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Simple Summary: Differentiated thyroid cancer (DTC) is the most common endocrine malignancy
with a high incidence rate in females. The COVID-19 epidemic posed an increased risk of treatment
delay causing increased DTC morbidity and mortality rate of DTC. Several imaging techniques,
including ultrasound (US), magnetic resonance imaging (MRI), and computer tomography (CT), have
been applied in the early screening and diagnosis of DTC. However, these traditional methods have
limited sensitivity and specificity due to dependence on the experience and skill of the radiologists.

Abstract: Radiomics is an emerging technique that allows the quantitative extraction of high-
throughput features from single or multiple medical images, which cannot be observed directly
with the naked eye, and then applies to machine learning approaches to construct classification
or prediction models. This method makes it possible to evaluate tumor status and to differentiate
malignant from benign tumors or nodules in a more objective manner. To date, the classification
and prediction value of radiomics in DTC patients have been inconsistent. Herein, we summarize
the available literature on the classification and prediction performance of radiomics-based DTC
in various imaging techniques. More specifically, we reviewed the recent literature to discuss the
capacity of radiomics to predict lymph node (LN) metastasis, distant metastasis, tumor extrathy-
roidal extension, disease-free survival, and B-Raf proto-oncogene serine/threonine kinase (BRAF)
mutation and differentiate malignant from benign nodules. This review discusses the application
and limitations of the radiomics process, and explores its ability to improve clinical decision-making
with the hope of emphasizing its utility for DTC patients.

Keywords: differentiated thyroid cancer; radiomics; ultrasound; magnetic resonance imaging; com-
puter tomography; prediction; classification

1. Introduction to Thyroid Cancer
1.1. The Epidemiology and Pathophysiology of Thyroid Cancer

Thyroid cancer is the most common endocrine malignancy and the most commonly
diagnosed cancer in people aged 15 to 29 years, and its incidence has continuously increased
with 567,233 cases and approximately 41,000 deaths worldwide in 2018 [1,2]. The incidence
rate of thyroid cancer is approximately three-fold higher in females than in males but
the mortality rate is higher in males than in females [3–5]. In addition, a recent study
confirmed that the recurrence rate of well-differentiated thyroid cancer (DTC) is higher in
men compared with women. Due to the COVID-19 epidemic, delayed investigations and
treatment may further lead to increased morbidity and mortality of thyroid cancer [6]. The
various clinical outcomes of thyroid cancer are considered to be related to patient age, sex,
tumor type, distant metastases, and invasion of adjacent tissue and lymph nodes [7].
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Thyroid tumors are divided into follicular-derived and neuroendocrine C-cell-derived
cancers. Greater than 95% of thyroid cancer is DTC, which is follicular-derived thyroid
cancer and can be further divided into well-DTC and poorly-DTC (more progressive than
well DTC) [8]. Well DTC is a composite of papillary thyroid cancer (PTC), follicular thyroid
cancer (FTC), and Hurthle cell thyroid cancer. Of these, papillary thyroid cancer is the
most common thyroid cancer with the best prognosis, whereas follicular, Hurthle cell,
poorly-differentiated, and C-cell derived thyroid cancers are relatively uncommon but
have a high metastatic risk to the lung and bone [7]. Moreover, the increasing diagnostic
rate of papillary thyroid cancers is regarded as the leading reason for increasing thyroid
cancer incidence, in contrast, the incidence rate of other subtypes has been stable in the
past 30 years [9].

Despite the generally stable course, favorable prognosis, and low mortality of thyroid
cancer, the rate of local recurrence and distant metastases of DTC approaches 10% to 30%,
which depends on the length of follow-up [10,11]. A previous study found that DTC can
recur even up to 20 years after the initial diagnosis [12], therefore, a long-term follow-up of
patients with DTC is essential [13]. Notably, several studies have investigated the factors
related to DTC relapse. However, heterogenicity exists among these studies, and the results
indicated the associations between early-onset and recurrence [14]. More specifically, the
earlier DTC occurred, the more likely it was to recur. Therefore, timely diagnosis of DTC
recurrence is critical.

1.2. Imaging Techniques for DTC Detection

Additionally, the discrimination and identification of thyroid cancer nodules and
thyroid benign nodules are important. In most cases, the initial presentation of thyroid
cancer is a thyroid nodule [15], however, less than 10% of DTCs appear in the thyroid
nodules [16]. Given various factors including age, sex, family history, exposure to radiation,
and nodule size that could affect the shift from thyroid nodules to cancer [17], responding
to this shift in a timely manner is necessary. Differentiating early malignant tumors from be-
nign tumors and providing definite staging are key challenges for diagnosing and treating
thyroid cancer. Moreover, estimating tumor progression or predicting prognosis precisely
can significantly aid physicians in making clinical decisions regarding treatment strategies
in patients with thyroid cancer. Palpation of the thyroid and cervical lymph nodes remains
easiest and least expensive routine detection method, but this method is also the least
sensitive [18,19]. In contrast, biopsy and histopathological examination are typically the
diagnostic gold standard for thyroid cancer [20]. However, fine-needle aspiration biopsy
(FNAB) usually samples a small portion of the lesions; thus, this method could provide
limited information regarding tumor heterogeneity and may lead to missed diagnoses.
Notably, a proportion of patients are still intractable to invasive examination for screening
making it difficult to repeat pathological assessments. Noninvasive imaging examinations
including high-resolution ultrasound, magnetic resonance imaging (MRI), computed to-
mography (CT), single-photon emission computed tomography (SPECT), positron emission
tomography (PET), and PET/CT, are also playing an increasingly important role in initial
tumor screening, staging, restaging, management, and posttreatment follow-up [21]. Of
these, high-resolution ultrasound remains the sole fundamental imaging method in the
diagnosis and screening of thyroid nodules and cancer [22]. High-resolution ultrasound is
a safe noninvasive imaging technique that could aid in enhancing the early detection of
pathologies [23].

Ultrasound is based on the pulse-echo principle that makes it possible to determine
the thyroid size, location, number, and morphology of individual nodules, and occult
nodules omitted by physical examination [18], and present these findings in a single
cross-sectional B-scan image. The suspicious ultrasound features of malignant thyroid
nodules exhibit the following characteristics: solid nodule structure, hypoechogenicity,
taller-than-wide shape, irregular margin, microcalcification, and invasion of surrounding
tissue [18,24]. Nodules that present pure cystic or cystic components that represent greater
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than 50% of nodule volume tend to be benign [25]. Despite its widespread availability and
radiation-free features, the diagnosis significantly relies on the radiologists’ experience and
subjective judgments, which limits the ability to make an objective diagnosis. Although
neck ultrasound is the primary method used to investigate palpable thyroid masses,
suspicious neck masses are typically initially screened through CT or MRI examination.
Some features may be specific, whereas others may be incidental findings [26]. CT and
MRI provide evidence for detecting lymph node metastasis as well as evaluating the
invasion of adjacent tissue and organs with the features of cross-sectional imaging and
reconstruction function [27]. It has been reported that the CT use rate in the examination of
the neck and cervical spine has increased rapidly and is greater than that of ultrasound
in the United States [28]. A previous study also verified the value of CT in detecting
incidental thyroid nodules and hypothesized that CT imaging may be the current trend
rather than ultrasound [29]. Nevertheless, CT also has an obvious limitation given that
contrast-enhanced CT with iodinated contrast medium would delay subsequent radioactive
iodine therapy [30]. Conversely, based on gadolinium-based contrast agents, MRI can be
employed without interfering with radioiodine administration despite the requirement for
a longer scan time. In addition, with its higher soft-tissue contrast, MRI combined with
diffusion-weighted imaging (DWI) sequences could provide qualitative and quantitative
information about tumor lesions at the cell level. DWI has been applied to assess the
differentiation of benign and malignant thyroid tumors for several years [31,32]. A recent
study verified the potential advantages of DWI in predicting aggressive histological features
of thyroid carcinoma [33].

Nuclear medicine examinations have been used in the diagnosis, treatment, and surgi-
cal management of thyroid disease. Given the high avidity of radioiodine in functioning
thyroid tissues, 131I whole-body scintigraphy (WBS) has a high value in tumor and metasta-
sis detection [34]. WBS is also regarded as a routine diagnostic procedure for DTC patients
with thyroidectomy [35]. However, WBS cannot provide a precise anatomic location, which
greatly constrains its potential value. Compared with WBS, SPECT/CT not only enables
anatomic localization of the tumor but also has higher sensitivity (50%) and specificity
(100%) [36]. Besides, PET/CT or PET/MRI is also a relatively high sensitivity imaging
technique in the evaluation of recurrent or metastatic tumors. A meta-analysis calculated
that the pooled sensitivity was as high as 93.5% for PET/CT in detecting recurrent or
metastatic DTC [37]. In addition, PET/CT can detect 21.2% of lymph nodes and soft tissue
lesions that were missed by ultrasound [38]. Compared with PET/CT, PET/MRI has low
radiation, but the high costs of this method should also be considered. Although some
reports have demonstrated the value of the nuclear medicine approach applied in thyroid
cancer, underlying issues, such as cost-effectiveness, universality, and radiation, require
further discussion. Notwithstanding the above strengths, the current imaging technologies
for tumor classification and prediction remain limited. Radiomics is an emerging field
that involves segmenting lesions, extracting quantitative radiology features from medical
images, and constructing models to classify or predict disease. The current review focuses
on the radiomics characteristics of DTC and reviews the classification and prediction ability
of radiomics for DTC.

2. Introduction to Radiomics
2.1. The Definition of Radiomics

Radiomics is defined as quantitative mapping that is used to construct a prediction
model by extracting and analyzing medical image features related to the prediction target,
including clinical endpoints and genomic features [39]. Radiomic features capture tissue
and lesion characteristics, such as heterogeneity and shape, and may be used for clinical
problem solving alone or in combination with demographic, histologic, genomic, or pro-
teomic data. As an important innovation, medical image analysis automatically extracts
a large number of quantitative features of medical images in a high-throughput manner.
The use of radiomics in medical image analysis represents a significant improvement [40].
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Radiomics research is based on the hypothesis that this type of automatic or semiautomatic
software can provide better analysis of medical image data than human doctors due to the
increased number of image features revealed by conventional and novel medical imaging
that cannot be recognized by human doctors [41]. More specifically, the technology is based
on the hypothesis that genomics and proteomics patterns can be expressed in terms of
macroscopic image-based features [40].

2.2. Radiomic Features

Compared with the so-called “semantic” qualitative features, which are typically
subjectively defined by radiologists, radiologic features can be regarded as quantitative
features and are generally divided into shape, first-order statistics, second-order statistics,
and higher-order statistics [42]. Familiarity with core principles of radiomic features may
facilitate interpretation of results and preselection of features for specific applications.

Shape features represent geometric relations that mainly refer to two-dimensional or
three-dimensional image features derived from ROIs, such as tumor volume, surface area,
tumor sphericity, and tumor compactness [43].

The first-order statistics features or histogram-based features are derived from the statis-
tical moments of the image intensity histogram and based on the image intensity distribution
represented by histograms that characterize the distribution of individual pixel or voxel
intensity values within. Features, such as uniformity, asymmetry, kurtosis, and skewness, can
also be used to extract other features, such as image energy and entropy [43,44].

Second-order statistical features, which are also known as texture features, quantify
intratumoral heterogeneity and explain the spatial interdependence or cooccurrence of
information between adjacent voxels [42]. Textural features are not directly computed
from the original image but from different descriptive matrices that already encode specific
spatial relations between pixels or voxels in the original image. In the original image,
there are some matrices of the spatial relationship between the intensity of the encoded
image from which a large number of texture features can be calculated. The gray value
distribution matrix (GLCM) of cooccurrence voxels in the gray level co-occurrence ma-
trix is one of the most commonly used second-order features in radiomics [45,46]. The
neighborhood gray-level different matrix (NGLDM) and the gray-level run-length matrix
(GLRLM) are also common. Higher-order statistical features are typically calculated us-
ing statistical methods after applying a specific mathematical transformation (filter). For
example, repeating patterns, noise suppression, edge enhancement, histogram-oriented
gradients, or local binary patterns (LBPs) can be identified. The applied mathematical
transformations or filters include Laplacian transformations of Gaussian-filtered images
(Laplacian-of-Gaussian), wavelet or Fourier transformations, Minkowski functionals, or
fractal analysis [47].

2.3. The Workflow of Radiomics

Radiomics analysis can be achieved by two methods. The first method includes
conventional and common typical methods that are used to determine the region of interest
(ROI) of the medical image first and then extract the radiomics features from the ROI and
analyze the clinical problem [48]. The second method is less applied but pointed out by the
previous review, it works based on the radiomics images directly but not the radiomics
data derived from conventional images, it is also helpful to recognize ROIs reliably [41].

Radiomics analyses begin with the choice of a disease and image protocol. When
targeting disease and image protocols are selected, the classical radiomics process can be
divided into the following four steps: selection of the regions of interest, radiomics feature
extraction, analysis, and modeling [49]. Figure 1 illustrates the workflow of radiomics for
thyroid disease.
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ROIs are commonly delineated by professional radiologists manually or by special
software in a semiautomatic or fully automatic manner. In the feature extraction stage,
hundreds of candidate radiomic features are typically extracted theoretically to be used
as the input of the prediction model, but the number of model parameters will increase
exponentially afterward. Moreover, radiation features generally show a high degree of
correlation with each other, indicating data redundancy. Thus, some features can be
discarded, whereas other features can be grouped and replaced by representative features.
Therefore, a large number of candidate features must be removed or transformed via a
process called dimensionality reduction [47].

After feature selection, a mathematical model can be established to predict or solve
targeted medical problems, such as the existence of specific gene mutations or tumor
recurrence. Radiation features can be modeled in many different ways, ranging from
statistical models to machine learning methods, depending on the clinical problems to be
solved [50]. The most popular algorithms in radiomics are linear regression and logistic
regression, decision trees (such as random forests), support vector machines (SVMs), neural
networks, and Cox proportional hazards models with censored survival data.

2.4. Clinical Applications of Radiomics

The application and research potential of radiomics are still being explored. However,
based on published studies, the clinical application of radiomics can be classified into the
following three categories: radiogenomics (linking imaging data to biology), diagnosis of
diseases, and clinical outcome prediction, including treatment response, recurrent disease,
and survival time [47,51]. However, radiomic studies of thyroid cancer mainly involve the
latter two categories.

3. Literature Search Strategy

We conducted a comprehensive literature review from the PubMed, Web of Science
and Google Scholar databases for papers published before February 2021, independently.
English-language filters were applied in the process of searching. Standard searches
were done with the following keywords: ‘thyroid cancer’, ‘differentiated thyroid cancer’,
‘thyroid nodules’, and ‘radiomics’. The reference lists were manually checked to identify
additional relevant studies. We followed The Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines to select relevant studies [52] (Figure 2).
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4. Radiomics in Thyroid Cancer Prediction

As mentioned above, radiomics aids in cancer detection, diagnosis, prediction of prog-
nosis, evaluation of tumor status, treatment response, and local or distant metastasis [50].
Of these, the predictive value has been determined in various cancers and has been a
research hotspot in recent years. Table 1 showed the predictive value of radiomics applied
in DTC, Table 1 was organized according to a sequential order of prediction category,
imaging method, and published time.

Metastasis is an important indicator of tumor progression [53]. Lymph node (LN)
metastasis is closely related to local recurrence, distant metastasis, and thyroid stage,
which further indicates the surgical plan [54,55]. Thus, the judgment of LN metastasis is
important. Although a small proportion of patients report LN metastasis, those patients
with suspicious abnormalities would also be suggested to undergo fine-needle aspiration
biopsy (FNA) and prophylactic lymph node dissection (LND). These invasive examinations
seem to be unsuitable for those people without LN metastasis. Therefore, it is important
to identify a noninvasive approach to pinpoint patients with high-risk LN metastasis in
clinical practice. Liu et al. [56] compared the radiomics prediction ability to estimate the LN
status among B-mode ultrasound (B-US), strain elastography ultrasound (SE-US) images,
and the combination of these two images. As was hypothesized, the combination group
showed a better prediction ability than a single image. However, given that only 75 patients
were recruited and no validation analysis was performed in this study, the results should be
interpreted with caution. Furthermore, the same research team included 450 patients and
divided them into training and validation datasets to verify the radiomics evaluation of US
thyroid images to predict LN metastasis in PTC patients [57]. This study partly validated
their previous conclusion that the features ultimately selected performed equally well
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regarding the radiomics evaluation. PTC patients with or without LN metastasis showed
different radiomics signatures. Jiang et al. [58] extracted radiomics features from both
shear-wave elastography (SWE) images and B-mode ultrasound (BMUS) images. They
calculated the Rad-score to distinguish patients with high metastasis risk. Then they built
and compared the value of radiomics nomogram and clinical nomogram in predicting
the LN stage. They concluded that the nomogram based on SEW radiomics signatures
performed well in predicting LN status. Li et al. [59] also verified the value of ultrasound
radiomics features in predicting LN metastasis. The radiomics features had a larger AUC
than the ultrasound features of microcalcifications and an irregular shape.

Although CT and MRI are not exceedingly superior to ultrasound in thyroid cancer
diagnosis, CT-based and MRI-based radiomics performed equally as well regarding their
predictive value. The ability of CT radiomics signature to predict LN metastasis was
initially reported by Lu et al [60]. This group built an SVM model and found that the
radiomics signature showed a better predictive value of LN metastasis than any single
radiomics signature. They concluded that the radiomics nomogram adds predictive power
to LN metastasis. Hu et al. [61] initially applied multimodal MRI radiomics to predict
LN metastasis in patients with PTC, and Zhang et al. [62] extracted radiomics features
from T2WI and T2WI-fat-suppression (T2WI-FS) images to test and validate the predictive
value of LN metastasis. These studies partly demonstrated that MRI-based radiomics can
scientifically, quantitatively, and accurately predict LN metastasis in PTC patients, thereby,
reducing unnecessary surgery.

LN metastasis is more likely to occur in central regions followed by lateral regions [3].
Lateral LN metastasis exhibits a higher recurrence rate and a poorer prognosis than central
LN metastasis [63,64]. A recent study developed an ultrasound-based radiomics nomogram
to assess its predictive value for central neck lymph node metastasis in PTC patients [65].
The prediction model showed good accuracy, sensitivity, specificity, and AUC values in both
the training dataset and validation dataset. Afterward, the predictive value of ultrasound
radiomics for lateral cervical LN metastasis was successively investigated in two studies.
Tong et al. [66] retrospectively recruited 840 patients with PTC and extracted radiomics
features from their preoperative ultrasound images. These researchers also established a
radiomics-based nomogram to predict lateral LN metastasis. This radiomic nomogram
presented good discrimination in both training and validation datasets and may therefore
have clinical application. More interestingly, one study found a link between ultrasound
radiomic features of the primary tumor and the status of lateral LN metastasis [67]. The
key and interesting part of this study was that it focused on the radiomics features of
thyroid primary tumors in predicting lateral LN metastasis but not the LN itself, which
may facilitate the early detection of metastases.

Although the results of the abovementioned studies on the predictive value of ul-
trasound radiomics were largely positive in nature, the main limitation of the lack of
multicenter and external validation could not be overlooked. A recent relatively robust
study filled this gap. Yu et al. [3] first focused on the diagnostic value of ultrasound
radiomics under a multicenter, cross-machine, multi-operator scenario. Based on B-mode
ultrasound images of thyroid lesions, they established and compared four models includ-
ing clinical statistical model (SM), traditional radiomics model (RM), non-transfer learning
model, and transfer learning radiomics (TLR) model to predict the risk of LN metastasis
in PTC patients. Of these, the TLR model showed the highest sensitivity and specificity
in both the main and external cohorts. Then, a recent study that is in preprint performed
an external validation based on CT radiomics indicating the good performance of this
method in the prediction of LN metastasis [68]. To some extent, this study adds strength
and validity to previous ultrasound-based radiomics studies.

Besides, the predictive value of radiomics was also applied in other aspects, such as the
prediction of distant metastasis [69], tumor extrathyroidal extension [70,71], disease-free
survival [72], and BRAF mutation [73]. The aggressiveness of tumors is classified based on
various features, such as extrathyroidal extension; aggressive pathological subtypes, such
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as tumors with tall cells, tumors with columnar cells, and the hobnail variant; lymph node
involvement; and distant metastasis [74]. A recent study found that multiparametric MRI-
based radiomics combined with a machine learning approach can accurately distinguish
aggressive PTC patients from nonaggressive patients, which illustrated the role of radiomics
in predicting aggressive tumors [75]. Distant metastasis of DTC is uncommon; however,
FTC is more likely to have distant metastasis than PTC. It has been reported that the bone
metastasis rate in FTC ranges from 7 to 28%, whereas that for PTC is only 1.4–7% [76].
Kwon et al. [69] thus evaluated the capability of ultrasound-based radiomic features
to predict distant metastasis of FTC. This study is based on radiomics analysis and a
machine learning approach, and multivariate analysis indicated that the radiomic signature
and widely invasive histology are related to distant metastasis. Moreover, the AUC of
the thyroid ultrasound radiomic signature in predicting distant metastasis was as high
as 0.93, demonstrating good predictive performance. The extrathyroidal extension in
patients with DTC is also an important factor to consider when determining the surgical
modality. Chen et al. [70] selected five CT-based radiomics features that were closely
related to the extrathyroidal extension of PTC patients. A CT-based radiomics nomogram
was built and showed good predictive value in extrathyroidal extension. This excellent
predictive performance for tumor extrathyroidal extension was also verified in an MRI-
based radiomics preprint [71]. Regarding “disease-free” cancers, DTC has an overall good
disease-free survival after treatment and long-term outcomes [77]. Despite being called a
“happy cancer”, tumor progression contributes to the 1.4–5.2% mortality rate of thyroid
cancer [78,79]. A retrospective study included 768 PTC patients, extracted radiomics
features from ultrasound images, and constructed a radiomics signature based on LASSO
regression. Finally, a Rad-score was calculated to stratify the patients into high- and low-
risk DFS [72]. Furthermore, based on recent progress in molecular genetics, gene-specific
information has provided insights into the biology of the tumor, prediction of prognosis,
and potential therapeutic targets [80]. The B-Raf proto-oncogene serine/threonine kinase
(BRAF) mutation is involved in the pathogenesis of PTC and is related to tumor progression,
recurrence, and mortality [73]. In addition, shedding light on the mutational status of
thyroid cancer could help clinicians evaluate the tumor response to new drugs, such as
tyrosine kinase inhibitors. Thus, if we can predict genes mutated in thyroid cancer through
convenient and feasible approaches, this information would contribute to improving tumor
diagnosis, judging the prognosis, and personalizing the treatment. To date, two studies
have applied radiomics to estimate BRAF mutations in PTC patients [73,81]. These two
studies offered a consistent outcome that ultrasound radiomics has a limited value in
predicting BRAF nutation. This result indicated that the relationship between ultrasound
radiomics and gene mutation may not be as good as expected.
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Table 1. Studies used radiomics for the prediction of metastasis, tumor progression, treatment response, and gene mutation.

Reference Prediction
Category

No.
Patients

Imaging
Method

ROI
Segmentation

Method

No.
Radiomics
Features

Model
Construction

Validation
Method

Sensitivity
(%)

Specificity
(%) Accuracy (%) AUC

Liu et al.
(2018) [56] LNM 75 US and

SEUS manual
US + SWE: 25
US: 36
SWE: 9

SVM LOOCV
US + SEUS: 77
US: 63
SEUS: 71

US + SEUS: 88
US: 89
SEUS: 75

US + SEUS:85
US: 83
SEUS: 74

US+SEUS: 0.90
US: 0.81
SEUS: 0.80

Liu et al.
(2019) [57] LNM 450 US

images manual 50 SVM 10-fold CV 67.9 72.5 71.1 0.783

Jiang et al.
(2019) [58] LNM training: 147

EV: 90
SWE
images manual 4

LASSO
logistic
regression

10-fold CV training: 80.67
EV: 86.84

training: 82.7
EV: 73.08

training: 78.91
EV: 78.89

training: 0.851
EV: 0.832

Li et al.
(2020) [59] LNM 126 US

images manual 91
hypothesis-
testing
and bagging

NA training: 90
test: 72.7

training: 86
test: 80 NA training: 0.759

test: 0.803

Zhou et al.
(2020) [65] LNM training: 609

test: 326
US
images manual 23

LASSO
logistic
regression

NA training: 82.5
test: 81.6

training: 78.6
test: 81.0

training: 79.8
test: 81.2

training: 0.87
test: 0.858

Tong et al.
(2020) [66] LNM training: 600

test: 286
US
images manual 21

LASSO
logistic
regression

NA training: 74.5
test: 77.4

training: 82.6
test: 83.1 NA training: 0.877

test:0.862

Park et al.
(2020) [67] LNM training: 400

test: 368
US
images manual 14

LASSO
logistic
regression

10-fold CV NA NA NA training: 0.71
test: 0.621

Yu et al.
(2020) [3] LNM

training: 1013
IT1: 368
IT2: 513

US
images manual NA TLR;SM;RM;NTLRNA

SM: 72
(training); 43
(IT1); 68 (IT2)
RM: 71
(training); 36
(IT1); 47 (IT2)
NTLR: 75
(training); 71
(IT1); 67 (IT2)
TLR: 94
(training); 83
(IT1); 95 (IT2)

SM: 82
(training); 87
(IT1); 67 (IT2)
RM: 57
(training); 72
(IT1); 69 (IT2)
NTLR: 81
(training); 81
(IT1); 78 (IT2)
TLR: 77
(training); 89
(IT1); 75 (IT2)

SM: 77
(training); 61
(IT1); 67 (IT2)
RM: 62
(training); 51
(IT1); 60 (IT2)
NTLR: 79
(training); 75
(IT1); 73 (IT2)
TLR: 84
(training); 86
(IT1); 84 (IT2)

SM:
0.83(training);
0.67(IT1);
0.67(IT2)
RM:
0.64(training);
0.55(IT1);
0.57(IT2)
NTLR:
0.82(training);
0.81(IT1);
0.79(IT2)
TLR:
0.93(training);
0.93(IT1);
0.93(IT2)
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Table 1. Cont.

Reference Prediction
Category

No.
Patients

Imaging
Method

ROI Seg-
mentation

Method

No.
Radiomics
Features

Model
Construc-

tion

Validation
Method

Sensitivity
(%)

Specificity
(%)

Accuracy
(%) AUC

Lu et al.
(2019) [60] LNM training: 154

test: 67 CT manual
8 radiomic
sub-
signatures

SVM NA NA NA training: 73.4
test: 64.2

training:
0.759
test: 0.706

Hu et al.
(2020) [61] LNM training: 90

test: 39 MRI manual 30
LASSO
logistic
regression

NA

T2WI model:
62.2
DWI model:
86.7
T1C+ model:
68.9
Combined
model: 88.9

T2WI model:
87.2
DWI model:
70.2
T1C+ model:
83
Combined
model: 72.3

T2WI model:
75.0
DWI model:
78.3
T1C+ model:
76.1
Combined
model: 80.4

T2WI model:
0.819
DWI model:
0.826
T1C+ model:
0.808
Combined
model: 0.835

Zhang et al.
(2020) [62] LNM 61 MRI manual 10 RF LOOCV T2WI: 83

T2WI-FS: 83
T2WI: 100
T2WI-FS: 90

T2WI: 87
T2WI-FS: 82

T2WI: 0.85
T2WI-FS:
0.80

Kwon et al.
(2020) [69] DM 169 US

images manual 6 SVM 5-fold CV training: 92
test: 80

training: 87
test: 87

training: 88
test: 85

training: 0.93
test: 0.90

Wang et al.
(2019) [75] Aggressiveness 120 MRI manual 5

LSSO + GBC
LSVM +
LRCV
LSVM + PAC
LSVM +
LSVC

10-fold CV NA NA NA

train: 0.874;
0.979;0.971;
0.805; 0.974
test: 0.915;
0.731; 0.731;
0.885; 0.708

Chen et al.
(2020) [70] ETE training: 437

test: 187 CT manual 5
LASSO
logistic
regression

10-fold CV NA NA NA
training:
0.791
test: 0.772

Park et al.
(2019) [72] DFS 768 US

images manual 40
LASSO
COX
regression

10-fold CV NA NA NA 0.777 (C
index)
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Table 1. Cont.

Reference Prediction
Category

No.
Patients

Imaging
Method

ROI Seg-
mentation

Method

No.
Radiomics
Features

Model
Construc-

tion

Validation
Method

Sensitivity
(%)

Specificity
(%)

Accuracy
(%) AUC

Yoon et al.
(2020) [73]

BRAF
Mutation

training: 387
test: 140

US
images manual 8

LASSO
logistic
regression

NA NA NA NA

training:
0.718 (C
index)
test: 0.629 (C
index)

Kwon et al.
(2020) [81]

BRAF
Mutation 96 patients US

images manual 43

logistic
regression
SVM
RF

5-fold CV 66.8 (mRMR) 61.8 (mRMR) 64.3 (mRMR) 0.65 (mRMR)

Abbreviations: ROI—region of interest; AUC—area under the curve of receiver operating characteristic curve; LMN—lymph node metastasis; US—ultrasound; SEUS—strain elastography ultrasound;
SWE—shear-wave elastography; CT—computer tomography; SVM—support vector machine; RF—random forest; LASSO—least absolute shrinkage and selection operator; CV—cross-validation; LOOCV—leave-
one-out CV; EV—external validation; TLR—transfer learning radiomics; SM—statistical model; RM—traditional radiomics model; NTLR—non-transfer learning radiomics; IT—independent set; DM—distance
metastasis; MRI—magnetic resonance imaging; ETE—extrathyroidal extension; DFS—disease-free survival; LSVM—linear support vector machine; LR—CV-logistic regression classifier with cross-validation;
PAC—passive aggressive classifier; LSVC—linear support vector classification; mRMR—minimum redundancy maximum relevance; NA—not applicable.
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5. Radiomics in Thyroid Cancer and Nodule Classification

Thyroid cancer nodules are common in thyroid disease. The prevalence of thyroid
nodules is approximately 67% in adults [82]. It has been reported that approximately
10% of patients with detected thyroid nodules are diagnosed with malignancy [83]. LN
metastasis indicates rapid progression and poor prognosis in thyroid cancer; however, only
a small portion of patients will develop metastasis [56]. Therefore, special attention needs
to be paid to the differentiation of malignant and benign nodules. Table 2 presents studies
focusing on the classification value of radiomics in DTC.

Machine learning or deep learning-based modalities are an important step in the
processing of radiomics data. Machine learning approaches typically manually select and
delimitate a set of few ROIs on the images; then, machine learning algorithms, such as
support vector machine (SVM), random forest, and least absolute shrinkage and selection
operator (LASSO), are applied to build a model. Prochazka et al. [84] used histogram
analysis and segmentation-based fractal texture analysis algorithms combined with SVM
and random forest classifiers to distinguish malignant nodules from benign nodules in ul-
trasound images. Their results indicated that the histogram feature was the most important
parameter in classification, and both SVM (94.64%) and random forests (92.42%) achieved
high accuracy. Colakoglu et al. [85] attempted to differentiate benign and malignant thyroid
nodules using texture analysis and random forest model construction. After testing the
reproducibility of all texture features, they finally screened seven texture features from
ultrasound images, including one histogram (HistPerc 99), one HOG (HogO8b2), four
GRLMs (GrlmHRLNonUni, GrlmHMGLevNonUni, GrlmNRLNonUni, and GrlmZRL-
NonUni), and one GLCM (GlcmZ3AngScMom), in a random forest model. The diagnostic
sensitivity, specificity, and accuracy were 85.2%, 87.9%, and 86.8%, respectively. Notably,
the area under the curve (AUC) of the model was 0.92, indicating good performance.
Furthermore, a recent ultrasound-image-based retrospective study recruited 2558 patients
(2831 nodules), extracted radiomics features using an in-house texture analysis algorithm,
and applied the LASSO method to calculate the radiomics score [86]. They used this
radiomics score to determine a cutoff value that can help classify the nodules as benign
or malignant. The AUCs of the radiomics score in the training and testing datasets were
0.85 and 0.83, respectively, indicating discriminative power. Furthermore, Yoon et al. [87]
also applied texture analysis and the LASSO method in US images to predict malignant
thyroid nodules with indeterminate cytology, demonstrating good predictive performance.
Zhao et al. [88] compared the diagnostic performance and unnecessary FNAB rate for
thyroid nodules of assisted visual-based and radiomic-based machine learning approaches
in ultrasound images. In this study, ten machine learning classifiers, including decision tree,
naïve Bayes, k nearest neighbors (KNN), logistics regression, SVM, KNN-based bagging,
random forest, extremely randomized trees (XGBoost), multilayer perception, and gradient
boosting tree classifiers, were verified. The results of the assisted visual-based machine
learning approach indicated superior performance in AUC, sensitivity, and specificity in
both the training dataset and internal validation dataset. Furthermore, a similar study
design was applied to a CT-based radiomics study [89]. This study ultimately included
13 radiomics features after LASSO logistic regression. An SVM model was constructed
and compared with seven other machine learning models. The study concluded that the
SVM model exhibited good discrimination performance, whereas random forest had the
highest stability.
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Table 2. Studies used radiomics to differentiate malignant from benign nodules.

Reference No. Pa-
tients/Nodules

Imaging
Method

ROI
Segmentation

No.
Radiomics
Features

Model
Construction

Validation
Method

Sensitivity
(%)

Specificity
(%)

Accuracy
(%) AUC

Prochazka
et al.
(2019) [84]

40 nodules in
40 patients US images threshold NA SVM/RF LOOCV NA NA NA RF: 0.9242

SVM: 0.9464

Colakoglu
et al.
(2019) [85]

235 nodules in
198 patients US images manual 7 RF 10-fold CV 85.2 87.9 86.8 0.92

Park et al.
(2020) [86]

1624 nodules
in 1609
patients
training: 1299;
test: 325

US images manual 66
LASSO
logistic
regression

10-fold CV 70.6 79.8 77.8 0.75

Zhao et al.
(2020) [88]

training: 743
nodules in 720
patients
test: 106
nodules in 102
patients

US and
SWE images manual 26 SVM NA

74.4 (US)
70.7 (US +
SWE)

72.3 (US)
79.4 (US +
SWE)

73.1 (US)
76.2 (US +
SWE)

US: 0.798
US + SWE:
0.834

Zhou et al.
(2020) [90]

1750 nodules
in 1734
patients

US images semi-
automated NA Deep learning NA

training: 90.1
IV: 89.3
EV: 89.5

training: 82.7
IV: 83.5
EV: 84.1

NA
training: 0.96
IV: 0.95
EV: 0.97

Wang et al.
(2020) [91]

3120 nodules
in 1040
patients

US images
semi-
automated
/manual

302 SVM NA 51.19 75.77 66.81 0.6371

Yoon et al.
(2020) [87]

155 nodules in
154 patients US images manual 15

LASSO
logistic
regression

10-fold CV NA NA NA
US + Clinical
information:
0.839

Yao et al.
(2020) [89] 1372 patients CT images manual 13 LASSO

+RF 10-fold CV 68 82 74 0.82

Abbreviations: ROI—region of interest; AUC—area under the curve of receiver operating characteristic curve; SWE—shear-wave elastography; US—ultrasound; CT—computer tomography; SVM—
support vector machine; RF—random forest; LASSO—least absolute shrinkage and selection operator; CV—cross-validation; LOOCV—leave-one-out CV; IV—internal validation; EV—external validation;
NA—not applicable.



Cancers 2021, 13, 2436 14 of 19

In addition, the ability to discriminate benign from malignant lesions using a deep
learning radiomics approach has also been verified by researchers. Zhou et al. [90] em-
ployed the deep learning radiomics method to differentiate benign and malignant thyroid
nodules in ultrasound images. This study found that the AUC of deep learning radiomics
was greater than that of other deep learning models and traditional naked-eye observa-
tions. However, the current limitation of deep learning is its black box issue, making the
conclusion difficult to interpret. The abovementioned radiomic-based and deep learning-
based classifications are two methods applied in the detection of malignant nodules and
metastatic cervical lymph nodes. However, research comparing the diagnostic ability
between these two approaches is insufficient but essential. Wang et al. [91] extracted 302-
dimensional statistical features from ultrasound images and applied mutual information
and linear discriminant analysis to reduce dimensionality. These researchers reported that
the accuracy of radiomics for the testing data was 66.81%, which was relatively lower than
that of the deep learning approach (74.69%). Although the radiomics approach may not be
dominant in this study, the interpretability of deep learning is a long-standing problem
that remains elusive.

6. Limitations

Substantial radiomics studies have indicated the predictive value of radiomics in DTC;
however, it is undeniable that there are also several limitations in radiomics. First, the
‘black box’ property of classifiers hampers the causal relationship, and the meaning of
radiomics features extracted from grayscale images further hinders data interpretability.
Second, radiomics is regarded as a ‘population imaging’ approach closely relying on differ-
ent modalities and device parameters, which means variations in imaging protocols among
institutions would lead to non-uniform data acquisition and thus influence generalizability.
The good classification and prediction performance in a single center might not be general-
ized to patient cohorts from another center. Therefore, current original studies generally
lack external validation. Third, although radiomics partially reflects the information at
the molecular biological level, variations in tumor cells and the microenvironment as well
as the retrospective nature of the studies represent limit the interpretation of the final
results. Notably, based on current studies, the average diagnostic accuracy of radiomics
is between 66% and 86%, even worse in the prediction of BRAF mutation, making the
economic efficiency is an issue in need of attention and consideration. Furthermore, the
reliability of the predictive performance and clinical application may be decreased by dis-
cussing the predictive value of radiomics itself without considering the influence of clinical
information, such as tumor stages and therapy strategies. More importantly, the ethical
issues regarding the use of radiomics in patient stratification and treatment response-based
prognosis should also be treated with caution.

7. Conclusions

In summary, radiomics is a hot topic and a rapidly evolving field in medical imag-
ing in general. There are still some technological and ethical limitations of radiomics
aforementioned are required to be solved. Nevertheless, increased studies have proved
the potential applications of radiomics for both the research and clinical lactation field.
For prediction, the radiomics is seemly satisfactory to predict lymph node metastasis,
distance metastasis, tumor aggressiveness and extrathyroidal extension, and disease-free
survival. While previous original studies consistently negated the value of US radiomics
in predicting BRAF mutations in DTC. This result may need to be thoroughly discussed
to determine the predictive value of other imaging techniques, such as CT and MRI, and
provide a direct or indirect relationship between radiomics and tumor mutations of thyroid
cancer in the future study. For diagnosis, the current findings may facilitate breakthroughs
in thyroid cancer and nodule classification based on a radiomics approach. These studies
demonstrated the usefulness of radiomics in discriminating benign and malignant lesions
regardless of the image types (US, CT, or MRI). Further studies should address two im-
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portant issues: (1) optimize the algorithm and models to improve the accuracy of external
validation thereby enhance the diagnostic capacity of radiomics; (2) analyze multi-model
or multi-parameters imaging data with a larger sample as well as increase the possibility
of clinical transformation.
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