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LETTER TO TH E EDITOR

Earlier detection of SARS-CoV-2 infection by blood RNA
signature microfluidics assay

Dear Editor,
Early SARS-CoV-2 diagnosis is a key nonpharmacologi-
cal strategy to contain the current pandemic. Nucleic acid
amplification tests (NAATs), the reference standard for
SARS-CoV-2 diagnosis, are poorly sensitive during the first
4 days after infection, with false negative rates estimated
in the range 67–100%.1 Here, we implemented a new assay
that shows increased sensitivity to SARS-CoV-2 infection
during the early window of NAAT false negativity.
Host response assays (HRAs) are emerging as a new

paradigm for infection diagnosis,2 recently implemented
to discriminate viral from bacterial infections,3,4 and to
detect early respiratory viral illnesses.5 Unlike NAATs
that target viral genetic material, HRAs target transcrip-
tional alterations in the host blood. These alterations may
become detectable by RT-PCR as early as 12 hours after
viral challenge.6 Given the potentially higher sensitivity
early in infection, we set out to implement the first HRA
for SARS-CoV-2 diagnosis.
Our work leveraged the COVID-19 Health Action

Response for Marines (CHARM), a prospective study
that identified incident SARS-CoV-2 infection among US
Marine recruits from May 12 to November 5 2020.7,8 The
cohort included 3249 predominantly young, male par-
ticipants. Participants were typically tested by an FDA-
approvedNAAT for SARS-CoV-2 three times during an ini-
tial 2-week quarantine, and then biweekly for 6 weeks dur-
ing basic training (Figure 1A). Most infected participants
were asymptomatic at the first positive NAAT and none
required hospitalization. During basic training, 45.1% of
participants showed a SARS-CoV-2 NAAT positive result
at one or more time points. The high infection rate, along
with the longitudinal design, made the CHARM study
highly instrumental for benchmarking a new SARS-CoV-2
diagnostic assay.
The strategy to develop a SARS-CoV-2 HRA followed

four main steps (Figure 1B-E): (1) bioinformatics-driven
identification of a SARS-CoV-2 host response signature; (2)
technical implementation; (3) cross-sectional benchmark,
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by comparing HRA and NAAT results from different par-
ticipants at randomly selected time points; (4) longitudinal
benchmark, by comparing HRA and NAAT repeated mea-
sures over time for the same participants.
The first challenge we faced was to identify a host tran-

scriptional response specific for SARS-CoV-2 infection.We
aimed to find a compact set of 40–50 genes whose expres-
sion in the blood would indicate SARS-CoV-2-infection,
but not related infections such as influenza. To address
this problem, we curated a compendium of public blood
transcriptomes from 15 COVID-19 studies and from 112
studies on a wide variety of viral and bacterial infec-
tions (Figure 1B, Supporting information). Furthermore,
the compendium included transcriptomes on COVID-19
comorbidities (e.g., obesity, hypertension) and risk factors
(e.g., age, sex) that might act as potential confounders.
Applying a combination of meta-analysis and optimiza-
tion techniques to the data compendium, we identified
41 genes that together provided robust SARS-CoV-2 detec-
tion (receiver operator curve (ROC) area under the curve
(AUC) 0.7–0.9), and low cross-reactivity with other infec-
tions and confounding factors (ROC AUC ≤0.5).
Next, we implemented a HRA with three main compo-

nents: whole blood collection through a PAXgene Blood
RNA Tube (BD Biosciences, San Jose, CA, USA); measure-
ment of the expression levels of the 41 transcripts on an
integrated fluidic circuit; sample interpretation through a
machine learning algorithm (Figure 1C, Supporting infor-
mation). The algorithmwas based on a regularized logistic
regression classifier, taking as input the combined expres-
sion levels of the 41 transcripts measured in a blood sam-
ple, and returning as output the sample interpretation in
one of the following classes: SARS-CoV-2 positive; SARS-
CoV-2 negative; inclusive, in case of highly uncertain inter-
pretation. The algorithm was developed using a training
set of 245 SARS-CoV-2 positive and 296 SARS-CoV-2 nega-
tive samples from the CHARM study. To control for viral
cross-reactivity, the training set included 63 blood sam-
ples from subjects in a vaccine trial after H3N2 influenza
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F IGURE 1 Implementing a SARS-CoV-2 host response assay
(A) To develop and benchmark a SARS-CoV-2 host response assay,
we leveraged the CHARM study, a longitudinal study involving a
SARS-CoV-2 outbreak in a platoon of marine recruits. During the
study, participants were serially tested for SARS-CoV-2 . (B) Our
first step was to identify a host transcriptional response of 41 genes
specific for SARS-CoV-2 infection, by analyzing a compendium of
public COVID-19 and non-COVID-19 studies. The goal of the
analysis was to maximize COVID-19 detection, while minimizing
cross-reactivity with other viral and bacterial infections, and with
potential confounders. (C) Next, we implemented a host response
assay that takes as input a blood sample, measures the expression
levels of the identified signature genes on a microfluidic chip, and
returns a sample interpretation based on a machine learning
classifier. (D) Schematic representation of a cross-sectional
benchmark aimed at comparing HRA and NAAT results for
different participants at random time points. (E) Schematic
representation of a longitudinal benchmark aimed at comparing
HRA and NAAT repeated measures over time for the same
participants. The longitudinal benchmark indicated an earlier
detection of SARS-CoV-2 by the host response assay compared to an
FDA-approved NAAT

virus challenge.9 During algorithm training, the influenza
samples were treated as SARS-CoV-2 negative. We per-
formed extensive tests to ensure that themachine learning-
generated interpretation calls were highly reproducible
across sample technical replicates.
We first assessed the HRA performance in a cross-

sectional way (Figure 1D, Supporting information). We
extracted samples from the SARS-CoV-2 positive (n = 93)
and negative (n = 93) groups at random time points, disre-
garding the participants’ testing history. All of these sam-
pleswere fromparticipants not contributing to the training
data, to avoid leakage from the training to the benchmark
data. Using a NAAT-based comparator as the reference
standard, HRA had a positive percent agreement (PPA) of
96.6% (95% confidence interval (CI), 90.7–98.9%), an neg-
ative percent agreement (NPA) of 97.7% (95% CI, 92.2–
99.4%) (Table 1). To assess cross-reactivity, we used 33 addi-
tional influenza samples from subjects in the influenza
vaccine trial cohort used for training. Two samples pro-
duced inconclusive HRA results, and the cross-reactivity
rate was 4/31= 12.9% (95%CI, 4.2–30.7%) (Table 1). Overall,
the cross-sectional benchmark demonstrated a high con-
cordance between HRA and NAAT results.
We then performed a longitudinal benchmark by com-

paring HRA and NAAT repeated measures for the same
participants over time (Figure 1E). The goal of this assess-
ment was to explore whether HRA could anticipate SARS-
CoV-2 diagnosis compared to NAAT. Due to the absence
of a reference standard for SARS-CoV-2 diagnosis prior
to NAAT positivity, we performed a validation study.10
We reasoned that some study participants were infected
before their first positive NAAT result, but undetected
due to low NAAT sensitivity early in infection. First, we
defined groups of samples with higher and lower risk for
NAAT early false negativity, based on phylogenetic and
epidemiological evidence (Supporting information). Sec-
ond, we compared HRA results in the two groups (Table 1;
Figure 2). In the higher-risk group, HRA was positive
before NAAT in 10 of 15 participants (66.6%). In the lower-
risk group, HRA was positive in 0 of 8 participants (0%).
The results support an earlier SARS-CoV-2 diagnosis using
HRA as compared to NAAT (Fisher exact test, p= 0.0027).
Limitations of our study include an unknown general-

izability beyond young, healthy, male participants; some
cross-reactivity with influenza and possibly with other
infections such as other coronaviruses; lack of knowledge
ofwhen SARS-CoV-2 exposure occurred, or ofwhenNAAT
would first turn positive with more frequent testing.
Since the beginning of the COVID-19 pandemic, several

diagnostic technologies have been proposed including
surface-enhanced Raman spectroscopy and field-effect
transistor-based biosensors. Compared to these and
other technologies, the main advantage of HRAs is the
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F IGURE 2 Detection of SARS-CoV-2 infection before positive NAAT result. To explore whether the HRA could accelerate SARS-CoV-2
diagnosis, we selected samples from two groups with higher and lower risk of NAAT early false negativity (Supporting information). Each
row is a participant’s history. Day 0 corresponds to arrival of the participant at supervised quarantine, which followed a 2-week home
quarantine, and day 14 corresponds to transfer to the basic training site, which had a high level of SARSCoV-2 transmission. Blood samples
were taken for each participant at the first time point available before the first positive NAAT result. At these time points, HRA and NAAT
results were then compared. In the case of p12, a blood sample was not available before the first positive NAAT, and the previous available
time point was assayed by HRA and evaluated for potential earlier detection. Symbols are times at which NAAT (rectangles) and HRA (solid
circles) were performed. Colors are test results, either negative (black) or positive (red). In 10 of 15 participants, all in the higher-risk group for
NAAT early false negativity, HRA was positive at a time of a negative NAAT, demonstrating an accelerated diagnosis. These cases correspond
to empty black rectangles enclosing solid red circles. The arrows connect the first NAAT positive result with the prior negative NAAT time
point at which the HRA for early diagnosis was performed. They are red in case of HRA early diagnosis, or black in case of a concordant
negative result by HRA and NAAT. In all participants in the lower risk group for NAAT early false negativity, HRA and NAAT gave
concordant negative results
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TABLE 1 Clinical evaluation, cross-reactivity, and Host Response Assay early diagnosis

Host Response Assay Interpretation

Sample use Sample type
Samples
tested Inconclusive Positives Negatives

Clinical evaluation SARS-CoV-2 PCR positive 93 3 87 3
SARS-CoV-2 PCR negative 93 4 2 87

Influenza Cross-reactivity H3N2 influenza 33 2 4 27
HRA early diagnosis higher-risk for NAAT early false negativity 15 0 10 5

lower-risk for NAAT early false negativity 8 0 0 8

potentially higher sensitivity early in infection. This
benefit should be assessed relative to the additional cost
associated with blood draws. Although a cost-benefit
analysis was beyond the scope of our work, we envisage
scenarios where using an HRA may be cost-effective.
These scenarios include, for example, hospitals and
nursing homes where the need to ensure virus-free
environments is of critical importance.
In conclusion, our work provides the first implementa-

tion of a SARS-CoV-2 HRA and initial evidence that mon-
itoring the host response can anticipate NAAT infection
diagnosis.
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