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Abstract

Schizophrenia has been conceptualized as a disorder arising from structurally pathological

alterations to white-matter fibers in the brain. However, few studies have focused on

white-matter functional changes in schizophrenia. Considering that converging evidence

suggests that white-matter resting state functional MRI (rsfMRI) signals can effectively

depict neuronal activity and psychopathological status, this study examined white-matter

network-level interactions in antipsychotic-naive first-episode schizophrenia (FES) to

facilitate the interpretation of the psychiatric pathological mechanisms in schizophrenia.

We recruited 42 FES patients (FESs) and 38 healthy controls (HCs), all of whom under-

went rsfMRI. We identified 11 white-matter functional networks, which could be further

classified into deep, middle, and superficial layers of networks. We then examined

network-level interactions among these 11 white-matter functional networks using coef-

ficient Granger causality analysis. We employed group comparisons on the influences

among 11 networks using network-based statistic. Excitatory influences from the middle

superior corona radiate network to the superficial orbitofrontal and deep networks were

disrupted in FESs compared with HCs. Additionally, an extra failure of suppression within

superficial networks (including the frontoparietal network, temporofrontal network, and

the orbitofrontal network) was observed in FESs. We additionally recruited an indepen-

dent cohort (13 FESs and 13 HCs) from another center to examine the replicability of

our findings across centers. Similar replication results further verified the white-matter

functional network interaction model of schizophrenia. The novel findings of impaired

interactions among white-matter functional networks in schizophrenia indicate that the

pathophysiology of schizophrenia may also lie in white-matter functional abnormalities.
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1 | INTRODUCTION

Schizophrenia has been conceptualized as a chronically debilitating

disorder arising from pathological alterations in white-matter fibers in

the brain (Stephan, Friston, & Frith, 2009; Wernicke, 1906). Specifi-

cally, white-matter structure abnormalities, measured by diffusion

tensor imaging (DTI) techniques, have been widely reported in schizo-

phrenia (Ellison-Wright & Bullmore, 2009; Skudlarski et al., 2013).
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However, little neuroimaging research has focused on white-matter

functional changes in schizophrenia, meaning that the role of white-

matter function in schizophrenia's pathophysiology remains unknown.

Recently, white-matter functional activity has been confirmed to

have physiological significance by compelling neuroimaging studies.

For instance, functional activity in distinct white-matter tracts has

been found to correspond to specific task demands, such as percep-

tual or motor tasks (Fabri & Polonara, 2013; Fabri, Polonara, Mascioli,

Salvolini, & Manzoni, 2011; Gawryluk, Mazerolle, Brewer, Beyea, &

D'Arcy, 2011; Gawryluk, Mazerolle, & D'Arcy, 2014). Moreover, dur-

ing resting state, white-matter functional signals have been found to

be highly homogenous and can effectively depict neuronal activity

(Ding et al., 2013, 2016; G.-J. Ji, Liao, Chen, Zhang, & Wang, 2017;

Marussich, Lu, Wen, & Liu, 2017). By using these resting-state func-

tional signals, white matter can reproducibly be organized into several

functional networks, which are associated with certain gray-matter

neurophysiological networks (Peer, Nitzan, Bick, Levin, & Arzy, 2017).

Therefore, resting-state white-matter functional activity, which is

organized in an intrinsic network-level form, may play an essential role

in neurophysiological processes.

More recently, white-matter functional activity abnormalities have

been shown to characterize the pathological status of various psychi-

atric disorders. For example, resting state white-matter functional

activity is closely related to memory function in Alzheimer's disease

(Makedonov, Chen, Masellis, MacIntosh, & Alzheimer's Disease Neu-

roimaging Initiative, 2016). Moreover, regional-level and network-

level white-matter functional activity are both aberrant in Parkinson's

disease, and are attributed to patient pathology (G. J. Ji et al., 2018).

With regard to schizophrenia, network-level white-matter functional

abnormalities have also been observed (Jiang et al., 2018). Specifically,

the activity of white-matter networks and network-coupling is

impaired and associated with the disease duration in schizophrenia,

thereby indicating progressive abnormalities in the white-matter func-

tional network. Thus, white-matter functional networks disturbance

might represent a promising marker for neuropsychiatric disorders.

Although a recent study has demonstrated white-matter network-

coupling abnormalities in schizophrenia (Jiang et al., 2018), the inter-

actions among white-matter functional networks remain unknown.

Among-network interactions prevailingly underlie brain functional

integration, which means that psychological functions are related to

interactions among distributed functional networks. Disrupted inter-

actions among gray-matter functional networks have been demon-

strated to play a prominent role in psychopathological processes and

to be associated with the symptomatology in schizophrenia (de la

Iglesia-Vaya et al., 2014; Liao et al., 2018; Palaniyappan, Simmonite,

White, Liddle, & Liddle, 2013; Pu et al., 2016). For instance, a break-

down was found in the interaction loop between the salience and

execution network, which can significantly predict the illness severity

of schizophrenia (Palaniyappan et al., 2013). In light of the functional

correspondence between white-matter and gray-matter networks

(Peer et al., 2017), changes in white-matter functional networks inter-

actions appear to contribute to the psychopathological processes in

schizophrenia. Therefore, making explicit the interactions among

white-matter functional networks may facilitate the interpretation of

the psychiatric pathological mechanisms in schizophrenia.

To disentangle the effects of underlying disease progression, we

recruited 42 antipsychotic-naive patients with first-episode schizo-

phrenia (FES) and 38 healthy controls (HCs). Considering increasing

concern about reproducibility of neuroscientific findings across differ-

ent centers (Button et al., 2013), we additionally recruited an indepen-

dent cohort (including 13 FESs and 13 HCs) from another center to

examine the reproducibility of current findings. We examined the

interactions among white-matter functional networks using Granger

causality analysis (GCA) on the resting-state functional MRI (rsfMRI)

signals. Unlike delay correlation method which attempts to reveal

temporal dependencies among networks (Jafri, Pearlson, Stevens, &

Calhoun, 2008), GCA provides estimation of the direct information of

their causality by using the multivariate autoregressive model (Liao

et al., 2010). Moreover, coefficient GCA (cGCA), a type of GCA

method, can yield information concerning about excitatory or inhibi-

tory causal influences among functional networks by using the regres-

sion coefficient (Chen et al., 2009). Therefore, it may be an effective

method to detect signed and directional interactions among white-

matter functional networks. To further investigate the total influence

effect of each white-matter functional network in the interaction

model, we additionally examined the causal outflow/inflow of each

network by using a traditionally graph-theoretic metric, that is, out/in

strength. In line with white-matter functional networks coupling dis-

turbances in schizophrenia documented in a previous study (Jiang

et al., 2018), we hypothesized that FESs would exhibit disrupted inter-

actions among white-matter functional networks, and the disruptions

would be associated with the patients' clinical symptoms.

2 | METHODS

2.1 | Participants

2.1.1 | Primary cohort

A total of 80 right-handed participants were recruited, including

42 FESs, and 38 sex-, age-, and education level-matched HCs with

informed consent (see Table 1 for detailed demographic and clinical

information). All examinations were carried out under the guidance of

the Declaration of Helsinki. This study was approved by the Ethics

Committee of the Second Affiliated Hospital of Xinxiang Medical Uni-

versity, China. Patients were recruited from outpatient treatment set-

tings at the Second Affiliated Hospital of Xinxiang Medical University,

a psychiatric hospital with 1,500 beds. Controls were recruited

through media advertisements. All the subjects were Chinese Han

people living in towns around the hospital, with household earnings

around the national average. The diagnosis of schizophrenia was in

accordance with the Structured Clinical Interview for DSM-IV-TR,

patient version (SCID-I/P), and was confirmed by two trained psychia-

trists. All the patients were experiencing first-episode psychosis with

less than 1-year disease duration. Psychiatric symptomatology of the

FESs was evaluated using the Positive and Negative Syndrome Scale
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(PANSS). Both HCs and their first-degree relatives were screened

using the nonpatient version of the SCID to rule out individuals who

presented with any history of neurological disorders or psychiatric ill-

nesses. Participants were excluded if they (a) were <18 years old;

(b) had current comorbid substance-use disorder (daily consumption

of substances for at least 1 year); (c) had a history of neurological dis-

orders or family history of hereditary neurological disorders; (d) had

gross morphological anomalies as evidenced by brain MRI scans; and

(d) had any electronic or metal implants.

2.1.2 | Replication cohort

Considering the methodological novelty of this study and increasing

concern about reproducibility of neuroscientific findings (Button et al.,

2013), an independent replication cohort was necessary to determine

the replicability of current findings. A total of 26 right-handed partici-

pants were recruited (see Table S3 in Supplementary 5 for detailed

demographic information), including 13 FESs, and 13 sex-, age-, and

education level-matched HCs after providing informed consent

according to the guidelines of the First Affiliated Hospital of Chong-

qing Medical University. Patients were recruited from outpatient

treatment settings at the First Affiliated Hospital of Chongqing Medi-

cal University, which is a general hospital with 3,200 beds. All the

patients were experiencing first-episode psychosis with less than

1-year disease duration. Controls were recruited through media

advertisements. All the participants were Chinese Han people living in

towns around the hospital, with household earnings around the

national average. The exclusion criteria were the same for both the

primary cohort and the replication cohort. See Supplementary 5 for

data acquisition. One FES patient and one HC were excluded for their

excessive head motion (see following data preprocessing). Ultimately,

24 subjects took part in further analyses, which were identical with

data analyses of the primary cohort described below.

2.2 | Data acquisition

Imaging data of the primary cohort were collected using a 3.0 Tesla

MRI scanner (Siemens Medical Systems, Erlangen, Germany) at the

Second Affiliated Hospital of Xinxiang Medical University. Participants

were instructed to stay awake with their eyes closed and not to think

of anything in particular. T1-weighted anatomical images were

acquired by a three-dimensional fast spoiled gradient-echo sequence

with the following parameters: TR = 1,900 ms; TE = 2.52 ms; flip

angle = 90�; field of view = 250 × 250 mm2; matrix = 256 × 256,

176 axial slices; slice thickness = 1 mm, no gap. Resting-state func-

tional images were acquired using an echo-planar imaging (EPI)

sequence with the following parameters: TR = 2,000 ms; TE = 30 ms;

flip angle = 90�; field of view = 220 × 220 mm2; matrix = 64 × 64,

33 axial slices; slice thickness = 3 mm, 0.6 mm gap; 240 volumes.

2.3 | Data Preprocessing

fMRI data of both the primary cohort and the replication cohort were

preprocessed using the Data Processing Assistant for resting-state

fMRI software (DPARSF, Advanced Edition, V4.3; www.restfmri.net)

and Statistical Parametric Mapping toolkits (SPM8; www.fil.ion.ucl.ac.

uk/spm). T1-weighted anatomical images were segmented into white-

matter, gray-matter, and cerebrospinal fluid (CSF) using SPM8's New

Segment algorithm and then normalized to the Montreal Neurological

Institute template. The first 10 volumes were discarded. The

remaining volumes were then slice-time corrected and motion

corrected (cutoff <3 mm or 3�) to the mean functional image, and

TABLE 1 Demographic and clinical
characteristics

Characteristic HCs (n = 38) FESs (n = 42)

Group comparisons

Statistic values p Values

Sex (male/female) 25/13 27/15 χ2 = 0.02 .89a

Age (years) 24.76 ± 0.74 24.86 ± 0.74 T(78) = 0.09 .93b

Education (years) 11.05 ± 0.47 10.48 ± 0.44 U = 687 .28c

Cigarette use (no/yes) 30/8 33/9 χ2 = 0.002 .97a

Alcohol use (no/yes) 29/9 36/6 χ2 = 1.16 .28a

Duration of illness (months) — 8.38 ± 0. 40 — —

PANSS scores

Total scores — 91.90 ± 1.73 — —

General scores — 48.14 ± 0.99 — —

Positive scores — 25.60 ± 0.58 — —

Negative scores — 18.17 ± 0.80 — —

Note: Mean ± SEM.

Abbreviations: HC, healthy controls; FES, antipsychotic-naive first-episode schizophrenia patients;

PANSS, Positive and Negative Symptom Scale.
aThe χ2 value for gender distribution was obtained by chi-square test.
bThe T values were obtained by two sample t test.
cThe U values were obtained by Mann–Whitney tests.
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coregistered with an anatomical image. One FES patient and one HC

in the replication cohort were excluded for excessive head movement,

and no participant was excluded in the primary cohort. The framewise

displacement (FD) was calculated and used to determine motion

“spikes” (FD > 1 mm) to further minimize motion effects (J. Guo et al.,

2019; X. Guo et al., 2019; Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012). The functional images were then detrended to

remove linear drifts. Next, nuisance covariates, including 24 head

motion parameters (Friston, Williams, Howard, Frackowiak, & Turner,

1996) and the mean CSF signals were regressed out, while the white-

matter and global brain signals (Han et al., 2019) were not regressed

out to avoid eliminating signals of interest. Additionally, motion

“spikes” were also included as separate regressors to effectively cen-

sored the data at the spike without further changes to correlation

values (Jiang et al., 2018; R. Li et al., 2018). A 0.01–0.15 Hz temporal

band-pass filter was applied to reduce nonneuronal contributions to

BOLD fluctuations. Next, white-matter functional images were spa-

tially smoothed. Specifically, the T1 segmentation image for each

participant was coregistered to the functional space for identifying

the white-matter mask (using a threshold of 0.5 as a previous study

suggested) (Peer et al., 2017). The functional images were then

smoothed (4 mm full-width half-maximum) on the mask. The

smoothed white-matter functional images were used for further

analyses. Finally, the images were normalized to the standard EPI

template and resampling to 3 mm3 cubic voxels.

2.4 | White-matter functional networks clustering

The analysis codes were adapted from the online codes published by

Peer and colleagues (Peer et al., 2017), and the analysis steps are

briefly described here. First, the unified group-level white-matter

masks were obtained using the T1-weighted anatomical image seg-

mentation results. Voxels with a percentage of participants >60%

were identified as the group-level white-matter mask (Peer et al.,

2017). The subcortical areas (based on the Harvard-Oxford Atlas)

were removed from the white-matter mask. Next, the white-matter

functional networks were identified by a clustering approach based

on the Pearson's correlation matrices between white-matter voxels

that group masks restricted. K-means clustering (distance metric-cor-

relation, 10 replicates) was employed on the averaged correlation

matrices across groups. The numbers of clusters ranged from 2 to 22.

Finally, by assessing the stability of the number of clusters using an

averaged Dice's coefficient (the threshold was set at 0.85), the most

stable and detailed white-matter functional network masks were

obtained. (See Supplementary 1 for further details concerning the

steps taken in white-matter functional networks clustering.)

In the primary cohort, according to the Dice's coefficient of each

number of clusters, the most stable and detailed white-matter func-

tional network number was 11 (see Figure S1 in Supplementary 1).

Similar to the previous study (Peer et al., 2017), each white-matter

functional network was compared with 20 major white-matter fiber

tracts based on the JHU white-matter tractography atlas (Hua et al.,

2008) to measure the network-tract correspondence. Moreover, as

suggested by Peer et al., these networks were further compared with

48 white-matter tracts defined by the ICBM DTI workgroup to esti-

mate more accurate correspondence. The symmetrical, interlaced pat-

tern of white-matter functional networks could be divided into three

layers (superficial, middle, and deep). (Detailed network information is

shown in Table 2.)

In the replication cohort, the most stable and detailed white-

matter functional network number was 11 according to the Dice's

coefficient of each number of clusters (see Figure S4 in Supplemen-

tary 5), which were also classified into deep, middle, and superficial

layers of networks.

2.5 | Coefficient GCA

The signed and directional influences among 11 white-matter func-

tional networks were measured using cGCA. For each network, the

individual preprocessed resting-state fMRI time series was extracted

TABLE 2 White-matter functional networks

Number White-matter functional network Network-tract correspondence Layer

1 Deep Superior longitudinal fasciculus system Deep

2 Anterior corona radiate Anterior corona radiata and uncinate fasciculus Middle

3 Superior corona radiate Superior corona radiata and superior longitudinal fasciculus Middle

4 Posterior callosum Body of corpus callosum and corticospinal tracts Middle

5 Cerebellar Inferior corticospinal and posterior cerebellar tracts Superficial

6 Pre/post-central Superior longitudinal fasciculus and cingulum tracts Superficial

7 Temporofrontal Corticospinal tracts and anterior thalamic radiation Superficial

8 Occipital Forceps major system Superficial

9 Orbitofrontal Forceps minor system and anterior thalamic radiation Superficial

10 Superior temporal Uncinate and middle temporal lobe tracts Superficial

11 Frontoparietal Cingulum and associated tracts Superficial

Note: The network-tract correspondences were estimated based on the overlap between white-matter functional networks and two white-matter

tractography atlases provided by Susumu Mori.
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by averaging the time series of all voxels within it. The influence

strengths among functional networks were evaluated by regression

coefficients of the multivariate autoregression model in REST soft-

ware (V1.8, www.restfmri.net) (see Supplementary 2 for details). Each

regression coefficient characterizes the signed strength and direction

of the relationship between two networks, in line with our previous

works (Liao et al., 2018). Positive coefficients denote excitant paths

(source activity predicts subsequent increases in target activity), while

negative coefficients denote inhibited paths (source predicts subse-

quent decreases in target). Finally, a directed asymmetric matrix

(11 × 11 regression coefficient matrix) was obtained for each partici-

pant. The definition of the following cGCA graph-theoretic metric

(Liao et al., 2011) is listed to describe the outflow/inflow influence

strengths of each network:

1. Out-strength: Sum of absolute regression coefficients of certain

network where the network is the source variable to significantly

predict other networks. It denotes Granger causal afferent con-

nections of each network.

2. In-strength: Sum of absolute regression coefficients of certain net-

work where the network is the target variable significantly

predicted by other networks. It denotes Granger causal efferent

connections of each network.

2.6 | Disturbance of correlation analyses

Considering the relatively low frequency scale of our study, the

spread of hemodynamic effects across time may potentially disturb

direct correlation at the same time point. Therefore, the seemingly

across-time causality we observed can be simply due to disturbance

of correlation. For diluting the effect of direct correlation, the

Pearson's correlations among white-matter functional networks were

calculated and added as covariates in group comparison of cGCA in

the primary cohort (see Supplementary 2 for further details).

2.7 | Statistical analyses

In the primary cohort, the within-group 11 networks influence pat-

terns were examined using one-sample t tests on the influence coeffi-

cient matrices across all participants including FESs and HCs. The

out/in strengths of each network were calculated within the signifi-

cant group mask across all subjects. The 11 networks influence differ-

ences between FESs and HCs were measured using permutation tests

(5,000 times permutations) (Zhang et al., 2011), controlling for sex,

age, and education level as confounding variables. Specifically, a per-

mutation distribution of differences was generated by randomly assig-

ning each subject to one of the two groups with the same size as the

original FES and HC groups and computing their between-group dif-

ferences using two-sample t tests with sex, age, and education level

as confounding variables. This procedure was repeated for 5,000 per-

mutations. The p value was estimated by calculating the percentage

of permutations higher than the actual group difference measured by

two-sample t test with the same covariates. The statistical significance

level was set at p < .05 and network-based statistic (NBS) adjusted for

multiple testing. By using this statistical method, connected subnet-

works of edges showing a particular effect of a size larger than which

would be expected by chance can be identified (Zalesky, Fornito, &

Bullmore, 2010). As the 11 white-matter networks can be further clas-

sified into deep, middle, and superficial layers of networks, for each

subject, the out/in strengths of each layer were calculated by sum-

ming the absolute out/in strengths of all belonging networks. The

out/in strengths of tri-layer networks were compared between FESs

and HCs using two-sample t tests (p < .05), false discovery rate (FDR)

corrected. The relationships between altered 11 networks influence

values and symptom severity (PANSS-N or PANSS-P scores) were

investigated using Pearson's correlation analyses in FESs.

In the replication cohort, the within-group networks influence pat-

terns were also examined using one-sample t tests across all partici-

pants including FESs and HCs. Group differences on the 11 networks

influence between FESs and HCs were measured using two-sample

t tests (p < .05, FDR corrected), controlling for sex, age, and education

level as confounding variables. The out strengths of tri-layer networks

were compared between FESs and HCs using two-sample t tests

(p < .05, FDR corrected).

2.8 | Validation analyses

Considering that potential leakage of the gray-matter fMRI signal may

affect the clustering pattern of the white-matter fMRI signal, two rela-

tive stricter group-level masks (percentages >70 and 80%) were

applied to identify white-matter voxels to validate the consistency of

the main results of the primary cohort (see Supplementary 3 for fur-

ther details).

3 | RESULTS

3.1 | Results of the primary cohort

3.1.1 | Within-group networks influence patterns

The interactions among 11 white-matter functional networks were

evaluated by influence coefficients among networks. The within-

group networks influence patterns (Figure 1) were examined using

one-sample t tests (p < .05) across all participants (N = 80) including

FESs and HCs in the primary cohort. In the significant networks influ-

ence patterns, a larger total influence strength can be observed in the

deep network compared with other networks, partly in accordance

with previously reported observations of unique features in deep net-

work (Jiang et al., 2018; Peer et al., 2017).

3.1.2 | Between-group networks influence
differences

Differences in the 11 networks influence between FESs and HCs in

the primary cohort were measured using two-sample t tests with

5,000 permutations (p < .05, NBS corrected; see Figure S3 in
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Supplementary 4). These differences could be concluded as following

tri-layer network-level results (Figure 2). Compared with HCs, FESs

exhibited decreased excitatory influences from the middle network

(i.e., superior corona radiate network) to the superficial network

(i.e., orbitofrontal network; t = −3.62, p = .0007), as well as the deep

network (t = −3.25, p = .001). The out strength of the middle

F IGURE 1 Within-group white-matter functional networks influence patterns across all subjects in the primary cohort (N = 80) determined
by one-sample t test (p < .05). Red and blue arrow lines in the left wheel represent significant excitatory influence and inhibitory influence,
separately. Positive/negative values in the right T-value matrix also denote excitatory/inhibitory influence. Excitatory influence represents that
source activity predicts subsequent increases in target activity, and inhibitory influence represents source predicts subsequent decrease in target.
The circle size of each network on the wheel represents the sum of absolute values of all significant influences whether outflow or inflow this
network. In each circle, the light and dark portions refer to inflow and outflow influence strengths, respectively. The 11 networks outside the
wheel are presented in clockwise order

F IGURE 2 Between-group white-matter functional networks influence differences in the primary cohort examined by two-sample t test with
5,000 permutations (p < .05, NBS corrected). FESs exhibited significantly decreased excitatory influence from the middle network to the superficial
network (t = −3.62, p < .001) as well as the deep network (t = −3.25, p = .001) compared to HCs. FESs exhibited additional decreased inhibitory
influences within superficial networks. The out strength of the middle networks was decreased in FESs compared with HCs (t = −2.90, p = .004).
FES, antipsychotic-naive first-episode schizophrenia patient; HC, healthy control; FDR, false discovery rate. ★★ denotes pFDR-corrected < .05
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networks was decreased in FESs compared with HCs (t = −2.90,

p = .004, FDR corrected). Altogether, the regulation of middle net-

works was disrupted in FESs. Additionally, FESs exhibited decreased

inhibitory influences within superficial networks including influences

from the frontoparietal network to the pre/post-central network

(t = −2.94, p = .004), temporofrontal network (t = −2.98, p = .002),

and the orbitofrontal network (t = −3.04, p = .001). No clinical correla-

tion was found between the altered networks influence values and

symptom severity in FESs.

3.2 | Validation results

Both the main results of 70 and 80% group-level masks were consis-

tent with the main results of 60% masks (see Figure S2 in

Supplementary 3). Thus, the main results were still stable even with

stricter masks.

3.3 | Results of the replication cohort

Considering the methodological novelty of this study, an independent

replication cohort (N = 24) was recruited and identically analyzed to

examine the reproducibility of current findings. Similarly, 11 white-

matter functional networks were identified, including the deep, ante-

rior corona radiate, superior corona radiate, posterior callosum,

posterior cerebellar, pre/post-central, temporofrontal, occipital,

orbitofrontal, superior temporal networks, and the inferior

corticospinal network (Figure 3). Notably, the frontoparietal and

pre/post-central networks were merged into a single network,

F IGURE 3 Replications of networks influence patterns and tri-layer networks influence differences in an independent cohort (N = 24).
(a) Within-group influence patterns determined by one-sample t tests across FESs and HCs. Positive and negative values represent excitatory
influence and inhibitory influence, separately. (b) In the replication cohort, compared with HCs, the middle￫superficial excitatory influence (t = −2.38,
p = .03) showed significant decrease in FESs, which was similar with the primary cohort. (c) In the replication cohort, no significant decrease on the
excitatory influence of middle￫deep network (t = −0.65, p = .52) was observed in FESs compared to HCs. (d) The out strength of middle network
influence was significantly reduced (t = −2.25, p = .03) in FESs compared to HCs. Additionally, the outflow influence of the superficial network was
significantly decreased in FESs (t = −2.94, p = .008). ★ denotes p < .05.★★ denotes pFDR-corrected < .05. FES, antipsychotic-naive first-episode
schizophrenia patient; HC, healthy control
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whereas the cerebellar network was subdivided into anterior and pos-

terior subnetworks in the replication results. First and foremost, the

within-group influence patterns (Figure 3a) measured by one-sample

t tests across all subjects in the replication cohort were similar to

that in the primary cohort. With regard to between-group differen-

ces (two-sample t test, correcting for sex, age, and education level),

FESs in the replication cohort exhibited similarly decreased

middle!superficial (i.e., superior corona radiate!orbitofrontal) excit-

atory influence (t = −2.38, punc = .03; Figure 3b) compared to HCs.

Despite of no significant decrease on the middle!deep excitatory

influence (t = −0.65, p = .52; Figure 3c) in FESs of the replication

cohort, the total outflow of the middle network showed a relative

decline in FESs compared to HCs (t = −2.25, punc = .03; Figure 3d). In

addition, the outflow influence of the superficial network was signifi-

cantly decreased in FESs of the replication cohort (t = −2.94, p = .008;

Figure 3d), indirectly confirmed the disrupted interaction within

superficial white-matter networks. The parsimonious group compari-

son results in the replication cohort may be largely due to the small

sample size. Additional participants should be recruited to further vali-

date the white-matter network interactions model of FESs. Neverthe-

less, the replication results were approximately consistent with results

of the primary cohort, indicating the replicability of current findings.

4 | DISCUSSION

In the last decade, the existence of white-matter signals has been con-

firmed by compelling evidences. For example, in addition to task-related

activation in distinct white-matter tracts (Fabri et al., 2011; Fabri &

Polonara, 2013; Gawryluk et al., 2011, 2014), the white-matter signals

also exhibit a topological organization during the resting state (G.-J. Ji

et al., 2017; J. Li et al., 2019), indicating that white-matter signals are

more than just noise. Moreover, abnormal white-matter signals have

been reported in various psychiatric disorders, including schizophrenia

(G. J. Ji et al., 2018; Jiang et al., 2018; Makedonov et al., 2016). There-

fore, the white-matter signals have a physiological function, and their

abnormalities are closely linked to psychopathological status. In view of

the network organization pattern of white-matter suggested by a previ-

ous study (Peer et al., 2017), this study examined interactions among

11 white-matter functional networks consisting of three layers (superfi-

cial, middle, and deep) in FESs and HCs. Despite that converging evi-

dences have proved the neurobiological significance of white-matter

signals, the novelty of this field made it necessary to retest current

results in another independent sample. However, as we expected, simi-

lar retest results confirmed the replicability of white-matter functional

network interaction model of schizophrenia. The present study is the

first to investigate the white-matter functional network interaction

model in FESs to advance our understanding of psychiatric pathological

mechanisms in schizophrenia.

The neural substrate of functional interactions within white-matter

networks is an issue worthy of discussion. Anatomically, superficial

white-matter tracts connect distant cortical neuron cell bodies that are

engaged in different functions, while deep white-matter tracts are less

surrounded by gray matter. With respect to brain function, there was

synchronous neural activity within superficial white-matter networks

and cortical gray-matter networks, whereas hardly no correlation pat-

tern was observed between middle or deep white-matter networks and

any gray-matter networks (Ding et al., 2018; Peer et al., 2017). In light

of the notion that superficial white-matter tracts and corresponding

gray-matter cortices share a common functional role (Peer et al., 2017),

it is reasonable to infer that superficial white-matter network interac-

tions can be indirectly due to the interplay of cortical gray-matter net-

work. However, relative to surface white matter, deep white-matter

tracts exhibited more unique features, for example, different spectral

profile (Jiang et al., 2018) and hemodynamic response function (M. Li,

Newton, Anderson, Ding, & Gore, 2019) from gray matter, suggesting

that interactions within middle/deep white-matter networks subserve

specific functions that are less relevant to gray-matter networks. In con-

clusion, superficial white-matter networks may indirectly interplay with

each other through gray-matter networks, while middle and deep

white-matter networks are more likely to communicate directly by

axon-to-axon interactions.

A generally impaired interactions among white-matter functional

networks was found in the present study, rather than a compensation

mechanism on white-matter networks functional connectivity as

suggested by Jiang et al. (2018), that is, middle-deep white-matter

networks had increased connectivity with superficial networks. This

inconsistency may be partly due to the type of patients we recruited.

The previous study used patients with chronic schizophrenia, while

we used FES patients. These two types of schizophrenia show exten-

sive differences in brain structures (Ellison-Wright, Glahn, Laird,

Thelen, & Bullmore, 2008) and functions (T. Li et al., 2017). Thus, our

findings focus on FES patients' functional changes of white-matter

networks. Another possible explanation for the inconsistency in find-

ings relates to the status of antipsychotic medications usage. Patients

in the previous study received antipsychotic medications, while our

patients were medication-naive. Therefore, our study was able to

explore brain changes derived from disease without the influence of

antipsychotic medications (Kahn et al., 2008; Radua et al., 2012). A

further potential explanation for the conflict may be the GCA method

that we used. The functional connectivity analysis that was previously

utilized can only measure the statistical dependence between

neuronal activities in distinct networks, but it cannot evaluate the

influence that one network exerts over another (Liao et al., 2010,

2011). Therefore, by using the GCA method, the present study

explored the pathological alterations of schizophrenia from the per-

spective of white-matter functional networks interactions.

The influences from middle white-matter functional networks to

superficial and deep white-matter functional networks were disrupted

in FESs. The middle white-matter networks were anchored on the

corona radiata, which contain reciprocal connecting fibers that link

cortex and subcortical bodies (e.g., the basal ganglia; Catani &

Thiebaut de Schotten, 2008). Anatomically, the corona radiata first

grows and then atrophies with age during normal development

(Asato, Terwilliger, Woo, & Luna, 2010; Burzynska et al., 2010), while

it abnormally atrophies in schizophrenia (Cui et al., 2011; Walther
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et al., 2011). By using a novel method, the present study enabled the

detection of potential dynamic information transfer through the

corona radiate fibers. Our results revealed damaged information

export from the middle corona radiate networks in schizophrenia,

which additionally support the structural disruption. Specifically, this

information export disruption was decomposed into its descending

excitatory regulation to deep white-matter networks and its ascend-

ing excitatory regulation to superficial orbitofrontal white-matter net-

work. According to our inference, the middle corona radiate network

should downstream regulate the deep white-matter network through

deep axon-to-axon white-matter tracts, hinting that the path plausibly

subserves a communication function (Peer et al., 2017). Combining

with the impaired upstream regulation to the superficial orbitofrontal

white-matter network, the damaged information export of the middle

networks might explain the cognitive and/or perceptual-motor deficits

in schizophrenia (Carlson, 2014). Altogether, the middle white-matter

networks disengagement in the network interactions model may play

a fundamental role in white-matter dysfunction in schizophrenia.

A particular failure of suppression within the superficial white-

matter functional networks was observed in FESs. Specifically, the

regulation from frontoparietal white-matter network was damaged in

FESs, which are coincident with previous gray-matter findings of a

dominant disruption of frontoparietal control network in schizophre-

nia (Baker et al., 2014). Therefore, dysfunction of frontoparietal net-

work, whether at cortical gray-matter level or underlying white-

matter level, plays a critical role in the pathology of schizophrenia.

Moreover, it is interesting to note that the major surface white-matter

disturbance, which involved in reduced suppression from

frontoparietal white-matter network to temporofrontal and

orbitofrontal white-matter networks, is in line with the dysconnection

model of schizophrenia (Friston & Frith, 1995; Stephan et al., 2009).

As Friston and Frith suggested, disrupted suppression from

frontoparietal gray-matter network to temporal gray-matter network

might result in a failure to integrate intrinsically generated behavior

and extrinsically generated percepts, which could be a sufficient

explanation for various symptoms in schizophrenia. More importantly,

the correspondence between superficial white-matter and gray-

matter findings in schizophrenia potentially confirmed our inference

that superficial white-matter network interactions were driven by the

interplay of cortical gray-matter networks. Taken together, the cur-

rent findings reveal the relevance between functions of cortical gray-

matter networks and superficial white-matter networks, and further

support the dysconnection model of schizophrenia in the aspect of

white-matter function.

We acknowledge several limitations in the present study. Fore-

most, the sample size was relatively small, which may partly contribute

to the failure to find any clinical correlations in patients. Future studies

should recruit additional participants to validate the relationship

between impaired white-matter functional networks interactions and

schizophrenia symptoms. Second, the parsimonious replication results

were underpowered to support the main findings of the present study,

which may be due to the small size of the replication cohort. Next, the

lack of cognitive function measures was underpowered to support the

association between disruption in white-matter networks regulation

and cognitive deficits in schizophrenia. Finally, limited by utilizing a

cross-sectional design, the present study could not uncover the pro-

gressive pathological alterations in the white-matter functions in

schizophrenia. Further longitudinal studies that include a medication-

treated patient group are highly recommended.

5 | CONCLUSIONS

This study sought to elaborate upon the pathological alterations of

schizophrenia in terms of white-matter functional network interac-

tions. The current findings suggest that the middle white-matter net-

works disengagement may play a fundamental role in white-matter

dysfunction in schizophrenia. Furthermore, failed suppression within

the superficial white-matter networks in schizophrenia adds additional

supports for the dysconnection hypothesis in the aspect of white-

matter function. Overall, the present study uncovered impaired inter-

actions among the white-matter functional networks in schizophrenia,

thereby indicating that the pathophysiology of schizophrenia may also

lie in white-matter functional abnormalities.
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