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Abstract

Objective: The peritoneum has the same developmental origin as blood vessels, is highly reactive and poorly
thrombogenic. We hypothesize that parietal peritoneum can sustain development and regeneration of new vessels.

Methods and Results: The study comprised two experimental approaches. First, to test surgical feasibility and efficacy of
the peritoneal vascular autograft, we set up an autologous transplantation procedure in pigs, where a tubularized parietal
peritoneal graft was covered with a metal mesh and anastomosed end-to-end in the infrarenal aorta. Second, to dissect the
contribution of graft vs host cells to the newly developed vessel wall, we performed human-to-rat peritoneal patch grafting
in the abdominal aorta and examined the origin of endothelial and smooth muscle cells. In pig experiments, the graft
remodeled to an apparently normal blood vessel, without thrombosis. Histology confirmed arterialization of the graft with
complete endothelial coverage and neointimal hyperplasia in the absence of erosion, inflammation or thrombosis. In rats,
immunostaining for human mitochondri revealed that endothelial cells and smooth muscle cells rarely were of human
origin. Remodeling of the graft was mainly attributable to local cells with no clear evidence of c-kit+ endothelial progenitor
cells or c-kit+ resident perivascular progenitor cells.

Conclusions: The parietal peritoneum can be feasibly used as a scaffold to sustain the regeneration of blood vessels, which
appears to occur through the contribution of host-derived resident mature cells.
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Introduction

Atherosclerotic vascular disease often leads to critical narrowing

or extensive aneurysmatic dilation of the vessel lumen. In these

circumstances, surgical techniques use biocompatible materials to

by-pass the stenosis or repair the aneurysm. Currently, this is

accomplished using arterial or venous autografts, when suitable.

For the reconstruction of larger vessels, such as the aorta,

autografts with adequate caliber and resistance are not available.

In this case, allografts or synthetic grafts are commonly used.

However, there are pitfalls in these approaches as homografts tend

to degenerate over time, while synthetic grafts are thrombogenic

and prone to infection [1,2,3].

On this basis, several laboratories have development tissue-

engineered blood vessels in vivo or in vitro using molds of prosthetic

or biodegradable scaffolds, but each artificial graft has shown

significant limitations [4]. Moreover, the production of a

bioengineered graft is time-consuming, and unsuitable in emer-

gency or where qualified laboratories are lacking.

We hypothesize that the peritoneum represents an ideal inner

layer for a vascular substitute, as it is a highly reactive and readily

available tissue, with the same embryologic origin as the

vasculature (the mesoderm). The peritoneum is composed of a

mesothelial layer supported by a thin connective tissue containing

blood vessels, lymphatics and nerves [5]. Owing to its biological

characteristics, the peritoneum has been proposed as an

alternative for the coating of vascular prostheses [5,6,7]. In an

experimental study on rabbits, Sparks et al. have demonstrated

that prosthetic grafts coated with mesothelial cells have a higher

patency rate if compared to uncoated grafts [8]. According to

Campbell et al. the peritoneum seems to offer a lower risk of

thrombosis than synthetic grafts [9]. The anticoagulant properties

of the peritoneum have been demonstrated in animal models using

a peritoneum/fascia patch on pulmonary arteries as substitute of

pericardium [10]. For these reasons, the parietal peritoneum has

been proposed as a vascular substitute. For instance, Sarac et al.

studied a fascia-peritoneum patch as a pledget for an infected

aortic stump [11] and as an arterial substitute in femoral artery

patch angioplasty on dogs [12]. Garcia-Graz et al. [13] created a

vascular autograft with the posterior rectus aponeurosis including

the subjacent peritoneum in seven dogs, and performed an

implantation on the aorta by an end-to-end surgical anastomosis;
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to avoid the dilatation of the graft the authors encircled the

fasciaperitoneum with three rings made of a 3/0 silk floss. Their

results seem to demonstrate the feasibility of this approach, with

impermeability and no thrombogenicity, but the study lacked of

histological examination.

Structural weakness and low resistance to stress and pulsatile

pressure are the major limitations in using the peritoneum as an

arterial graft, which can be circumvented using a mechanical

support to avoid deformation of the graft. As several investigations

suggest that hemodynamic forces are a stimulus for tissue

remodeling and acquisition of a contractile phenotype [9,14],

propagation of the sphygmic wave by a metal mesh may allow the

peritoneum to differentiate in an artery-like structure.

The aim of the present study was to evaluate the feasibility and

efficacy of a substitute vascular graft, made by a tubularized

peritoneal flap covered with a metal mesh. We also aimed to

understand the role of cells derived from the peritoneum in the

arterialization of the vascular graft, to distinguish cell differenti-

ation from scaffold function.

Materials and Methods

Ethics statement
The animal protocols used in this study were reviewed and

approved by the animal care section of the Ministry of Health (nu
3262/2009-A and 87/2010-B). The Center for Experimental

Surgery of the University of Padova specifically approved the use

of human tissues. Written informed consent was acquired from

human subjects involved in the study.

Pig autologous tabularized peritoneal aortic graft
Two types of experiments were set up to study the patency,

eventual thrombosis, endothelization and arterialization of the

graft, as well as the origin of cells that contributed to its remodeling

(Figure 1). Five 30 days old female pigs underwent induction with

sodium thiopental and general anesthesia (1 mg/kg Xilazine plus

0.5 mg/kg Tiletamine chlorhydrate) with endotracheal intubation.

The abdominal cavity was accessed with a midline incision. A

563 cm rectangular layer of the abdominal peritoneum was

collected, leaving in situ the posterior rectus aponeurosis. The

peritoneum was tubularized on a plastic tutor by a continuous 6/0

polypropylene suture, creating a 10 mm diameter, 5 cm length

vascular graft. The intra-abdominal surface of the peritoneum was

used as the internal sheath of the graft. Then, the peritoneum

tubularized on the tutor was covered with a stainless steel mesh

(Biocompound ShuntH - Alpha Research Switzerland). After

dissection of the infrarenal aorta, intravenous sodium heparin

(150 IU/kg) was administrated, and the aorta was clamped. A

4 cm portion of the infrarenal aorta was removed and the mesh/

peritoneal autograft was inserted by end-to-end surgical anasto-

mosis, performed with 6/0 polypropylene thread. The removed

aortic portion must be 1 cm shorter than the vascular autograft

because the aorta is very elastic and retracts. Patency and

resistance of the graft was confirmed by the visual intra-operative

inspection and pulse-checking of the proximal and distal aorta.

Then, optimal hemostasis was verified and the abdomen was

closed by layers. During the post-operative period, each animal

received analgesic medication (fentanyl 0.1 mg/day), antibiotics

and a daily subcutaneous injection of 6000 IU of low-molecular-

weight-heparin (enoxaparin). Animals were observed for 2 weeks,

evaluating clinical parameters and eventual development of

arterial insufficiency (intensity of pulse, temperature, trophism

and functional changes of the hind limbs). One week after surgery,

an echo-color-Doppler scan was performed under pharmacolog-

ical sedation to confirm patency of the graft. Two weeks after

surgery, animals were sacrificed under general anesthesia. A re-do

Figure 1. Graphic representation of the two types of experiments. A) A pig autologous end-to-end peritoneal implant was used to study
patency, eventual thrombosis, endothelization and arterializations of the graft, 2 weeks after surgery. B) A human-to-rat peritoneal graft approach
was set up to study remodeling of the peritoneum and to determine the host vs donor origin of cells that contributed to the process of
endothelization and eventual arterialization.
doi:10.1371/journal.pone.0033557.g001
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open transperitoneal approach to the aorta was performed and

autografts, including the whole proximal and distal anastomosis,

were harvested.

Human-to-rat peritoneal aortic patch
Ten week old male Sprague-Dawley rats (n = 3), weighing 200

to 250 g, from the University animal house vivarium were used for

the experiment. The experimental protocols were approved by the

Animal Ethics Committee of the University of Padova. Rats were

housed in individual cages in a temperature and light-dark cycle-

controlled environment with free access to food and water. All rats

received standard care, in compliance with the ‘‘Principles of

Laboratory Animal Care’’ prepared by the Institute Experimental

Surgery of the University of Padova. The rats were anesthetized

with intramuscular injection of 700 mg/kg tilethamine hydrochlo-

ride – zolazepam hydrochloride mixture plus 150 mg/kg xylazine

subcutaneously, and then placed on a supine position under a

heating lamp. The skin was aseptically prepared and a midline

laparotomy was done. Ten mL of warm normal saline was instilled

into the peritoneum cavity to help maintain fluid balance. The

abdominal aorta was exposed by gently deflecting the loops of

intestine to the left with moist gauze swabs and the infra renal

aorta was isolated till the iliac origin. Atraumatic microvacsular

clamps (Vascu-Statts II, midi straight 1001-532; Scanlan Int., St.

Paul, MN) were placed on the aorta just below the origin of renal

arteries and on the aortic carrefour. A longitudinal aortotomy of

1 cm was performed between the clamps. The aortotomy was then

closed using a patch of human peritoneum harvested the same day

and sutured with separated stitches of polypropylene 8/0. The

patency of the aorta distally to the patch was tested by visual intra-

operative inspection and pulse-checking. The hemostasis was

verified and the abdomen closed. The donors of the peritoneum

gave written informed consent but the sample was collected in an

anonymous way. In rats, a tabularized end-to-end peritoneal graft

could not be performed because a suitable caliber metal mesh was

not available.

Histology and immunohistochemistry
Pig samples. Multiple cross-sections of the aorta and the

graft were embedded in paraffin after formalin fixation. Double

immunohistochemical staining was performed for alpha smooth

muscle actin (mouse monoclonal antibody, clone 1A-4, dilution

1:50, Dako) and elastic van Gieson fibres to identify tissue

composition and vessel wall remodeling as well as for von

Willebrand factor (rabbit polyclonal antibody, dilution 1:100,

Biocare Medical) to stain the endothelium.

Rat samples. A 2 cm long sample of abdominal aorta was

infused and embedded with OCT (BioOptica, Milan, Italy) and

then frozen in liquid nitrogen. All stainings were performed

on 10 mm-thick cryosections. Hematoxylin-eosin staining was

performed according to the manufacture’s instruction (BioOptica).

Immunofluorescence stainings were performed with mouse anti-

Figure 2. Macroscopic representation of graft preparation, implantation and removal in pigs. A–B) Tailoring of the peritoneal graft on a
tutor. C) Coverage of the peritoneal graft with the metal mesh. D) Proximal anastomosis showing the adhesion of the peritoneum to the metal mesh
when pulsatile flow is established into the graft. E) Graft harvested (A, native aorta; P, peritoenal graft) with no signs of overt dilatation. F) Fresh
transversal equatorial cut of the peritoneal graft showing patency and (G) thickening of the peritoneal graft at 15 days from the implant. H)
Intraluminal appearance at the proximal anastomosis (A, native aorta; P, peritoenum graft). Scale bars 1 cm.
doi:10.1371/journal.pone.0033557.g002
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smooth muscle alpha actin (dilution 1:100, Sigma Aldrich, St. Louis,

MO, USA), or rabbit anti-human von Willebrand factor (dilution

1:100, Dako, Sweden), anti-c-kit (dilution 1:100, BD Biosciences),

anti-CD140b (dilution 1:100, BD Biosciences), anti-NG2 (dilution

1:100, R&D Systems), or mouse anti-human mitochondria (dilution

1:50, Abcam, Cambridge, UK). As secondary antibodies we used

Cy2-conjugated goat anti-rabbit antibody (dilution 1:150, Millipore,

Billerica, MA), or Alexa FluorH594-conjugated goat anti-mouse

antibody (dilution 1:150, Invitrogen, Carlsbad, CA, USA), or

DyLight488-cnojugated goat anti-mouse antibody (dilution 1:150,

Jackson ImmunoResearch Laboratories, Inc., West Grove, PA,

USA). Antibodies were incubated in 1% PBS/BSA solution for

30 minutes at 37uC. Nuclei were counterstained with Hoechst

33258 (Sigma Aldrich).

Results and Discussion

Arterialization of a tabularized peritoneal aortic autograft
in pigs

All implantation procedures were uneventful and pigs survived

until the pre-specified time point for sacrifice (2 weeks). No technical

complication occurred during preparation of the peritoneal graft

(Figure 2A–D), which took about 25 minutes. The mean operative

time was about 150 minutes, without significant blood loss. All the

animals remained hemodynamically stable during surgery. Imper-

meability was satisfactory and there was no bleeding or embolization.

In two cases, a single 6/0 polypropilene stitch on proximal

anastomosis was necessary to obtain a perfect hemostasis. All pigs

had a normal postoperative recovery, with an increase in body weight

of about 8.5 kg. During the abdominal re-intervention no periaortic

hematomas or false aneurysms were noticed. Patency and absence of

stenosis were checked by an intraoperative echo-color-Doppler scan.

After removal of the grafts, it was possible to confirm that the metal

mesh was still in situ, maintaining a good shape and providing an

optimal resistance to passive dilatation (Figure 2E). Macroscopically,

metallic scaffolds were inside the peri-adventitial fibrous tissue and the

peritoneum inside the graft appeared vital, with no sign of surface

lesion or thrombosis (Figure 2F–G). No discontinuity were visible in

the intima of native aortas as well as of the implanted graft

(Figure 2H). The peritoneal graft appeared to have thickened

compared with its original shape, reaching roughly the same thickness

as the aortic wall (aorta 1.860.5 mm; patch 1.760.2 mm).

Histological evaluation confirmed the arterialization process within

the peritoneal tube with neointimal hyperplasia, periadventitial

reactive fibrosis and neoangiogenesis. The peritoneal tube, normally

composed by collagen, a few blood vessels and adipose tissue

(Figure 3A), appeared to have functioned as a scaffold and was

colonized by myofibroblasts (Figure 3D–G). Intimal hyperplasia was

Figure 3. Histopathological analysis of the peritoneal patch explanted from pigs. Peritoneal graft pre-innestum (A), native aorta (B, C) and
graft after two weeks (D–J). A) normal peritoneum, double staining with alfa-SMA (blue) and elastic von Gieson (black-brown) magnification 806,
scale bar 40 mm. B) native aorta, double staining showing the media with elastic fibres in black and smooth muscle cells in blue, magnification 506,
scale bar 50 mm. C) Native aorta, von Willebrand factor staining of the endothelium, magnification 1606, scale bar 20 mm. D) Graft and metallic
scaffold (arrows indicate some of the holes around the graft), magnification 12,56, scale bar 250 mm. E) graft remodeling, magnification 316scale bar
100 mm. F) Arterialization of graft, magnification 62,56, scale bar 50 mm. G) Intimal hyperplasia, magnification 1256, scale bar 25 mm. H, I)
Endothelization of the graft, von Willebrand factor staining magnification 1606 (scale bar 20 mm) and 3206 (scale bar 10 mm), respectively.
doi:10.1371/journal.pone.0033557.g003
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characterized by smooth muscle cell proliferation (alfa-SMA positive

staining) with a typical feature of fusated or stellated cells in the

absence of inflammation or thrombosis (Figure 2E–G). The graft wall

was thickened (mean 0.6660.2 mm) because of intimal hyperplasia,

proliferation of myofibroblast and neovascularization of adventitia

around the metallic scaffold (holes in Figure 3D–F). In addition, a

chronic inflammatory infiltrate, including lymphocytes, macrophag-

es, multinucleated giant cells was suggestive of foreign body reaction

between metallic scaffold and adventitia (Figure 3E–G). Immuno-

staining for von Willebrand factor showed the complete endotheliza-

tion of the peritoneal graft (Figure 3H–J). In view of a hypothetical

use of the peritoneal graft as a vascular substitute in humans, the

occurrence of excess neo-intimal thickening may represent a

limitation. However, the remodeling was mainly ad-luminal, as the

cross-sectional lumen area of the graft was similar to that of the native

aorta. The extensive cell density developed within the neo-intimal

area is likely a result of the high tissue reactivity of this animal model.

Indeed, pigs were in their rapid growth curve phase and gained more

than 500 g a day. This is also the reason why the experiment could

not be prolonged beyond the pre-specified 2 week time point. A

longer period of observation would create a mismatch between the

growing caliber of the native aorta and the fixed caliber of the metal

mesh covering the peritoneal graft.

Cells that contribute to arterialization of the peritoneal
graft are mainly of host origin

The peritoneum develops from the coelom mesoderm and

includes cells of mesenchymal origin, which have the capacity to

differentiate into several cell types. Indeed, the presence of

pluripotent mesenchymal cells within the peritoneum raises the

possibility of using the peritoneal mesothelium in regenerative

therapy. Peritoneal mesothelial cells are endowed with such a

degree of plasticity that, if placed in the appropriate microenvi-

ronment they have a remarkable potential to generate other cell-

lines [15,16]. Owing to this property, a gene-modified peritoneal

cell patch has been recently used to promote healing of

experimental myocardial infarction [17].

To understand whether cells contributing to remodeling and

arterialization derived from the graft or from local/circulating

cells, we set up a human-to-rat peritoneal xenografing procedure,

Figure 4. Histopathological analysis of the aortic peritoneal patch explanted from rats. Sections of the native aorta (top panels) and the
patched aorta (middle panels and details in the bottom panels), were stained with hematoxylin and eosin, Masson’s trichrome and using
immunofluorescence for endothelium (vWf) and smooth muscle cells (alpha-SMA). The peritoneal patch (at the top) was covered by an endothelial
layer, but there was no tunica media (red staining). Compared with the native aorta, the transversal sections containing the peritoneal patch showed
extensive thickening, formed by a densely cellular reactive tissue. Detail panels in the bottom of the figure show that such tissue contained elongated
cells, collagen, as well as capillaries and arterioles.
doi:10.1371/journal.pone.0033557.g004
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in which a small fragment of human parietal peritoneum was used

as a patch at the site of infrarenal aortic arteriotomy in rats. We

then identified human cells by staining with a specific anti-human

mitochondri, which does not react with rat antigens. The surgical

procedure was uneventful. At time of sacrifice, the rat abdominal

aorta with the human peritoneal patch appeared patent, without

signs of thrombosis. A dense tissue was found around the patched

peritoneum. At transversal cut, the lumen of the patched aorta was

non-significantly increased compared to that of the normal

downstream aorta (mean diameter 1.660.3 vs 1.360.2 mm).

Histopathological analysis revealed complete endothelization of

the patch (Figure 4). There was significant neo-intimal thickening,

composed mainly by cells that were negative for alpha-SMA, and

by vWf-expressing endothelial cells. The rare alpha-SMA-

Figure 5. Origin of peritoneal patch remodeling cells. The remodeled patch developed as a new artery wall, with an endothelial layer. We
asked whether cells that contributed to patch remodeling were of host (rat) or peritoneal (human) origin, by double staining with vWf (green in B–F)
or alpha-SMA (green in H–M)) and human mitochondri (red). A–C) Within the densely cellulated reactive tissue that thickened the peritoneal patch, a
few capillary-lining endothelial cells (green in B) were of human origin (red, higher magnification in panel C). D–F) Within the neo-formed endothelial
layer (green in E), some cells (red in D) were of human origin (higher magnification in panel F). G–J) In the remodeled patch tissue, rare alpha-SMA
staining cells (green in H and J) co-stained with human mitochondri (red). K–M) The same was in the close vicinity of the native aorta-peritoneal patch
junction, where a medial smooth muscle layer (green in K, L) is still present.
doi:10.1371/journal.pone.0033557.g005
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expressing cells in the patch site were dispersed and not organized

as a medial layer. The surrounding neo-formed tissue had a high

cell and collagen content and included also capillaries and

arterioles, suggestive of a granulation tissue.

Most endothelial cells forming the intimal coverage of the

patch were not of human origin, as demonstrated by colocaliza-

tion immunofluorescence analyses showing rare overlap between

vWf and human mitochondrial staining (Figure 5D–F). This

finding suggests that extraperitoneal cells from the host local

tissues or the bloodstream were responsible for the graft

remodeling. Re-endothelization of a denuded arterial tract occurs

through the contribution of local endothelial cells migrating from

the edges of the lesion (in this case, the native aorta) and of

circulating endothelial progenitor cells (EPCs) [18]. EPCs derive

from the bone marrow and migrate into the bloodstream in

response to vascular injury, where they selectively home to

reconstitute anatomical and functional intimal integrity as well as

to participate in angiogenesis [19]. Besides EPCs, circulating

progenitors for the smooth muscle lineage have also been

identified and may contribute to vascular remodeling and

development of neointima [20]. In addition, several groups

isolated progenitor cells for endothelium, smooth muscle and

pericytes from the vessel wall itself, which represents a local

reservoir for an optimal reaction to vascular injury [21,22]. The

present study was not designed to test whether remodeling

occurred via local or circulating cells. Sparse c-kit+ cells were

present in the tissue surrounding the patch, but there was no c-kit

signal in the overlying endothelium and in the normal aortic wall

(Figure 6), suggesting that the endothelium was not repopulated

by circulating progenitors. In rats, c-kit may label both circulating

and resident vascular progenitor cells [23,24], while it has been

shown that the vascular wall contains a population of pericytic

progenitor cells which contribute to tissue remodeling [21,25].

Some cells expressed the pericyte markers CD140b and NG2 in

the patched aorta, but there was no co-expression of c-kit

(Figure 6A–B), arguing against a progenitor cell origin of such

pericytic cells in the granulation tissue.

The observation that most cells of the newly formed vessel wall

were not of human origin suggests that the peritoneum served as a

biological scaffold for vascular reconstitution.

Nonetheless, a few capillaries within the reactive tissue

surrounding the patch were composed of human endothelial cells

(Figure 5A–C). Colocalization of alpha-SMA and human

mitochondri was extremely rare (Figure 5K–M). In principle, this

indicates that peritoneal cells can contribute to vascular wall cells,

but this contribution seems quantitatively negligible.

Although we are not aware of any systematic study of major

histocompatibility complex (MHC) in peritoneal cells, it is generally

held that this type of tissue has low or no MHC expression. When

we repeated the human-to-rat xenograft experiments with rat

immunosuppression by cyclosporine administration (daily dose of

5 mg/kg), histological appearance of the graft explants was

identical, with the same degree of neo-intimal thickening and a

similarly small contribution of human cells to the newly formed

endothelium (not shown). This indicates that immune rejection was

not the major process driving peritoneal patch remodeling and

should not influence the cellular origin of cells in the remodeled

aortic wall. Moreover, survival of animals with the peritoneal

xenograft, absence of thrombosis and complete endothelization

suggest that xeno-rejection did not occur in this model.

Limitations and conclusion
This study has limitations inherent to the preliminary nature of

the results, the relatively short observation period and the lack of a

time-course study of the re-modeling process. However, for the

first time we provide data indicating that the peritoneum can serve

as a biological scaffold of a new vascular substitute. If further

experiments in large mammals confirmed these findings, clinical

trials in humans should be warranted.

Author Contributions

Conceived and designed the experiments: SB LF PB MP GPF. Performed

the experiments: SB LF PB MP MA. Analyzed the data: A. Angelini MA

MF GPF. Contributed reagents/materials/analysis tools: GT A. Avogaro

FG. Wrote the paper: SB GPF A. Avogaro FG GT.
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500 mm) were co-stained for c-kit and CD140b, also known as PDGFRB (A, scale bar 100 mm), or c-kit and NG2 (B, scale bar 100 mm). Panel D (scale bar
100 mm) shows c-kit staining of an endothelial area overlying the peritoneal patch (scale bar 100 mm). Panel E shows c-kit staining in a section of a
normal aorta (scale bar 100 mm). In panel D and E, there is no c-kit signal from nucleated cells above the green background attributable to elastic
fibers autofluorescence.
doi:10.1371/journal.pone.0033557.g006
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