/ml) by quantitative immunoelectropho-
resis using specific antisera from Behringwerke, Marburg, FRG. Pooled human IgG prepa-
rations (50 mg/ml) were from Sandoz (Sandoglobulin" ; Basel, Switzerland) .
E. coli Hemolysin.

	

The preparation of ECH followed a procedure that has been described
previously (25) . The toxin preparations exhibiting the 107,000 mol wt ECH protein band
(Fig. 1) were immediately shock frozen in liquid nitrogen and stored at -70°C before use .
Each thawed vial was retitrated immediately before experiments were conducted, and all ex-
periments were conducted within 1 h thereafter. The toxin was held on ice throughout the
duration of experiments . Adherence to this protocol was essential since ECH lost activity
even when kept at 0°C within a few hours . The applied doses of ECH will be referred to
in hemolytic units (HU)/ml . By definition, 1 HU/ml is the toxin concentration evoking 60%
lysis of a suspension containing 5 x 108 erythrocytes/ml (in PBS) . As to be reported else-
where, the protein content of different toxin preparations with the same hemolytic activity
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FIGURE 1 .

	

SDS-PAGE of an E. coli hemolysin preparation containing 100
pg/ml protein and exhibiting a hemolytic activity of 1,250 AU/ml . 100 fel
(10 fig protein) were applied to the 10% gel (right lane) . Coomassie Brilliant
Blue staining revealed a single protein band ofM, 110,000 . (Left lane) Marker
proteins (Serva) : (a) phosphorylase b (94,000); (b) BSA (67,000); (c) OVA
(43,000); (d) carbonic anhydrase (30,000) .

varies considerably because ofthe inevitable presence ofinactive toxin . In the present study,
toxin preparations were used in which 1 HU/ml corresponded to 50-100 ng protein/ml . Con-
trol experiments were also conducted with toxin preparations that had been inactivated by
incubation at 37°C for 1-2 h; this resulted in spontaneous loss of90-100% ofhemolytic activity.

Hemolytic Titrations.

	

Titrations were conducted such that direct comparisons could be made
between hemolysis curves and granulocyte permeabilization data. To 100 JAI ofa given solute
(see Fig. 2) we added 100 14 of human erythrocytes in PBS (5 x 107 cells/ml) in Eppendorf
tubes . 20 fd of a serially diluted ECH solution (PBS) were then added and hemolysis read
after 60 min at 37°C by measurement ofhemoglobin absorbance at 412 nm in the supernatant .

Measurements ofPlatelet Aggregation.

	

Preparation ofplatelet-rich plasma and assays for platelet
aggregation and ATP-release from these cells were performed as described (35) .

Measurements ofATP Release from PMN.

	

Continuous measurements of ATP-release from
PMN were performed with the firefly assay (37) using a Lumi-Aggro-Meter (model 400 ;
Chrono-Log Corp ., Coulter Electronics, Krefeld, FRG; references 38, 39) . The apparatus
was equipped with an Omni-Scribe II recorder (Coulter Electronics) for continuous recordings
of optical measurements (38, 39) . In these experiments, 150 jAl of PBS, or of a solution mix
containing physiological concentrations ofalbumin (40 mg/ml), LDL (1 mg protein/ml), HDL
(2.5 mg protein/ml), and pooled IgG (15 mg/ml), or of pooled normal human serum were
pre-warmed to 37°C . 20-30 fal of PMN cell suspensions (2-5 x 107 cells/ml) were added
together with 170 ltl of firefly reagent (ATP-bioluminiscence CLS from Boehringer, Mann-
heim, FRG), and toxin applied at the given doses 60 s after incubation ofthe total mix at 37°C .

In neutralization experiments, ECH was first pre-incubated with normal human serum
(NHS) or a solution mix for 20 min at 0°C . These solutions were then added to PMN and
firefly reagent, and ATP was measured as described .

Detection ofInflux ofPropidium Iodide into Toxin-treated PMN.

	

These studies were conducted
with the use of a FACSCAN (Becton Dickinson & Co., Heidelberg, FRG) flow-cytometer
with computer-assisted evaluation of data (Consort 30 software) . PMN were suspended at
2 x 10 6 cells/ml in PBS in the presence of 4 Fig/ml propidium iodide (Sigma Chemical Co .,
Munich, FRG) at 37°C . Toxin was added at varying concentrations, and the ensuing influx
of propidium iodide was detected after 10 min by measurements of cell fluorescence . This
assay is based on the fact that intact cell membranes are virtually impermeable to propidium
iodide, and viable cells therefore exhibit low background fluorescence. In contrast, perme-
abilized membranes allow propidium iodide to diffuse to the nucleus, where firm binding
to nucleic acids occurs with concomitant appearance of bright cell fluorescence (40, 41) .

Measurement of Entrapment of BCECF

	

These assays were based on the principle that bis-
carboxyethyl-carboxyfluorescein pentaacetoxymethylester (BCECFAM ; Calbiochem-Behring
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Corp ., La Jolla, CA), a water-soluble esterified derivative of carboxyfluorescein, spontane-
ously diffuses through biological membranes and is cleaved by cytoplasmic esterases to yield
the fluorescent product BCECF that diffuses only slowly back to the extracellular space (42-44) .
The experiments were conducted in order to assess whether repair ofmembrane pores could
occur after attack ofPMN by ECH. Cells were suspended in PBS and treated with 1-5 HU/ml
ECH for 10 min at 37'C . 1 vol of NHS was then added and incubation continued for another
30 min . Aliquots were withdrawn at the given time intervals, given 20,M BCECFAM, and
cells were pelleted after an additional 15 min of incubation at 37°C. The BCECF that was
trapped in the cells was released by suspending the cell pellets in 1 ml of distilled water and
assessed fluorimetrically using a Hitachi-Perkin-Elmer Fluorescence Spectrophotometer 204
(Tokyo,Japan) . Cells not treated with ECH were handled in the same way, and fluorescence
measurements of these control lysates were taken as 100% values .

Release ofGranule Constituentsfrom PMN.

	

Myeloperoxidase (MPO) and elastase were taken
as markers for primary lysosomes (45, 46) . Vitamin B 12 binding protein was considered
a marker for secondary lysosomes, and glucosaminidase was chosen as a marker of tertiary
granules (47) . Measurements of MPO, vitamin B 12 binding protein, and glucosaminidase
release were performed exclusively in protein-free buffer (HBSS or PBS) . Measurements of
elastase release were conducted both with cells suspended in protein-free buffer and in whole
blood . In the former experiments, cell suspensions were treated with ECH for 5-10 min at
37°C, and autologous serum was subsequently added to the samples . The released elastase
was measured immunologically as a complex of elastase and serum proteinase inactivator
using a commercial ELISA kit from Merck Laboratories, Darmstadt, FRG (PMN-Elastase
Immunoassay, No. 15689) . MPO, vitamin B 12 binding protein, and glucosaminidase were
quantified according to described procedures (47) . The maximal release (100%) values were
those obtained by sonication of cell aliquots (15 s, 50 W) .

Measurements of Superoxide Generation by PMN.

	

These assays were performed according to
a standard procedure (48) .

Quantification ofECH Bound to PMN.

	

0.5-ml aliquots of cell suspensions containing 2 x
10' PMN were treated with 2.5-20 HU/ml ECH for 4 min at 37°C . Cells were then pelleted,
washed thrice in PBS, and solubilized by suspension in 100 pl of 130 mM n-octyl (3-n-
glucopyranoside (Sigma Chemical Co., Munich, FRG ; henceforth referred to as octylgluco-
side) . ELISA measurements for ECH were performed using a sandwich technique in which
monoclonal antitoxin antibodies were used to capture the antigen, and polyclonal rabbit IgG
antibodies were used as second antibodies . The principle and performance of this assay is
to be described in detail elsewhere (Eberspacher, B ., F. Hugo, and S . Bhakdi, manuscript
in preparation) .

Assaysfor Phagocytic Killing by PMN.

	

Thephagocytic killing capacity ofPMN was assayed
by a simple conventional procedure by measuring the percentage of survival ofS. aureus after
a 60-min incubation with granulocytes in the presence of 20% NHS (49) . PMN (10 6 cells
in 250 jl PBS) were incubated with 100 j1 NHS, 100,ul (10' cells) S. aureus Wood 46 and
50 Al of ECH at various final concentrations. The S. aureus cells were obtained from an over-
night culture in tryptic soy broth (Difco Laboratories, Detroit, MI). Bacteria were washed
twice in PBS, suspended in this buffer, and briefly sonicated before use . Parallel incubations
ofS. aureus in 20% NHS plus ECH (2.5 and 50 HU/ml) without PMN served as 100% growth
controls. All samples were prepared in 1 ml Eppendorf tubes and rotated end-on-end for
60 min at 37°C . Thereafter, the cell suspensions were briefly sonicated (10 s, 50 W; Branson
Sonifier B-12), appropriately diluted in ice-cold saline, and plated out on Cled-agar plates
(Difco Laboratories) for determination of colony-forming units . Alternatively, PMN were
suspended in PBS and pre-incubated with ECH for 5 min at 37°C, after which NHS (20%
final concentration) and S. aureus cell suspensions were added, and phagocytic killing was
similarly determined after 60 min .

Results
Human Plasma Proteins Inhibit Lysis ofErythrocytes by ECH.

	

The ECH preparations
used in our study exhibited high hemolytic activity of 2,500-10,000 HU/ml. As de-



termined by the ELISA, 1 HU/ml, defined using a 10% erythrocyte suspension (109
cells/ml), corresponded to 50-100 ng/ml of toxin (Eberspacher, B., F Hugo, and
S. Bhakdi, manuscript submitted for publication) . When conducted with dilute
cell suspensions (2 .5 x 10' cells/ml final concentration in the assay), titration curves
shown in Fig. 2 were obtained . In PBS, 60% hemolysis was then registered at toxin
concentrations of -0 .25 HU/ml.

It was found that human serum albumin (ESA), high density lipoprotein (HDL),
low density lipoprotein (LDL), and IgG antibodies reduced the hemolytic capacity
of ECH. The addition ofthese plasma proteins to PBS at physiologic concentrations
resulted in the depicted shifts in titration curves . When the four plasma components
were present together (solution mix in Fig. 2), 60% hemolysis was elicited only at
toxin levels of >100 HU/ml. In the presence of whole serum, protection of erythro-
cytes was even more pronounced, and 60% hemolysis could not be induced at the
highest toxin concentration tested (500 HU/ml). In all these experiments, toxin was
applied directly to the cell suspensions without preincubation with the inactivating
proteins . Since ECH titers of >50 HU/ml are rarely reached by toxin-producing
E. coli strains under optimal conditions in broth culture, we conclude that in vivo
lysis of human erythrocytes by ECHprobably never occurs in whole blood or protein-
rich body fluids and exudate.
Lack ofEffect ofECH on Platelets in Platelet-rich Plasma (PRP).

	

ECH was added to
PRP and the behavior of platelets monitored by measurements of aggregation and
ATP release. It wasfound that ECH at doses of 100 HU/mlentirely failed to provoke
platelet aggregation or effect ATP release from platelets in PRP.
ECHProvokes RapidATPReleasefromPMN.

	

The release ofATPfrom PMNevoked
by ECH was first monitored in protein-free buffer (Fig. 3) . These assays generated
information on the susceptibility of these cells towards the toxin and on the kinetics
of membrane permeabilization . Human PMN responded to attack by ECHby rapid
release ofcellular ATPwhich commenced within seconds after application of moderate
toxin doses (5-20 HU/ml). As doses decreased, lag phases increased to a maximum
of -90 s (Fig . 3 A) .

To assess the degree of protection afforded by serum protein components, experi-
ments were conducted using either a solution mix (containing HDL, LDL, ESA,
and IgG) or NHS (compare with Fig. 2) . In the presence of the solution mix, ECH
still evoked ATP release from PMN at concentrations that were far below the hemo-
lytic threshold . As shown in Fig. 3 B, 5 HU/ml ECH caused rapid and maximal
ATP release, and a toxin effect was still observed at concentrations below 1 HU/ml
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FIGURE 2 . Hemolytic titrations of
ECH using human erythrocytes sus-
pended in protein-free buffer(PBS) ; in
PBS supplemented with physiological
concentrations of HSA, HDL, LDL,
IgG ; or in a solutions mix ofthese four
protein components (" ) ; or in 50%
autologous serum (NHS) . Note the
effective protection oferythrocytes by
these plasma protein components.
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FIGURE 3 .

	

Release of ATP from PMN (106 cells in 400 Al) suspended in PBS (A) or in a solu-
tion mix containing physiological concentrations of HSA, HDL, LDL, and IgG (B) induced by
ECH. ATPwas measured continuously using the firefly assay. The final concentrations ofECH
applied are given in HU/ml. The assays were calibrated with ATP as depicted . Note the relatively
poor protection of PMN against toxin action afforded by the plasma protein components.
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(<50 ng/ml) . Somewhat higher toxin doses were required to elicit the same effects
when PMN were suspended in normal human serum (NHS) . In this case, ATP re-
lease was initiated at toxin doses around 5 HU/ml.

Preincubation with Plasma Proteins Leads to Neutralization ofECH.

	

ECH was effec-
tively inactivated by NHS or the protein mix if incubated on ice with the respective
inactivators before gaining contact with PMN. In the experiment ofFig. 4, 10 HU/ml
toxin were completely inactivated by preincubation with the protein solution mix,
and no ATP release ensued if PMN were added thereafter. However, subsequent
application of only 1 HU/ml toxin to the same cell suspension resulted in release
of ATP Fig. 4 B depicts ATP release evoked by 100 HU/ml toxin in NHS; note the
extremely rapid leakage of ATP commencing seconds after application of this toxin
dose . If 50 HU/ml toxin were preincubated with NHS for 20 min on ice, however,

FIGURE 4.

	

Preincubation ofECHwith plasma inactivators results in toxin inactivation . (A) ECH
(10 HU/ml) was preincubated with the protein solution mix ofFig. 3 for 20 min at 0°C. Applica-
tion of this solution to PMN failed to elicit ATP efflux . However, subsequent application of only
1 HU/ml ECH to these cells led to cell membrane permeabilization . (B) PMN suspended in
50% NHS responded to 100 HU/ml ECH with immediate release of ATP (C) Preincubation
of 50 HU/ml ECH with 50% NHS(20 min, o°C) led to toxin inactivation. Again, subsequent
application of 10 HU/ml ECH to the cells resulted in efflux of ATP.
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cells added subsequently remained intact (Fig . 4 C) . Again, application of another
10 HU/ml toxin to the cell suspension caused ATP efflux . These results underline
the fact that seemingly effective plasma inactivators may fail to protect cells against
attack by a cytolysin under physiological conditions, i.e ., when the toxin is simul-
taneously confronted with both inactivator and its cell target .

Influx ofPropidium Iodide into Toxin-treated Cells.

	

An alternative means to document
membrane permeabilization was to assess the degree ofcellular fluorescence deriving
from transmembrane diffusion and binding of propidium iodide to nucleic acids .
Cells were treated with ECH in the presence of propidium iodide . After 10 min,
automated analyses were conducted in a flow cytometer, and typical results are depicted
in Fig. 5. Toxin doses around 0.02-0.05 HU/ml evoked uptake ofthe dye, as evident
from an increase in fluorescence intensity of the cells . Toxin doses of 0.2 HU/ml
led to permeabilization of all cells and dye uptake within the same time period (Fig .
5 A) . Concomitantly, enlargement of the cells indicative of a swelling reaction was
noted, as evident from an increase in cell volume (forward scatter, Fig. 5 B) .

Inability ofPMNto Repair ECHLesions.

	

Two types of experiments were performed
in order to test whether PMN would be able to repair permeabilized membrane
areas. The first experiments were conducted with cells suspended in PBS without
serum proteins, and utilized measurements of propidium iodide influx as a param-
eter for membrane integrity. Cells were treated with similar doses of toxin shown
in Fig. 5 in the absence of propidium iodide . After 15 min, the marker was added
anddye uptake was assessed . Control experiments showed that ECH at the low con-
centrations used spontaneously lost its hemolytic and membrane-permeabilizing prop-
erties within 10-15 min at 37 °C. Therefore, any permeability defects detectable after
15 min must have been generated within the first 10 min ofincubation with the toxin .
In none ofthese experiments could a reduction in dye uptake be detected, i.e ., toxin-
treated cells remained equally permeable to propidium iodide 15-20 min after toxin
attack had been initiated .
The second set of experiments exploited the use of BCECFAM, an acetylated

carboxyfluorescein derivative that diffuses across intact membranes but becomes
trapped intracellularly after its cleavage by cytoplasmic esterases . The amount of
trapped marker can be assessed fluorimetrically after lysis ofthe cells . Control intact
cells (incubated with PBS) were suspended in serumand BCECFAM added 30 min
thereafter. After a 20-min incubation with BCECFAMat 37°C, the cells were pelleted,
washed once in PBS, and trapped dye was released by hypotonic cell lysis in water.
The measured fluorescence in this lysate was taken as the 100% value. In parallel,
cells were treated with 1 or 5 HU/ml ECH for 10 min in buffer, and then suspended
in one volume of NHS. No residual membrane-permeabilizing toxin activity could
be detected in the samples after addition of the serum . At the depicted times (Fig.
6), aliquots were removed, given BCECFAM for 20 min, and the amount oftrapped
dye was subsequently measured . Again, it was found that the cells remained unable
to retain fluorescent dye despite incubations in serum for periods up to 30 minutes
(Fig . 6) .

Degranulation of PMNInduced by ECH.

	

Leukocyte elastase and MPO present in
primary azurophilic granules were released from cells attacked by ECH. The re-
lease of elastase was measured in serum-free buffer or in whole citrated blood (Fig .
7 A) . Elastase release from cells in buffer commenced at toxin concentrations of



BHAKDl ET AL.

FIGURE 5 .

	

Flow cytometric analysis of propidium iodide influx into PMNtreated with various
concentrations of ECH. Excitation with a 488-nm argon laser, fluorescence measured at 585
nm wavelength . 2,000 cells werecounted in eachexperiment. Histograms revealed a dose-dependent
increase in fluorescence intensity (A), and swelling of ECH-treated PMN as measured by for-
ward scatter (B) . Dotted line in Fig. 5 B represents size distribution of cells treated with 0.006
HU/ml ECH; an indistinguishable curve was found with control, non-toxin-treated cells . Solid
line : size distribution of cells treated with 3 HU/ml ECH.

745



746

	

ANTIPHAGOCYTIC MECHANISM OF BACTERIAL CYTOLYSIN

U_ 100

N1 HU/ml (50-100 ng/ml) and approached maximal values at N5 HU/ml . In whole
blood, release commenced at -10 HU/ml and was maximal at 200-500 HU/ml ECH.
These results indicate that ECH induces degranulation of primary granules ; how-
ever, the process is initiated at toxin levels above those that are required to promote
ATP release or influx of propidium iodide .

Fig. 7 Bsummarizes the results offurther assays for granule constituents released
by toxin-treated PMN in protein-free solution . Release of MPO, another compo-
nent of primary granules, also commenced predominantly at toxin levels ti 1 HU/ml.
Additionally, small amounts of this marker were liberated at toxin concentrations
in the range of 0.1-1 HU/ml. In some contrast to the above findings, vitamin B12-
binding protein, a constituent of secondary granules, was released at lower toxin
concentrations . The dose-response relationship here closely resembled that of ATP
release (compare with Fig. 3) . Release of glucosaminidase, regarded as acomponent
oftertiary granules, exhibited adose-response behavior similar to elastase and MPO

FIGURE 7.

	

Release ofgranule constituents from
PMN induced by ECH. (A) Release of elastase
from cells suspended in PBS or in whole blood.
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cells suspended in PBS. Asterisks denote values
measured in the respective, non-toxin-treated
controls (C). Results are representative of three
similar experiments performed on separate days .

FIGURE 6 .

	

Inability ofPMNto trap BCECF after treatment with ECH.
PMN were permeabilized with 5 HU/ml ECH for 5 min at 37°C and
then suspended in 50% NHS. Control cells (C) received no toxin. After
0, 5, 10, 15, and 30 min at 37°C, aliquots of the toxin-treated cells re-
ceived 20 tLM BCECF-AM for 20 min, 37 °C, and the amount oftrapped
BCECFwas subsequently measured . Control cells received BCECF-AM
after a 30-min incubation in serum, and the fluorescence measured in
the lysates of these cells was expressed as 100% . Toxin-treated cells did
not regain their ability to entrap the fluorescent marker. The same results
were obtained with cells treated with 1 HU/ml ECH.
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(Fig . 7 B) . Collectively, these data indicate that degrànulation of secondary granules
occurs at similar toxin doses that evoke ATP leakage and propidium iodide influx,
whereas the release ofprimary and tertiary granule constituents requires attack by
higher toxin doses.

Superoxide Generation by Toxin-treated PMN.

	

Toxin doses between 0.5 and 20 HU/ml
were found to induce only slight increases in superoxide anion generation, in the
order of 517o above basal levels .

Antiphagocytic Effects ofECH.

	

PMN were suspended in 20% NHS and incubated
with S. aureus in the presence or absence of ECH . Phagocytic killing of staphylococci
was assessed after a 60 min incubation by colony counting . These experiments demon-
strated that low doses ofECH depressed phagocytic killing by PMN. Whereas 15-20%
bacterial survival was found in non-toxin-treated controls, survival rates increased
already at ECH doses of N1 HU/ml, which corresponded to the dose required to
initiate ATP release in 20% NHS. Total survival ofbacteria was noted at toxin levels
of 10-25 HU/ml (Fig . 8 A) .

If cells were preincubated with toxin for 5 min in the absence of serum, marked
antiphagocytic activity was noted already at toxin doses around 0.02 HU/ml (Fig.
8 B) . These results again correlated very well with the observations on ATP release
from PMN in protein free solution, and indicated that the process of membrane
permeabilization and ATP loss was directly paralleled by a loss of phagocytic killing
capacity. It is noted that phagocytosis assays in serum were conducted over a period
of 60 min. The antiphagocytic effects of relatively low toxin doses thus further indi-
cated that permeabilized cells were unable to recuperate from toxin attack.

Quantitation of Toxin Binding to PMN.

	

The amounts ofcell-bound toxin that elicited
biological effects were below the detection limit of the available assay system, and
estimates could be made only by extrapolation. PMN (2 x 10 7 cells in 0.5 ml PBS)
were treated with 2 .5-20 HU/ml of toxin, and cell-bound toxin was quantified by
ELISA after 4 min incubation at 37'C. This brief incubation was chosen because
pilot experiments indicated that cell-bound toxin was rapidly degraded, possibly by
elastase released from PMN, and could later not be detected immunologically. Fig.
9 depicts the results ofthese determinations . Assuming a linear correlation between
the amount of toxin offered and the number of cell-bound molecules at lower toxin
concentrations (dotted line, Fig. 9), we estimated that treatment of 2 x 107 cells
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FIGURE 8 .

	

Inhibition of phagocytic
killing of S. aureus by ECH. (A) PMN
suspended in 20% NHS were in-
cubated with S. aureus in the presence
of the depicted final doses ofECH; data
represent mean values obtained from
four similar experiments. (B) PMN
were suspended in PBS and treated
with ECH at the depicted doses for 5
min, 37°C, after which 20% serum
and S. aureus were added; data repre-
sent mean values obtained in three
similar experiments.
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Quantitation ofECHbound to PMN. Cells (2 x
107/ml) were suspended in PBS and treated with the depicted
doses of ECH for 5 min at 37 °C. Bound toxin was quantified
by ELISA. The dotted line shows the extrapolation ofresults
to low toxin doses . Data are mean values from three similar
experiments .

with 0.2 HU of toxin in a 1-ml aliquot should result in average binding of -300
molecules ECH/cell (Fig. 9) . This corresponded approximately to the toxin dose
that was previously found to initiate ATP release (compare with Fig. 2 A : 0.02 HU/ml
ECH evokes ATP release from 2 x 106 PMN/ml).

Leukocidal Effects ofECHAre Dependent on its Poreforming Capacity.

	

Toxin prepara-
tions rapidly lost their capacity to lyse erythrocytes and form pores in planar lipid
bilayers upon incubation at 37°C for 1-2 h. This loss of pore-forming capacity was
paralleled by a loss in the capacity of the toxin to evoke all of the above described
processes in PMN.

Discussion
Previous investigations have demonstrated a cytotoxic effect of ECH on isolated

PMN (50-53), but the primary cause of cell damage has not been defined, nor are
quantitative data on this phenomenon available . The present study addresses these
questions and probes the possible biological relevance of the process through the
construction ofexperiments that reflect in vivo situations . The collective results identify
ECH as the most potent leukocidin known to date .
When tested in protein-free solution, it was found that release ofATP from PMN

occurred at similar toxin concentrations as those required to cause hemolysis. Im-
munological measurements of cell-bound toxin led to an estimate that membrane
permeabilization occurred upon binding of4300 molecules ECH/cell . This number
is in the same order of magnitude as that of -100 molecules previously estimated
to be required for formation ofa cytolytic lesion in an erythrocyte (Eberspacher, B.,
F Hugo, and S. Bhakdi, manuscript in preparation) . The process of cell binding
and membrane permeabilization by ECH in PMN is very rapid, ATP release com-
mencing within a few seconds after application. The rapidity of toxin binding to
PMN was probably responsible for the surprising inefficiency of plasma protein in-
activators to neutralize ECH unless they were preincubated with the toxin.

Pilot experiments showed that erythrocytes suspended in NHS were resistant to
lysis by even high doses of ECH (250 HU/ml). LDL, HDL, HSA, and IgG were
identified as four major plasma components that contributed towards this protective
effect . LDLhas previously been found to inactivate a-toxin (54), and IgG antibodies
to ECHare present in plasma of all healthy adults (55) . A solution mix was prepared
that contained all four protectants in physiological concentrations . In the presence
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of these inactivators, a remarkable divergence in susceptibility between PMN and
erythrocytes became apparent, and toxin doses that were entirely nonhemolytic con-
tinued to provoke rapid ATP release from PMN. Whole serum contained further,
as yet unidentified inactivators, and the toxin doses required to elicit ATP release
rose to 5 HU/ml (200-500 ng/ml), a level that we still consider low enough to be
of potential relevance in vivo .

Preincubation of ECH with plasma protein inactivators or whole serum for 20
min on ice led to effective toxin inactivation . In most laboratory assays for neutralizing
antibodies, antigen is similarly preincubated with serum, and target cells are added
subsequently. High neutralization titers are then generally thought to reflect immu-
nity of the host organism towards the action of the respective agent . Ourexperience
with ECH and a-toxin (35) indicates that this conclusion is not invariably justified .
It is noteworthy that in a single previous study, ECH was diluted in serum and then
applied to granulocytes . No adverse effects were detected, and the conclusion was
drawn that secreted ECH would probably not be able to damageleukocytes in vivo (53).

Factors responsible for the rapid binding of ECH to leukocytes (and of a-toxin
to platelets) have yet to be defined. The presence ofa specific toxin receptor for ECH
on PMN has not been excluded, but positive experimental evidence is not available .
Binding studies with pore-forming cytolysins are beset with intrinsic problems since
these proteins become irreversibly cell bound once they enter the lipid bilayer (32,
33) . There is presently no method for dissociating the process of cellular binding
of ECH from that of insertion.
Membrane permeabilization by ECH was further demonstrated through assess-

ment ofpropidium iodide uptake into the cells . This process exhibited an essentially
identical dose-response behavior as the release of ATP At the same time, the anal-
yses revealed that toxin-treated cells exhibited a swelling reaction while retaining
their gross cellular contours, i.e ., frank dissolution ofthe attacked cells did not occur.
Influx of propidium iodide continued to take place 15-20 min after toxin applica-
tion andwe thus obtained no evidence for the existence ofan effective cellular repair
mechanism . In another set of experiments, toxin-treated cells were suspended in
serum, and their capacity to trap BCECF examined thereafter. Again, we obtained
no indication that PMNcould repair the toxin lesions in a physiological environment.
Many previous investigations have collectively shown that passive flux of calcium

ions across toxin and complement pores can provoke secondary reactions (32, 33,
56-59) and trigger exocytotic processes in nucleated cells (60-62). Our present finding
that toxin attack elicits release of granule constituents from PMN is therefore not
surprising. We have found that ECH permeabilizes PMN in the presence of 10 mM
EGTA, but that granule exocytosis does not occur in the presence of this chelator
(data not shown) . Release of granule constituents from PMN probably contributes
to local effects during infections with toxin-producing E. coli strains .

Finally, the effects of ECH on the capacity of PMN to mount a bactericidal phago-
cytic response were investigated . The results extended previous data obtained in
a serum-free system (51) by providing quantitative data in amore physiological assay.
It was found that ECH applied at doses that evoked ATP release also reduced the
phagocytic killing capacity ofPMN. Thus, ECH counteracts the basic microbicidal
function of PMN. This process could be particularly relevant when toxin produc-
tion occurs in the immediate vicinity of the target cells, e.g ., when serum-resistant
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toxin-producers gain intimate contact with phagocytes . One previous study reported
that incubation of toxin-producing E. colt with leukocytes indeed caused the latter
to lose viability (53) . It was concluded that cytotoxicity was probably "initiated by
the local effect of alpha-hemolysin on the plasma membrane of those leukocytes to
which bacteria are in close proximity" (53) . Our present data fully support this con-
tention.

In keeping with aunitarian hypothesis of toxin action, we envisage ECH to form
hydrophilic pores in the plasma membrane of PMN. Thepores permit passive efflux
of intracellular molecules including ATP that are essential for phagocyte function .
At the same time, Cat` flux into the cells triggers exocytosis of granule constitu-
ents. Since repair mechanisms are absent or relatively ineffective, these processes
culminate in an overt leukocidal effect of ECH, paralleled by liberation of biologi-
cally active substances and mediators from the dying cells .
A brief comparison between ECH and other previously described bacterial leu-

kocidins is warranted. The mechanism of cell damage by the classical leukocidin
of S. aureus appears more complex and has not been fully elucidated (63-65) . This
toxin inflicts lethal injury on isolated PMN in a similar concentration range as ECH
(65). However, we are not aware of quantitative studies on the leukocidal action of
this toxin performed in the presence of serum proteins, a statement that equally
applies to all other leukocidins. The cytolysin ofPasteurella haemolytica has been desig-
nated a leukocidin because it can damage isolated rodent PMN (66-70). Quantita-
tive data on the cytocidal efficiency of this protein are not available. The cytotoxin
of Pseudomonas aeruginosa, also termed Pseudomonas leukocidin (71-76), appears to
attack isolated PMN at concentrations at least two orders ofmagnitude above those
found for ECH (74) . This cytolysin appears to be a poreformer (76) . Finally, al-
though other pore-forming cytolysins including streptolysin-O (33, 77) andS. aureus
a-toxin (34) candamage isolated PMN, these toxins are very ineffective against cells
suspended in human plasma because of their inactivation by antibodies and lipo-
proteins . From these considerations, ECH now emerges as the most potent of all
knownleukocidins. It may be anticipated that similar leukocidal properties are shared
by related cytolysins including those of Proteus, Morganella, and Pasteurella haemolytica .

In sum, this and a previous study (35) have together demonstrated how bacterial
cytolysins may evoke entirely different pathophysiological effects despite close similar-
ities in their primary action . Both S. aureus a-toxin and ECH probably belong to
the category of "receptorless" pore formers that generate lesions of similar dimen-
sions in target membranes. When added to humanblood however, the action of a-toxin
will be directed towards platelets, whereas ECHwill mount an attack on leukocytes .
This realization is fundamental to the understanding of pathological processes that
may be triggered by these major, medically important bacterial exotoxins.

Summary

The contribution of Escherichia coli hemolysin (ECH) to bacterial virulence has
been considered mainly in context with its hemolytic properties . We here report
that this prevalent bacterial cytolysin is the most potent leukocidin known to date .
Very low concentrations (-1 ng/ml) of ECH evoke membrane permeability defects
in PMN (2-10 x 106 cells/ml) leading to an efflux of cellular ATP and influx of
propidium iodide . The attacked cells do not appear to repair themembrane lesions.
Human serum albumin, high density andlow density lipoprotein, and IgG together



protect erythrocytes and platelets against attack by even high doses (5-25 hg/ml)
ofECH. In contrast, PMN are still permeabilized by ECH at low doses (50-250 ng/
ml) in the presence ofthese plasma inactivators. Thus, PMN become preferred targets
for attack by ECH in human blood and protein-rich body fluids . Kinetic studies
demonstrate that membrane permeabilization is a rapid process, ATP-release com-
mencing within seconds after application of toxin to leukocytes . It is estimated that
membrane permeabilization ensues upon binding of -300 molecules ECH/PMN.
This process is paralleled by granule exocytosis, and by loss of phagocytic killing
capacity of the cells . The recognition that ECH directly counteracts a major im-
mune defence mechanism of the human organism through its attack on granulo-
cytes under physiological conditions sheds new light on its possible role and poten-
tial importance as a virulence factor of E. coli .
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