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Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for 
more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to 
identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for 
identifying the highly expressed genes. In this study, a comparative analysis of predicted highly expressed genes in five 
crenarchaeal genomes was performed using the score of Modified Relative Codon Bias Strength (MRCBS) as a numerical 
estimator of gene expression level. We found a systematic strong correlation between Codon Adaptation Index and MRCBS. 
Additionally, MRCBS correlated well with other expression measures. Our study indicates that MRCBS can consistently 
capture the highly expressed genes.
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Introduction

The expression of functional product of a gene is a 
foundation of modern biotechnology. Sixty-one codons to 
translate 20 amino acids and three codons to stop translation 
are employed in the genetic code. These codons are deci-
phered in the ribosome by complementary tRNAs that are 
attached with the proper amino acids [1]. The degeneracy of 
the genetic code enables same protein to be translated by 
many alternate nucleotide sequences. The frequency of 
different codons varies significantly between different or-
ganisms, and also between highly and lowly expressed genes 
in the same organism. There is a continuing speculation 
regarding the factors which influence these codon preferences. 
Attempts have been made to explain the codon distributions 
in protein coding genes as well as the variations in codon 
usages as mutation-selection stability among different sy-
nonymous codons in each organism [2, 3]. Researchers have 
assumed that codon bias which tends to diminish the 
diversity of isoacceptor tRNAs may decrease the metabolic 

load [4, 5]. Whatever may be the reason behind codon usage 
bias, it has gradually developed the idea that codon bias can 
have a thoughtful influence on the expression of genes. The 
equilibrium between mutation and natural selection on 
translational efficiency is supposed to cause of codon bias [6, 
7] and stronger relative codon usage bias (RCB) in highly 
expressed genes than lowly expressed genes is anticipated 
due to the natural selection [8]. The recent technical 
advances e.g., cDNA microarray, Serial Analysis of Gene 
Expression (SAGE), etc. are large-scale, high-throughput 
experimental methods which need material and information 
processing systems to match. Furthermore, a massive in-
vestment of time and resources put an obstacle before the 
investigators. Thus, to identify the highly expressed genes in 
vast majority of organisms, researchers were looked beyond 
the direct experimental methods. So, predicting gene ex-
pression level using computational approaches rather than 
experimental is more interesting because it evades expensive 
and laborious experiment.

It is observed that highly expressed genes will preferably 
choose an optimal subset of codons identified by the most 
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abundant tRNA and highly expressed genes are often 
depicted by strong codon usage bias [9-16]. Based on this 
hypothesis, a variety of gene expression measures like Codon 
Adaptation Index (CAI) [17], Relative Codon Adaptation 
(RCA) [18], Relative Codon Bias Strength (RCBS) [19-21] 
which compute codon usage bias in genes are currently in 
use, and hence provide numerical indices to predict the 
expression levels of genes. Calculation of CAI score depends 
on the knowledge of codon bias of highly expressed genes. 
However, the determination of set of highly expressed gene 
is major problem to calculate CAI and CAI is also relatively 
noisy in the short region to capture local codon bias pattern 
[22, 23]. Although the determination of set of highly expressed 
gene is not required for calculating score of RCBS, but RCBS 
has partial dependence on gene length (for genes having 
length ＜ 300 aa) [18]. Like CAI, RCA also depends on the 
knowledge of codon bias of highly expressed genes and it 
also depends on the size of the reference set because relative 
frequency is used to calculate relative adaptation of the 
codons [24, 25]. In order to overcome the problems of partial 
dependence on gene length and determination of selective 
highly expressed genes as a reference set, we proposed here 
an alternative model (Modified Relative Codon Bias Strength 
[MRCBS]) to predict the expression levels of genes from 
their codon compositions. It has no length dependence on 
the gene size and uses codon usage of ribosomal protein 
(RP) genes which are believed to be highly expressed genes 
[11, 12] as a reference set for our calculation. To measure the 
predictive performance of the methodology, we compared 
the performances of several commonly used measures in this 
work. 

Here, we investigated the gene expression and the 
variation in patterns of synonymous codon usage across the 
crenarchaeal genomes. Crenarchaeota is one of the four 
phyla of Archaea and includes both cold-dwelling and hyper-
thermophilic prokaryotes. The cold-dwelling Crenarchaeota 
have been recognized only as community samples of 16S 
ribosomal RNA from the marine environments. The hyper-
thermophilic species of Crenarchaeota, some of which have 
the ability to grow at up to 113oC, have been isolated from 
geothermally heated soils, waters containing elemental 
sulfur and sulfides, or hydrothermal vents [26]. At higher 
temperatures, bioleaching rates of thermophilic organisms 
surpass their low temperature microbial counterparts and 
subsequently significant research interest grows to use of 
these organisms for biomining applications [27]. Cold-dwelling 
organisms survives extremely low temperature and uses 
antifreeze proteins (AFP) for their development and existence 
in subzero environments. AFPs can be applied in the field of 
aquaculture, agriculture, cryopreservation, cryosurgery, and 
food storage [28, 29]. Metabolically, Crenarchaeota which 

are quite diverse and varying from chemoorganotrophs to 
chemolithoautotrophs, include anaerobes, facultative anae-
robes or aerobes, and many of them employ sulfur in some 
way for energy metabolism [30]. Numerous species use 
carbon dioxide as only carbon source to produce organic 
matter, and procure energy by the oxidation of inorganic 
substances like sulfur and hydrogen, and reduction of sulfur 
or nitrate. Some species develop on organic substrates by 
aerobic or anaerobic respiration or by fermentation. The 
most remarkable property of the Crenarchaeota is their 
survival in the environment involving extremes of acidity 
and temperature.

These uncommon features of Crenarchaeota have 
fascinated the research interest of evolutionary biologists 
and biotechnology companies. The environment when first 
life emerged on the early Earth can be thought similar to the 
extreme conditions of the environment under which 
Crenarchaeota reside currently. This information proposes 
that first forms of life on earth may be similar to Crenar-
chaeota. Also, extreme resistance to heat and acid of cellular 
enzymes make Crenarchaeota very appealing to use in 
industry and research. Thus gene expression of crenarchaeal 
genomes is expected to make important contributions in 
several areas. 

Methods

The whole genomes along with gene annotations were 
retrieved from NCBI GenBank. All sequences marked as 
coding sequences were considered, including those annotated 
as hypothetical and those predicted by computational 
methods only. In this study, we measured the expression 
pattern and codon usage of five crenarchaeal genomes 
namely, Aeropyrumpernix K1 (GenBank accession No. 
NC_000854), Hyperthermus butylicus DSM 5456 (GenBank 
accession No. NC_008818), Pyrobaculum aerophilum IM2 
(GenBank accession No. NC_003364), Sulfolobus solfataricus 
P2 (GenBank accession No. NC_002754), and Sulfolobus 
tokodaii 7 (GenBank accession No. NC_003106). In the 
following sections, we have briefly described the different 
expression level predictors CAI, RCBS, RCA, GC3, and 
Impact Codon and developed an alternative approach using 
the score of MRCBS.

Codon Adaptation Index (CAI) 

The CAI [17] measures the deviation of a given protein 
coding gene sequence with respect to a reference set of 
genes. It defines translationally optimal codons as those 
appear frequently in highly expressed genes. The CAI model 
assigns a parameter, termed ‘relative adaptiveness’ to each of 
the 61 codons (stop codons excluded). Relative adaptiveness 
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(wi) is obtained by normalizing the frequency of each 
synonymous codons by the frequency of the most frequent 
codon. So, relative adaptiveness for most frequent codon is 1 
and other codon is less than 1. The CAI of a gene is simply the 
geometric average of the relative adaptiveness of all codons 
in a gene sequence, 

  







and 

 


 ,

where fi is the frequency of codon i, and faa,max is the maximum 
frequency of the codon most often used for encoding amino 
acid aa in a set of highly expressed genes of the particular 
genome. N is the number of codons in the gene. CAI ranges 
from 0 to 1. The higher are the CAI values, the genes are 
more likely to be highly expressed.

Relative Codon Bias Strength (RCBS) 

The expression measure of a gene, RCBS [19-21] is given by
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where 
  is the RCB of ith codon of a gene, fxyz is the 

normalized codon frequency for the codon xyz and fn(m) is 
the normalized frequency of base m at codon position n in a 
gene. L is the number of codons in the gene.

Relative Codon Adaptation (RCA)

Fox and Erill [18] proposed RCA that measures codon 
bias of a gene based on a set of highly expressed genes. RCA 
makes use of a given reference set to compute observed and 
expected codon frequencies. Relative adaptation for 
individual codon xyz is defined as 

     
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Using this, RCA for entire gene is computed as
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,
 

where fxyz is the observed relative frequency of codon xyz in 
any reference gene set, fi(m) is the observed relative fre-
quency of base m at codon position i in the same reference set 
and L is the length of the query sequence. 

GC3

Highly expressed gene uses a set of optimal codons. These 
codons are biased to pyrimidines (i.e., C and T) ending at the 
third position. Shields [31] found that GC contents at silent 
sites were often correlated with gene expression. The base 
composition at silent sites measures the GC content at the 
third position of synonymous codons (GC3s) and can be used 
as an index of codon bias. It is the frequency of G or C 
nucleotides present at the third position of codons except 
non-degenerate codons (i.e., Met, Trp, and stop codons) 
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,

where N = any base, S = G or C. and fxyz is the observed 
frequency of codon xyz.

Impact Codon

Das et al. [32] quantified the degree of codon bias by 
assigning an impact score (

) to each codon of a gene 
sequence, since it considers codon usage as well as the base 
compositional bias. Impact score is defined as


    


 ,

where fxyz is the normalized codon frequency for the codon 
xyz and fn(m) is the normalized frequency of base m at codon 
position n in a gene. If    and μ denote the sample mean 
and population mean of the impact score for a particular 
codon respectively; and σ the population standard de-
viation, then z score of a test statistics is given by



 
, 

where N is the total no of codons. The impact codons are 
then identified, based on the level of significance from the z 
score of test statistic. The scores of the impact codons differ 
markedly from the results expected in the absence of codon 
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bias and it seems reasonable to assume that RCB in the 
highly expressed genes is strongly influenced by the 
presence of impact codons.

Modified Relative Codon Bias Strength (MRCBS) 

The codon composition of genes fundamentally affects the 
protein translation. Our approach in estimating gene ex-
pression level is related to codon usage bias of a gene with 
respect to biased nucleotide composition at the three codon 
sites. Let fxyz be the observed normalized codon frequency for 
the codon triplet (x,y,z) in a particular reference set of gene 
and fn(m) is the relative observed frequency of base m at 
codon position n in the same reference set. Then, the RCB of 
a codon triplet (x,y,z) is defined as the ratio of observed 
frequency of a codon to the expected frequency under the 
hypothesis of random codon usage where the base 
compositions are biased at three sites as that in the reference 
set under study.

Thus the expression measure of MRCBS [24, 25] of a gene 
is defined as 

  
 



 
 ,
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RCBSaa, max is the maximum RCBS of codon encoding same 
amino acid aa in the same reference set, and N is the length 
in codons of the query sequence. MRCBSxyz is independent of 
the size of the reference set as it is the ratio of the RCBS of 
the codon xyz to the maximum of RCBS of codon encoding 
same amino acid. The value of MRCBS lies between 0 and 1. 

In this study, the criteria MRCBS ＞ T (threshold score) 
was taken as a benchmark for identifying the highly expressed 
genes and methodology used to calculate threshold score as 
described in Sahoo and Das [25]. Due to evolving codon 
assignments as well as codon usage patterns as the adaptive 
response of genomes, threshold score for identifying highly 
expressed genes varies from genome to genome. For cal-
culating threshold score (T), we defined a parameterization 
set to evaluate how well CAI value correlates actual ex-
pression level predicted by MRCBS. First, we calculated the 
CAI of the all genes by taking all RP (＞ 80 aa) genes as 
predicted highly expressed genes (PHE) genes and called 
this as an evaluation set. Then taking an arbitrary threshold 
score T of MRCBS we differentiated highly expressed genes 
from lowly expressed genes. The highly expressed genes 
with expression level (MRCBS) greater than T define 

parameterization set. We calculated the CAI parameters 
taking parameterization set as reference set. With the 
parameters in hand, CAI values for all the genes in the data 
set were computed. In order to evaluate how well the MRCBS 
predicts expression level, we measured the correlation 
between CAI values of the data set and evaluation set as 
merit of the method. We iterated the procedure by changing 
the expression level threshold T and repeating the sub-
sequent steps until we arrived at an optimal merit of the 
method. Thus, we obtained the optimal threshold value of 
MRCBS of the whole genome expression data. 

In this work, the expression level predictors CAI, RCA, 
and MRCBS have been computed by comparing its codon 
usage bias with the profile of universally functional genes, 
such as the RP genes, which are commonly referred as a 
reference set. The PHE are then characterized on the basis of 
the strength of the codon usage bias derived from the 
algorithms as described above and a gene is identified as PHE 
gene provided its MRCBS exceeds threshold value. To this 
end, we computed Pearson r correlation coefficients between 
different codon usage bias indices.

Results and Discussion

We analyzed PHE genes in crenarchaeal genomes with 
respect to MRCBS. We calculated the expression pattern and 
codon usage in Aeropyrumpernix K1, Hyperthermus butylicus 
DSM 5456, Pyrobaculum aerophilum IM2, Sulfolobus solfataricus 
P2, and Sulfolobus tokodaii 7. Threshold scores used to classify 
highly expressed genes in our approach in Aeropyrumpernix 
K1, Hyperthermus butylicus DSM 5456, Pyrobaculum aerophilum 
IM2, Sulfolobus solfataricus P2, and Sulfolobus tokodaii 7 were 
turned out to be 0.75, 0.68, 0.76, 0.80, and 0.83, respectively. 
GC content of Aeropyrumpernix K1, Hyperthermus butylicus 
DSM 5456, Pyrobaculum aerophilum IM2, Sulfolobus solfataricus 
P2, and Sulfolobus tokodaii 7 are 56.31%, 53.74%, 51.36%, 
35.79%, and 32.79%, respectively. This variation of GC 
content may be regarded as the main reason of codon usage 
variances between different species of Crenarchaeota. Table 
1 displays the statistics of PHE genes, GC content and the 
maximum value of MRCBS for each of the crenarchaeal 
genomes used in the study. It was observed that percentage 
of PHE genes in Escherichia coli was 9% to 10% [9,15] and 
percentage of PHE genes in Synechocystis was about 10% 
[11], whereas the percentage of PHE genes in crenarchaeal 
genomes varied from 11.53% to 33.38% and were independent 
of GC content or optimal growth temperature of these 
unicellular organisms. It indicates that the percentage of 
PHE genes in Crenarchaeota is higher than in bacteria. The 
correlation between growth temperature and genomic GC 
content has not established by most of the studies [33, 34] 
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Table 1. Some basic information of the presently studied genomes

Genome GC content 
(%)

Average 
length

No. of 
genes

Threshold 
score

No. of 
PHX genes 

PHE gene
(%)

Maximum value of 
MRCBS

Aeropyrum pernix K1 56.31 868 1,700 0.75 196 11.53 0.84761
Hyperthermus butylicus DSM 5456 53.74 842 1,602 0.68 477 29.77 0.855995
Pyrobaculum aerophilum IM2 51.36 755 2,605 0.76 850 32.63 0.863178
Sulfolobus solfataricus P2 35.79 845 2,974 0.80 993 33.38 0.893861
Sulfolobus tokodaii 7 32.79 806 2,825 0.83 772 27.33 0.889287

PHE, predicted highly expressed; MRCBS, Modified Relative Codon Bias Strength.

and in general, the variation in GC content is mostly 
elucidated by subtle but persistent mutation biases [35, 36]. 

It is familiar that highly expressed genes show stronger 
codon usage bias than the genes expressed at lower levels. In 
agreement with previous other reports [9-11], we observed 
that PHE genes of crenarchaeal species included RP genes, 
translational/transcription genes, chaperon or degradation 
genes and many stress and energy metabolism genes. 
However, all RP genes of crenarchaeal genomes do not 
incorporate the PHE gene class. The percentage of RP genes 
in crenarchaeal genomes varies from 47% to 87.88% whereas 
almost all RP genes in E. coli and yeast fall in PHE class of 
genes [19, 20]. It is remarkable that 99.21% RP genes in 
yeast genome were PHE [20]. However, an average of 
65.56% RP genes in crenarchaeal genomes were found to be 
PHE, indicating that many RP genes of crenarchaeal 
genomes were of reduced predicted expression level in 
contrast to E. coli and yeast. Crenarchaeota generally live in 
extreme environmental conditions that are likely to affect 
the expression level of the respective gene responsible for its 
habitat, energy sources and lifestyle. The highest predicted 
expression levels of top 10 genes for five crenarchaeal 
genomes are shown in Table 2. It is worth noticing that these 
genes are separated into different functional categories. 
Annotation of these PHE genes was done by Secondary 
(JCVI) Annotation (http://cmr.jcvi.org/tigr-scripts/CMR/ 
GenomePage.cgi).

As it can be seen from the Table 2, the PHE genes are 
variably represented among crenarchaeal genomes. We 
observed that genes belonging to the class of translation, 
ribosomal structure and biogenesis were generally highly 
expressed. In the top 10 highly expressed genes among five 
crenarchaeal genomes, 28 RP genes (56%) were found to be 
highly expressed (shown in Table 2). The RNA polymerase 
subunits RpoA1, RpoA2, RpoB, RpoE1, RpoE2, RpoH, 
RpoK, RpoL, and RPoN as with bacterial genomes were 
found to be predominantly PHE in many crenarchaeal 
genomes. Several noticeable genes, e.g., Ths, PCNA, P0, 
Cdc48, and Pfd which are absent from bacterial genomes, 
but exist in eukaryotes, were found to be highly expressed in 

many crenarchaeal genomes. A number of genes which 
include ribonucleotide reductase, the DNA polymerase 
sliding clamp and members of the FAD synthetase family, 
exhibit cell cycle-dependent expression in crenarchaeal 
genomes. It should be noticed that these genes are usually 
existed by multiple copies in the genome. Among other PHE 
genes, Rieske iron-sulfur protein and ferredoxin have 
important functions in these organisms. Besides, we identified 
a number of PHE genes which play important role in signal 
transduction mechanism, amino acid transport and meta-
bolism, secondary metabolites biosynthesis and catabolism, 
cell wall/membrane/envelop biogenesis, inorganic ion 
transport and metabolism, coenzyme transport and meta-
bolism, carbohydrate transport and metabolism, intercellular 
trafficking, and energy production and conversion.

However, a portion of genes categorized as hypothetical 
genes may be obtained among the PHE genes in most 
crenarchaeal genomes. Table 2 displays the general statistics 
of hypothetical or poorly characterized PHE genes found in 
several crenarchaeal genomes. Goodacre et al. [37] showed 
that 238 out of 355 essential proteins in 16 model bacterial 
species comprised proteins in domains of unknown function 
(DUFs), and most of them characterized single-domain 
proteins which clearly established the biological importance 
of DUFs. It suggests that experimental research should 
emphasis on conserved and essential DUFs for functional 
analysis. So, PHE hypothetical genes may be interesting 
candidates for experimental categorizations to find additional 
key features of the crenarchaeal cell cycle. The temporal and 
spatial grouping of these genes for chromosome replication, 
genome segregation, and cell division processes are little 
categorized in Crenarchaeota than in bacteria and eukaryotes. 
A comprehensive study of these putative/hypothetical PHE 
genes should produce a more comprehensive image of the 
replication and division machineries, and regulatory features 
of the cell cycle.

Impact Codons

Most amino acids can be specified by more than one 
codon. Nevertheless, in highly expressed genes, only a 
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Table 2. Top 10 genes with the highest predicted expression levels for each of archaeal genomes

Genome PHE RP 
genes (%)

PHE 
hypothetical 
genes (%)

Top 10 genes

Gene Function MRCBS

Aeropyrum 
pernix K1

47 7.04 rpl24e 50S ribosomal protein L24e 0.831282
APE_0741 Superoxide dismutase 0.830894
rpl39e 50S ribosomal protein L39e 0.828305
rps15p 30S ribosomal protein S15P/S13e 0.825946
rps26e 30S ribosomal protein S26e 0.816704
rpl44e 50S ribosomal protein L44e 0.812544
tfs Archaeal transcription factor S 0.812126
APE_1775.1 Carboxypeptidase 0.808972
rps13p 30S ribosomal protein S13P 0.803994
narH Nitrate reductase, beta subunit 0.803394

Hypertheruss 
butylicus 
DSM 5456

87.88 17.69 Hbut_0543 50S ribosomal protein L7Ae 0.855995
Hbut_1318 50S ribosomal protein L19E 0.830769
Hbut_0929 30S ribosomal protein S3e 0.822885
Hbut_1357 Elongation factor 1-beta 0.800922
Hbut_0435 30S ribosomal protein S27AE 0.800335
Hbut_1302 50S ribosomal protein L3P 0.79833
Hbut_0553 50S ribosomal protein L15e 0.794526
Hbut_0547 50S ribosomal protein L24e 0.790702
Hbut_0776 30S ribosomal protein S26 0.789365
Hbut_0448 Ferredoxin 0.788893

Pyrobaculum 
aerophilum 
IM2

70.00 28.98 PAE2097 30S ribosomal protein S14 0.825278
PAE2432 30S ribosomal protein S27ae 0.823641
rpl22p 50S ribosomal protein L22 0.822347
PAE2706 Ferredoxin oxidoreductase, 0.82037
PAE3172 Small heat shock protein 0.81924
PAE0173 Ribosomal protein L24 0.818464
PAE2561 Adenylylsulfate reductase beta subunit 0.817715
PAE3480 Transcription associated 0.815905
PAE2733 Thiosulfate sulfurtransferase 0.814477
PAE1833 50S ribosomal protein L15 0.809091

Sulfolobus 
tokodaii 7

51.51 24.33 STS221 DNA-directed RNA polymerase subunit N 0.88733
ST2064 30S ribosomal protein S9 0.871193
STS046 30S ribosomal protein S17 0.870254
ST0272 30S ribosomal protein S12 0.867822
ST0450 50S ribosomal protein L15 0.86734
ST0382 30S ribosomal protein S6 0.865355
moaC Molybdenum cofactor biosynthesis 0.863087
STS040 30S ribosomal protein S28e 0.862772
ST2069 30S ribosomal protein S4 0.862679
ST0268 30S ribosomal protein S10 0.862144

Sulfolobus 
solfataricus

 P2

71.43 29.01 zfx-2 Ferredoxin (amino-end fragment) (zfx- 2) 0.867267
hdrC-1 Heterodisulfide reductase, subunit (hdrC-1) 0.865067
SSO10340 Transcription regulator, putative 0.857269
rpl14E 50S ribosomal protein L14 0.855765
moaC Molybdenum cofactor biosynthesis protein 0.854481
cutA-3 Carbon monoxide dehydrogenase, large chain (cutA-3) 0.85352
rpoK DNA-directed RNA polymerase subunit 0.850579
rps28E 30S ribosomal protein S28e 0.849495
prpB Carboxyphosphonoenolpyruvate phosphonomutase 0.849343
rfbB-3 dTDP-Glucose 4,6-dehydratase (rfbB-3) 0.848609

PHE, predicted highly expressed; RP, ribosomal protein; MRCBS, Modified Relative Codon Bias Strength.
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Table 3. List of impact codons in the presently studied genomes

Genome Impact codons

Aeropyrum pernix K1 Phe (ttc), Leu (ctc, cta, ctt and ctg), Ile (ata), Val (gtt), Tyr (tat, tac), Lys (aag), Glu (gag), 
Ser (tct, tcc, tca, agc), Ala (gct, gcc), Trp (tgg), Pro (cct, ccc), Arg (aga, agg), Gly (ggt, ggc)

Hyperthermus butylicus DSM 5456 Phe(ttc), Leu (ctc, ctt, cta), Ile (ata), Tyr (tat, tac), Lys (aag), Glu (gag) , Ser (agc), 
Ala (gca, gct), Trp (tgg), Pro (cca), Thr (aca), Arg (aga, agg, cgt), Gly (ggt, ggc)

Pyrobaculum aerophilum IM2 Phe (ttc), Leu (ctc, ctt, cta,ctg, tta), Ile (att, ata), Tyr (tat, tac), Lys (aag, aaa), Glu (gag), 
Ser (tct), Ala (gcc, gcg), Trp (tgg), Pro (cct, ccc, ccg ), Arg (aga, agg, cgc), Gly (ggc)

Sulfolobus solfataricus P2 Phe (ttt, ttc), Leu (tta, ttg, ctc, ctt, cta), Ile (ata), Tyr (tat, tac), Lys (aag), Gln (caa), 
Glu (gaa, gag), Ser (tct, tcc, tca), Ala (gct), Trp (tgg), Pro (cct, ccc, cca), Arg (aga, agg), 
Gly (ggt, gga, ggg)

Sulfolobus tokodaii 7 Phe (ttt, ttc), Leu (tta, ctc, ctt), Met (atg), Tyr (tat, tac), Lys (aag, aaa), Asn (aac), 
Glu (gaa, gag), Ser (tct, tcc, tca, agc), Ala (gct), Trp (tgg), Pro (cct, ccc, cca), 
Arg (aga, agg), Gly (ggt, ggc, gga, ggg)

Fig. 1. The correlation coefficients between Codon Adaptation Index
and different measures of expression are plotted for different or-
ganisms. MRCBS, Modified Relative Codon Bias Strength; RCA, 
Relative Codon Adaptation; RCBS, Relative Codon Bias Strength.

subset of potential codons is used (Table 3). There were no 
impact codons coding His in the presently studied crenarchaeal 
genomes. The impact codons in crenarchaeal genomes was 
found to be mostly used in coding Phe, Leu, Tyr, Glu, Ser, Ala, 
Trp, Pro, Arg, and Gly. Besides His, no impact codons coding 
Asp and Cys were found in crenarchaeal genomes. The data 
set investigated here revealed a strong bias of the usage of 
favored codons in highly expressed genes but lowly expressed 
gene displayed small amount of synonymous codon usage 
bias. It is hypothesized that codon translated using an 
abundant tRNA expedite translation efficiency and this 
translation selection gives birth of codon usage bias. Fre-
quencies of different codons were noticed to differ between 
genes in the same genome and between genomes. Using 61 
codons and three non-sense codons, almost all organisms 
have prepared the same codon assignments for each amino 
acid, but the favored use of individual codons differs to a 
great extent among genes. The overall nucleotide compo-

sition of the genome governed by codon usage pattern is 
hypothesized to commence selective forces acting on highly 
expressed genes to expedite translation efficiency. There 
were no impact codons coding Met, Val, Gln, and Asn in 
Hyperthermus butylicus DSM 5456 and Pyrobaculum aerophilum 
IM2. 

It was observed that the set of preferred (impact) codons 
in crenarchaeal genomes coding for Leu, Tyr, Lys, Glu, Arg, 
and Trp were ctt and ctc, tat and tac, aag, gag, aga and agg, 
and tgg, respectively. For mesophiles, atg and tcg were the 
preferential codons coding for Met and Ser while aag is the 
preferential codon coding for Lys in (hyper)thermophiles. It 
is important to notice that the distinguished preferred 
(impact) codons coding Arg and Ile separate mesophiles (cgc 
and atc) from (hyper)thermophiles (aga/agg and ata). There 
were no impact codons coding for Asp and Cys in cre-
narchaeal genomes. We observed that all favored (impact) 
codons were not GC rich in crenarchaeal genomes. So, GC3 
could not accurately measure the bias in codon usage. It is 
generally acknowledged that bias in synonymous codon 
usage is influenced by the cellular amount of isoacceptor 
tRNA genes. In this study, we have noticed that all tRNA 
genes corresponding to impact codons have not been 
identified by tRNAscanSE and many tRNAs decode two or 
more codons, which indicates that impact codons may 
possibly influence translational efficiency. As the optimal set 
of favored codons is used in highly expressed genes, this 
observation could have significant role in improvement of 
tRNA finding algorithm.

Correlations among different codon bias indices

In this study, we compared the performances of several 
commonly used measures underlying gene expression. The 
outlines of gene expression of the crenarchaeal genomes 
were governed by calculating CAI, RCA, RCBS, and MRCBS. 
Currently, CAI has become widely accepted method for 
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Fig. 2. Expression measure indices (Co-
don Adaptation Index [CAI], Relative 
Codon Adaptation (RCA), Modified Re-
lative Codon Bias Strength [MRCBS], 
and Relative Codon Bias Strength 
[RCBS]) plotted against transcriptomics
and proteomics of relative abundances 
of mRNA and protein levels of Sul-
folobus solfataricus.

theoretically recognizing highly expressed genes from codon 
usage in various organisms. The CAI scores were calculated 
by taking all RP (＞80aa) genes as PHE genes which are 
commonly referred as reference set. RCA frequencies were 
computed using the identical reference set as used in the 
calculation of CAI. The results (Fig. 1) indicate that there is 
a strong correlation between RCA and CAI while the 
correlation of RCBS with CAI is significantly smaller. The 
novel method of quantitatively calculating gene expressivity 
by MRCBS was then compared with CAI and correlation 
between them was found to be surprisingly good. These 
correlation coefficients can be used to express the strength of 
the existing prediction methods. It can be seen that MRCBS 
consistently yields better correlation than other. We also 
observed a clear correlation between CAI and GC3, but 
surprisingly, there was strong negative correlation between 
GC3 and CAI in some species which cannot be explained.

In order to validate our results with the experimental data 
[38], we collected proteomics and microarray data and 
compared the proteomic and microarray results with our 
predicted values of expression level. Fig. 2 plotted the 
relative abundances of mRNA and protein levels of the genes 
of S. solfataricus grown on yeast extract and tryptone (YT) 
compared to glucose (G) against CAI, RCBS, RCA, and 
MRCBS. The correlation coefficient between transcriptomics 
and MRCBS was found to be –0.31 whereas that with CAI, 
RCA, and RCBS were 0.04, –0.17, and –0.26, respectively and 
correlation coefficient between proteomics and MRCBS was 
–0.44 whereas that with CAI, RCA, and RCBS were –0.18, 
–0.34, and 0.05, respectively. Even though these results are 
not good, but the results recommend that a quantitative 
estimate of expression level by MRCBS accomplishes better 
performance than other existing computational methods.

We demonstrated that MRCBS could be a useful tool for 

predicting highly expressed genes. The basic concept validating 
our method was to compare the result of different gene 
expression measures with a universal measure, the CAI 
values of the genes. This methodology is accepted as CAI is 
widely assumed to be universal method and highly correlated 
with different measures of codon bias used in the literature 
[13]. Predicting gene expression levels in different crenarchaeal 
genomes using MRCBS is to make this index a better choice 
of measuring codon bias than others. CAI hypothesized that 
background nucleotide composition was uniform and this 
hypothesis was not always true. RCA uses codon bias of 
highly expressed genes of a given reference set like other 
reference set based measures (e.g., CAI) but the difference 
between RCA and CAI is that RCA uses the patterns of 
mutational bias observed in the given reference set. For any 
given reference set, MRCBS first computes the codon bias as 
the deviation of the observed codon frequency from the 
expected codon frequency based on its positional base 
frequencies and ratio between the RCB of that codon and the 
largest RCB among its synonymous codons is defined as the 
relative adaptiveness of that codon. Thus, MRCBS takes 
explicitly into account the mutational bias in the calculation 
of codon bias and will be more powerful and precise 
estimator of gene expression.

To measure the predictive performance of MRCBS, we 
compared the performances of several commonly used 
measures in different crenarchaeal genomes. Our results 
demonstrated that MRCBS well correlated with CAI than 
other codon bias measures in all crenarchaeal genomes. 
Since experimental methods are expensive and laborious, 
results of gene expression by computational methods might 
be used as reference data for validating and better under-
standing experimental data. For example, findings of PHE 
gene with low level expression from proteomic or microarray 
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data could suggest the probable contribution of degradation 
in regulating expression levels of that gene [8]. Although 
most of the PHE genes are essential genes responsible for the 
habitat, energy sources and life style of different species of 
Crenarchaeota, the results are also predicted a number of 
genes in DUF as PHE genes. Combined study of computational 
and experimental approach of these genes will enrich our 
knowledge of metabolism.
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