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Abstract
Purpose Iodine-containing contrast agent (CA) used in contrast-enhanced CT angiography (CTA) can pose a health risk for
patients. A system that adjusts the frequently used standard CA dose for individual patients based on their clinical parameters
can be useful. As basis the quality of the image contrast in CTA volumes has to be determined, especially to recognize
excessive contrast induced by CA overdosing. However, a manual assessment with a ROI-based image contrast classification
is a time-consuming step in everyday clinical practice.
Methods We propose a method to automate the contrast measurement of aortic CTA volumes. The proposed algorithm is
based on the mean HU values in selected ROIs that were automatically positioned in the CTA volume. First, an automatic
localization algorithm determines the CTA image slices for certain ROIs followed by the localization of these ROIs. A
rule-based classification using the mean HU values in the ROIs categorizes images with insufficient, optimal and excessive
contrast.
Results In 95.89% (70 out of 73 CTAs obtained with the ulrich medical CT motion contrast media injector) the algorithm
chose the same image contrast class as the radiological expert. The critical case of missing an overdose did not occur with a
positive predicative value of 100%.
Conclusion The resulting system works well within our range of considered scan protocols detecting enhanced areas in CTA
volumes. Our work automized an assessment for classifying CA-induced image contrast which reduces the time needed for
medical practitioners to perform such an assessment manually.

Keywords CT angiography · Rule-based classification · Template matching · Personalized healthcare · Automatic ROI
detection

Introduction

Visualizing blood vessels for image diagnostics and inter-
ventional therapy in radiological examinations is a non-
negligible task carried out by performing a CT angiography
(CTA). The CTA uses iodine-containing contrast agent (CA)
to highlight target areas for the detection of pathological find-
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ings like aneurysms and aortic dissections [8]. However, the
iodine contained in the CA can cause delayed allergic reac-
tions, cutaneous reactions and contrast-induced nephropathy
[1]. To reduce those risks patient-individual CA dose adjust-
ments would be preferable over using a standard dose as
in current clinical routine examinations. The adjustments
could minimize overdosing the CA or generating images
with insufficient contrast caused by a too small CA dose.
To determine the dependencies between patient-individual
vital parameters and the CA dose the CTA image contrast
induced by the CA has to be assessed. A manual assessment
of the image contrast conducted by experts that includes the
selection and determination of regions of interest (ROI) and
a classification of the mean Hounsfield units (HU) would be
not-workable in clinical routine.
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Fig. 1 This graphic gives an overview of the three major components of the automatic image contrast measurement process

Fig. 2 Example of positioning
ROI 1, 2 and 3 in the aorta and
the arteria femoralis communis,
respectively

To circumvent the time-consuming task of assessing the
image contrast by experts we propose a method for an auto-
matic image quality measurement of aortic CTA volumes.
The assessment is implemented as a rule-based classification
based directly on the HU values of 2D ROIs distributed over
the CTA volume. Our approach consists of three consecutive
components as shown in Fig. 1. The first step is to detect the
slices suitable for the ROIs. We applied a template matching
as this method is a staple in medical image processing and
showed success in various use cases [5,7]. Following this is
the automatic ROI determination. The ROIs are positioned
in the aorta and the arteria femoralis communis, respectively,
and are determined by combining the circle Hough transform
[3] and the vessel filter [6] for smaller structures. Taking the
mean HU of each ROI a rule-based approach was applied.
The rules were defined by radiological experts to assign the
data set to one of the following three classes: insufficient
image contrast, optimal image contrast or excessive image
contrast.

Methods

In the standard procedure for contrast measurement for aortic
CTA volumes three ROIs were manually positioned in axial
CTA slices by radiologic experts (Fig. 2):

• ROI 1 Aorta, level: pulmonary artery bifurcation level.
• ROI 2 Aorta, level: kidneys.
• ROI 3 Arteria femoralis communis.

The ROIs were defined by the radiological experts of our
team who were blinded to the to be labeled patients. The
ROIs lie in axial slices which contain concise anatomical
landmarks to provide good starting conditions for the pro-
posed automatization. The rule-based classification assigns
one of three classes, insufficient, optimal or excessive con-
trast to a patients CTA volume. The mean HU values of ROI
1, 2 and 3 were taken and each was assigned into one of the
categories as presented in Table 1.
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Table 1 Expert contrast quality categorization based on the HU values
of the ROIs

Category Range [HU] Definition

A ≤ 180 HU value too low

B 181–240 Lower tolerance area

C 241–300 Target area

D 301–360 Upper tolerance area

E > 360 Excessive HU value

Table 2 This table includes the class division based on the expert cat-
egorization in Table 1

Class Image contrast Condition

1 Insufficient At least one ROI is inA

2 Optimal All ROIs in category B, C and D

3 Excessive At least one ROI in E, remaining in D

The thresholds of the categories were chosen according to
radiological experts and their usage in literature (e.g., [2]).
After the assignment of categories, rules were formulated by
the experts to classify each combination of categories. As
presented in Table 2 one of three classes could be assigned.
With class 3 representing excessive image contrast which
can be associated with an CA overdosing. CTA volumes of
class 1 show insufficient image contrast which in turn can be
a result of, e.g., a too small CA dose and timing problems
of the CT scan. If only two ROIs are available the rules are
adapted accordingly.

In the following chapters, a method for the automatic
determination of ROI 1, 2 and 3 is presented for the image
contrast measurement.

Automatic slice detection

The first step of the automatic assessment is the detection of
a suitable axial slice of interest (SOI) for each ROI. The aorta
and the artery do not have a generalized shape for patients
undergoing a CTA examination. Therefore, the algorithm is
searching for the following significant anatomical structures
(Fig. 3) which are located on the corresponding slices of the
ROIs:

• SOI 1 Pulmonary artery bifurcation for ROI 1.
• SOI 2Mean of SOI 1 and 3 for ROI 2.
• SOI 3 Caput ossis femoris for ROI 3.

For detecting the aforementioned structures inROI 1 and 3
we applied a template matching approach [5]. The templates
were extracted as 2D image patches from the CTA volumes.
Before matching the spacing of the templates was adjusted

to the CTA data of the assessed patient. The search space was
chosen as a subset of all slices in the considered CTA data
to optimize the computational demand. To determine SOI 1
the search space was limited to the upper two thirds of axial
slices. For SOI 3 the lower two thirds were chosen and at
least two templates were used containing the left and right
femoral head as a set extracted from the same reference data.
The template matching algorithm was applied to each slice
of the search space and the value of the similarity function
was recorded.

As the HU values in CTA volumes can show a high degree
of variability in the artery a normalized cross-correlation
measure was implemented as similarity function between the
template and the image patches of the considered axial slice
extracted in a sliding-windowmanner. The slice that resulted
in the highest value of the similarity function was determined
as the SOI regardless of the number of used templates or in
case of SOI 3 the number of sets of templates. Tomeasure the
similarity for the determination of SOI 3 a set of templates
was defined and their mean of their individually obtained
cross-correlation values was computed (Fig. 4).

The slice determination of SOI 2 forms an exception.
Because of the high variability of the anatomical structures
in the abdomen, the appropriate slice for SOI 2 in the stan-
dard case is chosen as the mean of the determined slices of
SOI 1 and 3. In a few exceptional cases of scans, the CTA
volumes do not contain the axial slices suited for SOI 1 or 3.
This causes a problem for the aforementioned determination
of SOI 2. It must therefore first be established whether the
required slices for SOI 1 and 3 exist. Based on the similarity
value of the determined slice taken from the template match-
ing a thresholdwas empirically defined. If the similarity value
is below0.6 the algorithmdeclares a SOI as non-existing. The
algorithm then uses an offset applied to the existing SOI (SOI
1 or SOI 3) to determine SOI 2. The offset was chosen as the
halved average distance between ROI 1 and 3 of the expert-
annotated axial slices. For our data the offset was therefore
46 slices or 23 cm based on the constant z-spacing of 5 mm.

Automatic ROI determination

After all available SOIs are determined the algorithm pro-
ceeded with the determination of ROI 1, 2 and 3. Because
of the generally round shape of the aorta in the axial plane
the circle Hough transform was applied to determine ROI 1
and 2. The smaller size of the arteria femoralis communis
leads to the decision to use the vesselness filter [6] for the
determination of ROI 3.

By applying the circle Hough transform the CTA image
slice is transformed into a Hough space represented as an
accumulatormatrix parameterized by the radius and the coor-
dinates of the circle center.As the aorta is not the only circular
structure (e.g., the vertebral body) a dynamic programming
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Fig. 3 Example templates for
the detection of SOI 1 and 3

Fig. 4 This figure visualizes
how the template matching
detects the caput femoris in the
CT slice
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approach [4] computing a cost function for the selection of
the most probable aorta was implemented. The six highest
accumulations in the Hough space are taken as candidates for
the aorta and were used as starting point for the calculation
of the cost function. The costs for final circle candidate xk
with k = 1, . . . , 6 is C(xk) = ∑i+4

i C(xki ) , (i being the
according SOI) cumulates the costs of possible circles over
adjacent axial slices. The individual cost for each considered
circle is defined as followed:

C(xki ) = Cv(xk,i ) + Cr(xk,i−1, xki ) + Cd(xk,i−1, xki ) (1)

where Cv(xki ) describes the variance within the circle xki .
Cr(xk,i−1, xki ) describes the radius difference of two circles
between slice i − 1 and i and Cd(xk,i−1, xki ) describes the
distance of two circles centers of two adjacent slices. The
starting circle of the combination of circles is selected that
appears the most constant over the five considered slices
resulting in the lowest overall cost. To avoid calcification
on the vascular walls the circle radius is reduced by 4 pix-
els. If no circle achieves a score under 200 no circle will be
selected which implies that the aorta will not be detected and
has to be determined by the medical practitioner.

Because of the lower diameter of the arteria femoralis
communis after applying the vesselness filter to the SOI 3 a
thresholding is applied to exclude bone material and calcifi-
cation. The algorithm returns ROI 1, 2 and 3 as input for the
concluding assessment.

Evaluation and results

Data

Our data consist of 73 contrast-enhanced CTA volumes that
can contain pathological findings. These images were gener-
ated at the Department of Radiology and Nuclear Medicine
located at the UKSH Lübeck.The Siemens SOMATOMDef-
initionAS+ and the ulrichmedical CTmotion contrast media
injector with RIS/PACS interface were used. The adminis-
tered iodine containing CA dose was 100 ml. As CA Imeron
was used at a concentration of 300 mg/ml, it was adminis-
tered with an injection rate of 5 ml/s.

The volumes have been generated using an aorta scan pro-
tocol. The z-spacing is 5 mm for all volumes with varying
spacing for the remaining dimensions. All axial slices have
a resolution of 512× 512 voxel. The image data and the cor-
responding metadata were stored in the DICOM format. For
each CTA volumes radiological experts annotated the SOIs,
theROIs and the image contrast quality class (Table 2). These
annotations provide the reference standard for the evaluation
of our provided automatic image contrast measurement.

Table 3 Results of the slice detection for the three ROIs

Slice difference 0–2 3–5 5–10 >10

SOI 1 56 7 3 2

SOI 2 27 28 9 2

SOI 3 48 9 1 0

The table describes the number of occurrences of a particular bin of slice
difference. The absolute difference in slices is calculated between the
predicted slice and the expert selection. Note that not every SOI exits
in every CTA volume hence the varying total number of occurrences

Fig. 5 Histogram of the difference between predicted slices and expert
annotations for the three ROIs

Automatic slice detection

To increase the generalization of the template matching we
created a pool of possible templates taken from our CTA
volumes. We tested each combination of templates for the
number of templates t = 1, . . . , 5. As a mean to evaluate the
templates and the slice detection we computed the absolute
difference in slices between the predicted SOI and the slice
chosen by the radiological expert. Our best results shown in
Table 3 were achieved by a combination of t = 3 templates
for each SOI.

For the validation the CTA volumes from which the tem-
plates were taken, were omitted for calculating the results.
Figure5 visualizes the corresponding results. The algorithm
detected 56 out of 68 slices for SOI 1 with a only an detection
error of max. 2 slices implying that 82.35% were detected
within max. 10 mm deviation of the expert’s chosen slice.
For SOI 3 the corresponding rate was 82.76%. For SOI 2
40.90% of the detected slices were deviating up to two slices,
but regarding a slightly higher max. deviation up to 5 slices
or 25 mm still 83.33% fell into this category.

In addition the algorithms ability to confirm or deny the
existence of a slice that would be considered as the SOI in the
current CTA volume is evaluated. Table 4 shows the number
of missing and available slices of SOI 1 and 3 in comparison
with the experts choice. The algorithm achieved a sensitivity
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Table 4 The two fourfold tables show the results of the algorithms
existence check for SOI 1 and 3 in comparison to the experts opinion

Expert slice

Available Missing

SOI 1 Available 71 0

Missing 0 2

SOI 3 Available 61 2

Missing 0 10

Table 5 Resulting distribution of the automatic determination for each
ROI

Correct Not found Incorrect

ROI 1 56 10 5

ROI 2 46 18 5

ROI 3 3 15 43

Note that not every CTA volume contains all three SOIs which leads to
some scans only containing two ROIs hence the varying total number
for each row

and specificity of 100% for SOI 1 and a sensitivity of 100%
and a specificity of 83.33% for SOI 3. This shows that the
algorithm is capable to a rather high degree.

Automatic ROI determination

For the evaluation of the ROI determination three possible
outcomes of the segmentation were considered. “Correct”
was recorded when the ROI was placed within the defined
vessel. “Not found” corresponds to the circle conditions
(“Automatic ROI determination” section) not beingmet lead-
ing to no set ROI. If a wrong circular anatomical structure
(e.g., the left ventricle) was determined as the ROI we
assigned the label “incorrect.” For ROI 1 our algorithm
reached 78.87% accuracy locating the aorta. An accuracy of
60.67% was achieved for ROI 2 reflecting the higher occur-
rence of pathological findings like aneurysms and dissections
in the abdomen area deforming the overall shape of the aorta.
The low accuracy 4.9% for ROI 3 shows that the vesselness
filter was the wrong choice and will be replaced in further
research. The detailed results can be found in Table5.

Rule-based classification

At last, the extent towhich the classification of the image con-
trast results corresponds with the classes the experts chose
for our aortic CTA volumes has to be evaluated. In Table 6
are the results of the algorithms results presented in compar-
ison to the experts ones. In 95.89% of the cases our quality
measurement chose the same image contrast class. This cor-
responds to 70 out of 73CTAvolumes.An additional positive

Table 6 This table shows the compression between the reference
assessment and the assessment using predicted slices

Expert

1 2 3

1 3 0 0 3

Predict 2 1 15 2 18

3 0 0 52 52

note is that if a CTA volume is misclassified the deviation to
the correct class is only 1 class.

Considering our focus on potentially giving recommen-
dations for a CA dose reduction the system should be
particularly skilled at identifying class 3 cases. We analyzed
this scenario by merging class 1 and 2 together to calculate
the positive predictive value of class 3 on the resulting two-
class problem. This resulted in a positive predictive value
of 100% meaning that all cases classified as class 3 by the
system actually belong to class 3.

Discussion and conclusion

In an effort to form the basis for a patient-individual CA dose
adjustment we proposed amethod to automize an image con-
trast measure of aortic CTA volumes which otherwise was
conducted manually by radiological experts. Our algorithm
assesses the volumes and classifies the image contrast based
directly on mean HU values of predefined ROIs. The slice
detection implemented with a template matching approach
as a first step worked rather well and in further experiments
we will include a test set of new CTA volumes to improve
the generalizability and its verification. The segmentation of
the ROIs achieved varying results with the accuracy of ROI
3 clearly indicating the use of another segmentation method
in future research. In contrast to this the results for ROI 1
and 2 showed good generalization in some cases even with
major appearance of deforming pathologies. The conclud-
ing evaluation of the rule-based classification showed that
our algorithm is capable of performing the image contrast
measurement automatically. The time measurement has only
taken place qualitatively resulting in an approximate reduc-
tion in the time needed to assess on CTA volume by one
third when a rectifying action is required. In the percentage
of cases where the algorithm is already working completely
automatically it is faster by approximately 80%.

With our focus on reducing a CA dose we are aware of
the limitations regarding the insufficient image contrast class.
Statements as to whether the dose was too low are not unam-
biguously applicable, since there are variety of reasons such
as timing problems during the CT scan or a low cardiac
output. For our ongoing research we will lay the focus on
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expanding the assessment to other scan protocols like pul-
monal scans to easily extend the amount of data that can be
used for further purposes.
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