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Purpose:Glioblastomamultiforme (GBM) is the most widely occurring brain malignancy. It
is modulated by a variety of genes, and patients with GBM have a low survival ratio and an
unsatisfactory treatment effect. The irregular regulation of RNA binding proteins (RBPs) is
implicated in several malignant neoplasms and reported to exhibit an association with the
occurrence and development of carcinoma. Thus, it is necessary to build a stable, multi-
RBPs signature-originated model for GBM prognosis and treatment response prediction.

Methods:Differentially expressed RBPs (DERBPs) were screened out based on the RBPs
data of GBM and normal brain tissues from The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression Program (GTEx) datasets. Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes analyses on DERBPs were performed, followed
by an analysis of the Protein-Protein Interaction network. Survival analysis of the DERBPs
was conducted by univariate and multivariate Cox regression. Then, a risk score model
was created on the basis of the gene signatures in various survival-associated RBPs, and
its prognostic and predictive values were evaluated through Kaplan-Meier analysis and
log-rank test. A nomogram on the basis of the hub RBPs signature was applied to estimate
GBM patients’ survival rates. Moreover, western blot was for the detection of the proteins.

Results: BICC1, GNL3L, and KHDRBS2 were considered as prognosis-associated hub
RBPs and then were applied in the construction of a prognostic model. Poor survival
results appeared in GBM patients with a high-risk score. The area under the time-
dependent ROC curve of the prognostic model was 0.723 in TCGA and 0.707 in
Chinese Glioma Genome Atlas (CGGA) cohorts, indicating a good prognostic model.
What was more, the survival duration of the high-risk group receiving radiotherapy or
temozolomide chemotherapy was shorter than that of the low-risk group. The nomogram
showed a great discriminating capacity for GBM, and western blot experiments
demonstrated that the proteins of these 3 RBPs had different expressions in GBM cells.

Conclusion: The identified 3 hub RBPs-derived risk score is effective in the prediction of
GBM prognosis and treatment response, and benefits to the treatment of GBM patients.
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INTRODUCTION

As the most widespread malignant neoplasm in human brain,
glioblastoma multiforme (GBM) has retained a severe incidence
ratio and prognosis (Johnson et al., 2013; Davis, 2016). Even
though therapeutic methods to GBM diagnosis and treatment are
continually ameliorating, which includes surgical resection,
temozolomide (TMZ) chemotherapy and radiotherapy, average
survival of 15 months remains unsatisfactory (Kim et al., 2018;
Ramos et al., 2018). Presently, diagnosis of GBMmainly relies on
examination of histopathology, neoplasm molecular biomarkers
and imaging assessments, which is certainly not applicable to
early diagnosis (Batash et al., 2017). Thus, to improve the
treatment effects and life quality of patients, more knowledge
of GBM molecular mechanism is needed to create efficient
approaches for early detection.

RNA binding proteins (RBPs) refer to the proteins that
interact with several RNAs, and participate in most post-
transcriptional modulation processes and cellular homeostasis
(Hentze et al., 2018; Gebauer et al., 2020). RBPs mediate the
modulation of RNA splicing, polyadenylation, stability,
localization, translation, and degradation via binding to
targeted RNAs and then forming ribonucleoprotein complexes
(Wende et al., 2019). Taking post-transcriptional modulation
into consideration, no doubt abnormally dysregulated RBPs are
intimately associated with the incidence and development of
many diseases, such as cancers (Pereira et al., 2017;
Neelamraju et al., 2018). Recently, some researchers uncover
that RBPs facilitate tumorigenesis not only by raising
oncogene levels, but also by reducing tumor suppressor gene
levels (Guo and Jia, 2018; Zhang et al., 2018). Therefore, a lot of
attention has turned to the roles of RBPs in cancers.

It is reported that RBPs present a close relationship to glioma’s
occurrence and development (Xu et al., 2018; Yi et al., 2018).
For example, the expression of PCBP2 is dramatically
increased at a higher stage of glioma. Ablating PCBP2 greatly
decreases the colony formation and invasion capability of GBM
cells (Han et al., 2013; Luo and Zhuang, 2017). HuR is
overexpressed in high-grade malignancies (GBM and
medulloblastoma). Additionally, HuR could bind and stabilize
mRNAs of growth factors that are associated with the
progression of brain neoplasm (Nabors et al., 2001). In glioma
and medulloblastoma, MSI1 expression is significantly elevated
(Kanemura et al., 2001). Based on these findings, we attempt
to systematically investigate RBPs’ functions to understand
their roles in GBM.

In current years, data mining and bioinformatics analysis
have been largely applied in research on carcinomas. A large
number of high-throughput data produced by microarrays and
next-generation sequencing are gathered in public datasets.
Among them, The Cancer Genome Atlas (TCGA) and
Chinese Glioma Genome Atlas (CGGA) get extensively
adopted. Exploration of tumor expression features and
identification of prognostic indicators and biomarkers can be
greatly aided by mining these data. Based on the methylation
array data in TCGA dataset, Rajendra P. Pangeni et al. analyzed
tumor subtype-associated epigenetic regulation in GBM bulk

tumors using genome-wide methylation and transcription
(Pangeni et al., 2018). Based on the Gene Expression
Omnibus (GEO) database, Huiwen Gui et al. used
bioinformatics analysis to determine that GAPDH, RHOA,
RPS29, and RSS27A are the hub genes of Alzheimer’s disease
(Gui et al., 2021).

Here, our study is to carry out a comprehensive analysis of
GBM in TCGA and CGGA to determine the survival-related
differentially expressed RBPs (DERBPs), and used a series of
bioinformatics analyses, including Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Protein-
Protein Interaction (PPI), to get the hub RBPs and key
pathways in GBM. Based on the selected hub RBPs and public
data, we establish a risk model for prognosis and treatment
response prediction.

MATERIALS AND METHODS

Data Acquirement
We obtained 1,092 normal brain tissue samples of 201 individuals
from the Genotype-Tissue Expression Program (GTEx, https://
www.gtexportal.org/home/datasets), 153 GBM samples with
relevant clinical data from TCGA (https://www.cancer.gov/
about-nci/organization/ccg/research/structural-genomics/tcga),
and 85 GBM samples with relevant clinical data from CGGA
cohort (https://www.cgga.org.cn/download.jsp). 1542 RBPs were
extracted from the above-mentioned 3 RNA-sequencing data
cohorts (Li et al., 2020a). DERBPs were determined by the
negative binomial distribution method between a normal brain
and GBM tissues. Besides, the Limma package (http://www.
bioconductor.org/packages/release/bioc/html/limma.html) was
carried out here on the basis of the negative binomial
distribution. It fits a universal linear gene model and utilizes
empirical Bayes shrinkage for the assessments of interspersion
and fold change (FC). We preprocessed original data by Limma
package and ruled out genes with a mean value <1. Additionally,
the DERBPs got determined by the Limma package with the
standard criteria of |log2 FC| ≥ 1 and false discovery rate (FDR)
< 0.05.

KEGG Pathway and GO Enrichment
Analyses
GO and KEGG got employed to evaluate the DERBPs’ biological
functions. CC (cellular component), MF (molecular function)
and BP (biological process) were the main classifications of GO.
The clusterProfiler package in R participated in all enrichment
analyses (Yu et al., 2012). Statistical significance was defined as p
and FDR values <0.05.

Construction of Protein-Protein Interaction
Network
The DERBPs were input to the STRING database (Search Tool
for the Retrieval of Interaction Gene, http://www.string-db.org/)
(Li et al., 2020a) to determine PPI data. The construction and
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visualization of PPI networks were performed by Cytoscape 3.7.0
software.

Prognostic Model Construction
To assess whether the DERBPs had an association with survival,
univariate Cox proportional hazards regression analysis was
carried out in TCGA GBM cohort for overall survival (OS).
Then, the hub RBPs related to survival were further identified
using multivariate Cox proportional hazards regression among
candidate genes.

According to the gene signatures of survival-related hub RBPs
determined by multivariate Cox proportional hazards regression,
we established a risk score model as the formula described below.

Risk score � ∑
n

i�1 βi p Ei

“n” represents key RBPs number in total; “βi” indicates gene i ’s
regression coefficient; “Ei” represents the gene i ’s expression
value. In the validation CGGA dataset, “βi” used was the same as
that in the TCGA.

For exploring the prognosis and prediction abilities of risk
score, we classified GBM patients into high- and low-risk groups
on account of the median risk score survival analysis. Kaplan-
Meier (KM) method with the log-rank test was conducted for
the survival rate analyses of the two groups. Clinicopathological
parameters and risk scores were analyzed through univariate
and multivariate Cox regressions to ensure that risk scores
possessed significance in clinical. In addition, the
SurvivalROC (receiver operating characteristic) package
completed the ROC curve analysis to evaluate the above
model’s prognostic ability (Heagerty et al., 2000). A
validation cohort of 85 GBM patients with responsible
prognosis from CGGA was employed to confirm the
prognostic model’s predictive capability. Lastly, RMS R
package was utilized to generate the nomogram including
calibration plots to predict OS.

GBM Tissue Samples
The resected neoplasm specimens of two GBM patients were
obtained from the Department of Neurosurgery, the First
Affiliated Hospital of Harbin Medical University. Histological
grading got classified according to WHO criteria. This
experiment got the permission of the Institutional Review
Board of Harbin Medical University, and written informed
consent was signed by every patient. GBM-1 and GBM-2 cells
were derived from patient fresh GBM specimens.

Human Cell Lines
HEB (normal human glial cell) and U-87 MG (GBM cell) cells
were kindly provided by Prof. Qian He (Shenzhen People’s
Hospital, Shenzhen, China), all GBM cells were cultivated in
DMEM with 10% FBS, penicillin (100 U/ml) and streptomycin
(100 mg/ml) in a 37°C environment containing 5% CO2.

Western Blot
Tissue and cellular proteins were extracted using tissue extraction
buffer and RIPA buffer with protease inhibitor cocktail (Sigma,

P8340), respectively. SDS-PAGE was used to separate equal
quantities of protein which was then transferred to
nitrocellulose membranes. Antibodies applied here were listed
as follows: anti-BICC1 (Sigma, HPA045212), anti-GNL3L
(Sigma, SAB4502257), anti-KHDRBS2 (ThermoFisher
Scientific, PA5-96508), anti-β-Actin (Sigma, A1978) and
horseradish peroxidase-conjugated anti-rabbit/mouse IgG (Cell
Signaling, 7074 and 7076). Compared with β-Actin, the
expressions of target proteins were calculated and then
generalized to the equivalent expressions in HEB cells.

Statistical Analysis
The representative data were derived from five separate
experiments and shown as the mean ± SEM. Graphpad
Prism 7.0 or R software (https://www.r-project.org/) was
adopted for statistical analysis. Unpaired Student’s t-tests
with Mann-Whitney U tests and one-way ANOVA with
Kruskal-Wallis H tests were used to examine differences
between two or more groups. The correlation of risk score
with clinicopathological parameters was studied by Pearson
Chi-Square test and Fisher’s exact test. The log-rank test was
for the statistical significance evaluation of the differences in
each dataset, and the KM technique was used to create survival
curves for the subgroups in each dataset. p < 0.05 indicated
significance in statistics.

RESULTS

Analysis of the DERBPs in Patients
With GBM
The crucial prognosis role of RBPs in GBM was
comprehensively studied by several advanced computational
methods. Supplementary Figure S1 showed our study design.
The GBM dataset (TCGA) contained 153 tumor samples in
comparison to 1,092 normal brain samples (GTEx Portal). All
derived data from the two datasets were preprocessed by the R
software packages. In total, 1542 RBPs were analyzed and 160
RBPs were retained, consisting of 52 RBPs with upregulation
and 108 RBPs with downregulation (Figure 1). Our data
indicated GBM existed various DERBPs in comparison with
normal brain tissues.

Functional Enrichment Analysis of the
DERBPs
The DERBPs comprised two groups of upregulation and
downregulation. We conducted functional enrichment analysis
of the two groups by GO and KEGG. Regarding GO analysis, BP,
CC, and MF terms were applied to annotate these DERBPs’
functions. BP analysis demonstrated DERBPs with upregulation
were primarily associated with defense response to viruses, RNA
catabolic processes and RNA phosphodiester bond hydrolysis
(Figure 2A), and that the DERBPs with downregulation were
mainly related to the regulation of RNA splicing, RNA splicing
and mRNA metabolic process (Figure 2B). By the CC analysis,
both upregulated and downregulated DERBPs were enriched in
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total ribonucleoprotein granules and cytoplasmic
ribonucleoprotein granules (Figure 2). MF analysis results
showed DERBPs with upregulation were associated with
catalytic activity acting on RNA, double-stranded RNA
binding and mRNA 3′-UTR binding (Figure 2A), while those
with downregulation were largely linked with catalytic activity
acting on RNA, mRNA 3′-UTR binding and translation regulator

activity (Figure 2B). The KEGG analysis demonstrated DERBPs
with upregulation were significantly related to influenza A,
mRNA surveillance pathway, ribosome biogenesis in
eukaryotes and RNA transport. And those with
downregulation were significantly associated with RNA
transport, mRNA surveillance pathway, and RNA polymerase
degradation (Table 1).

FIGURE 1 | The DERBPs between GBM and normal brain tissues. (A) Volcano plot showing the log2FC of RBPs in GBM compared to normal brain tissues, and the
corresponding–log10FDR in TCGA andGTEx datasets. Genes with FDR below 0.05 and log2FC above 1 (below -1) weremarked with red (blue) dots. (B)Heat map of the
RBPs in TCGA and GTEx datasets. DERBPs, differentially expressed RBPs; FC, fold change; FDR, false discovery rate.

FIGURE 2 | GO enrichment analysis of DERBPs based on BP, CC, and MF biological processes. (A) GO enrichment analysis of upregulated RBPs. (B) GO
enrichment analysis of downregulated RBPs. The y-axis shows a significantly enriched project (p < 0.05, FDR < 0.05). GO, Gene Ontology; DERBPs, differentially
expressed RBPs; BP, biological process; CC, cellular component; MF, molecular function.
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Selection of RBPs Related to Prognosis
In order to study the pivotal DERBPs in GBM, we utilized
Cytoscape software to create a PPI network, containing 120
nodes and 260 edges (Supplementary Figure S2). To deeply
evaluate the prognosis values of 120 RBPs, univariate Cox
regression analysis of each for OS was conducted and we
obtained 6 prognosis-associated candidate hub RBPs. As
shown in Figures 3A, 2 RBPs displayed an inverse
correlation with survival, and 4 RBPs exhibited a positive
correlation with survival (p < 0.05) (Figure 3A and Table 2).
Following that, multiple stepwise Cox regression was used to
evaluate the influence of the 6 potential hub RBPs on patient
survival time and clinical outcomes. We eventually identified

3 hub RBPs, including G Protein Nucleolar 3 Like (GNL3L),
BicC Family RNA Binding Protein 1 (BICC1), and KH RNA
Binding Domain Containing, Signal Transduction Associated
2 (KHDRBS2), correlating with OS (Figure 3B and Table 2).
High expression of BICC1 was found in GBM and its
expression was inversely correlated with survival (HR > 1).
Low expression of KHDRBS2 was found in GBM and its
level was positively correlated with survival (HR < 1). Of
interest, expression of GNL3L was dramatically higher in
GBM, but its increase in expression exhibited a positive
correlation with survival (HR < 1). Our results collectively
implied that these 3 hub RBPs had close relations with the OS
in GBM patients.

TABLE 1 | KEGG pathway analysis of DERBPs.

Category Term Description p Value FDR Count

Upregulated
Pathway hsa05164 Influenza A 2.86221E-06 7.53213E-05 7
Pathway hsa03015 mRNA surveillance pathway 0.000382507 0.00503299 4
Pathway hsa03008 Ribosome biogenesis in eukaryotes 0.000840096 0.007369263 4
Pathway hsa05162 Measles 0.001824335 0.010607124 4
Pathway hsa00970 Aminoacyl-tRNA biosynthesis 0.002015354 0.010607124 3
Pathway hsa03013 RNA transport 0.00476635 0.020905044 4
Pathway hsa04620 Toll-like receptor signaling pathway 0.007266019 0.02731586 3
Pathway hsa05160 Hepatitis C 0.021283853 0.070012673 3
Pathway hsa03018 RNA degradation 0.03688456 0.107849589 2

Downregulated

Pathway hsa03013 RNA transport 5.02482E-10 1.95703E-08 10
Pathway hsa03015 mRNA surveillance pathway 8.49591E-07 1.65447E-05 6
Pathway hsa03020 RNA polymerase 0.000196405 0.002549819 3
Pathway hsa03018 RNA degradation 0.003062616 0.029820204 3
Pathway hsa03008 Ribosome biogenesis in eukaryotes 0.008126664 0.063302434 3
Pathway hsa03040 Spliceosome 0.017563625 0.10064299 3
Pathway hsa05134 Legionellosis 0.018917424 0.10064299 2
Pathway hsa05164 Influenza A 0.024818692 0.10064299 3
Pathway hsa00970 Aminoacyl-tRNA biosynthesis 0.024904555 0.10064299 2
Pathway hsa05016 Huntington disease 0.025840768 0.10064299 4

Note: Category: KEGG pathway. Count: the number of DERBPs.
Abbreviations: DERBPs, differentially expressed RNA binding proteins; KEGG, Kyoto Encyclopedia of Genes and Genomes.

FIGURE 3 | Cox regression analysis in TCGA GBM cohort. (A) Univariate Cox regression analysis for identification of hub RBPs in TCGA dataset. (B) Multivariate
Cox regression analysis to identify prognosis related hub RBPs.
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FIGURE 4 | Risk score analysis of 3-genes prognostic model in TCGA cohort. (A) OS analysis among TCGA GBM patients stratified by risk score. (B) ROC curve
for forecasting OS based on risk score. (C) Expression heat map of the 3 hub RBPs. (D) Survival status of the TCGA GBM patients. (E) The risk score values in low- and
high-risk subgroups. OS, overall survival.

TABLE 2 | 3 prognosis-associated hub RBPs identified by univariate and multivariate Cox regression analysis.

Factor Up/Down Univariate analysis Multivariate analysis

HR 95% CI p Value β HR 95% CI p Value

BICC1 Up 1.253 1.007–1.558 0.042 0.231 1.259 0.990–1.602 0.059
RNASE2 Up 1.059 1.002–1.118 0.039
GNL3L Up 0.691 0.520–0.920 0.011 −0.527 0.669 0.498–0.898 0.007
KHDRBS2 Down 0.538 0.355–0.814 0.003 −0.402 0.590 0.382–0.911 0.017
WDR3 Down 0.709 0.525–0.957 0.025
MRPL38 Down 0.260 0.069–0.979 0.046

Abbreviations: HR, hazard ratio; CI, confidence interval.
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The Survival and Treatment Response was
Predicted by the 3 Hub RBPs-Derived Risk
Score Model in TCGA GBM Cohort
Next, a risk score model was built according to the above 3 hub
RBPs. Each patient’s risk score got acquired from the formula
below: Risk score � βBICC1 × EBICC1 + βGNL3L × EGNL3L +
βKHDRBS2 × EKHDRBS2. “E” indicates the expression values of
pertinent RBPs, and “β” represents the regression coefficient
determined from multivariate Cox stepwise regression analysis
according to the TCGAGBM cohort (Table 2). Then, we assessed
predictive ability by conducting a survival analysis. TCGA GBM
patients got classified into low- and high-risk subgroups with the
standard of the median value. The data suggested compared with
the low-risk group, the high-risk group presented an unsatisfying
OS status (Figure 4A). A time-dependent ROC analysis was used

to further assess the predictive capability of the 3 RBPs-derived
risk model. Our data revealed RBPs risk score model’s area under
the ROC curve (AUC) was 0.723 (Figure 4B), suggesting it
displayed a moderate diagnosis ability. Figures 4C–E showed
the expression heat maps of the 3 hub RBPs, patient survival
status and the risk score of the signature comprised of 3 RBPs in
the low and high-risk subgroups.

A high-risk score was strongly linked with IDH1-wild type and
mesenchymal subtype, according to an analysis of the correlation
between the risk score and clinicopathological features (Figures
5A,B and Supplementary Table S1). The IDH1-wild type or
mesenchymal subtype GBM was linked to a bad prognosis
(Supplementary Figure S3), as shown in earlier research (Yan
et al., 2009; Wang et al., 2017), implying that a high-risk score
might be associated with an unsatisfying prognosis.

FIGURE 5 |Risk score predicts the prognosis and treatment response in TCGAGBM cohort. (A)Risk scores in IDH1-mut GBM and IDH1-wt GBM. (B)Risk scores
in Non-Mes GBM and Mes GBM. (C–D) KM OS analysis of TCGA GBM patients stratified by risk score combined with IDH1 status (C) and combined with expression
subtypes (D). (E–F) KM OS analysis of TCGA GBM patients with radiotherapy (E), or TMZ chemotherapy (F) according to the risk score. KM, Kaplan-Meier; OS, overall
survival; IDH, isocitrate dehydrogenase; IDH1-wt, IDH1-wild type; IDH1-mut, IDH1-mutation; Mes, mesenchymal; Non-Mes, non-mesenchymal; TMZ,
temozolomide. Data are shown as mean ± SEM.
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KM survival analysis of the above two groups was performed
to confirm the risk score’s prognosis relevance. Survival analysis
indicated GBM patients with a high-risk score and IDH1-wild
type had the worst results (Figure 5C), and in the non-
mesenchymal subgroup, patients with a high-risk score had a
shorter survival time than those with a low-risk score
(Figure 5D). Univariate and multivariate analyses were
employed to validate the prognosis significance of risk score
(Supplementary Table S2). Moreover, in GBM patients
suffering from radiation or TMZ chemotherapy, a high-risk
score was linked to a poor result, showing the risk score might
predict the treatment effects (Figures 5E,F).

The Prognosis and Treatment Response
was Predicted by the Risk Score Model in
CGGA GBM Cohort
To deeply confirm the prediction ability of risk score, the 3 hub
RBPs-derived risk score model was assessed, and KM survival
analysis got performed in CGGA dataset of GBM. It was found
that those with a high-risk score got a worse OS than patients with a
low-risk score (Figure 6A). The AUC of the prognostic model
counted 0.707, which showed a similar result compared to AUC in
TCGA cohort (Figure 6B). Figures 6C–E showed the expression
heat maps of 3 hub RBPs, patient survival status, and the risk score

FIGURE 6 | Risk score analysis of 3-genes prognostic model in CGGA cohort. (A)OS analysis among CGGA GBM patients stratified by risk score. (B) ROC curve
for forecasting OS based on risk score. (C) Expression heat map of the 3 hub RBPs. (D) Survival status of the CGGA GBM patients. (E) The risk score values in low- and
high-risk subgroups. OS, overall survival.
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of the signature comprised of 3 RBPs in low- and high-risk
subgroups. We found that compared to GBM patients with
IDH1-mutation and a low-risk score, those with IDH1-mutation
and a high-risk score tended to have a poor outcome, while no
obvious survival difference was observed in GBM patients with a
high-risk or low-risk score in the IDH1-wild type subgroup
(Figure 7A), probably because of tumor heterogeneity and small
sample size. Similarly, in comparison with non-mesenchymal GBM
patients having low-risk scores, those having high-risk scores had
worse survival time (Figure 7B). Finally, a high-risk score was
linkedwith bad results in GBMpatients undergoing radiotherapy or
TMZ chemotherapy (Figures 7C,D). Collectively, these findings
suggested the risk score model could forecast GBM patients’
prognosis and therapy evaluation.

Nomogram Design on the Basis of the Hub
RBPs
3 RBPs signatures were combined for nomogram
construction to create a predictive estimation approach
(Figure 8). According to the multivariate Cox analysis,
points were distributed to respective variables through the
nomogram scale. A horizontal line was drawn for each
variable with demarcations for the number of points, the
whole points were counted for each patient and generalized to
a range of 0–100. The evaluated survival rates of GBM
patients could be determined by drawing a vertical line
from the total point axis to each prognosis axis in the next
3 years. This nomogram would facilitate the clinical
treatment for GBM patients.

FIGURE 7 | Performance of risk score in predicting the survival and treatment response in CGGA GBM cohort. (A) Risk scores in IDH1-mut GBM and IDH1-wt
GBM (left), and KM OS analysis of CGGA GBM patients stratified by risk score combined with IDH1 status (right). (B) Risk scores in Non-Mes GBM and Mes GBM (left),
KM OS analysis of CGGA GBM patients stratified by risk score combined with expression subtypes. (C–D) KM OS analysis of CGGA GBM patients with radiotherapy
(C), or TMZ chemotherapy (D) according to the risk score. KM, Kaplan-Meier; OS, overall survival; IDH, isocitrate dehydrogenase; IDH1-wt, IDH1-wild type; IDH1-
mut, IDH1-mutation; Mes, mesenchymal; Non-Mes, non-mesenchymal; TMZ, temozolomide. Data are shown as mean ± SEM.
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Validating the Differentially Expressed 3
Hub RBPs in GBM Cells
To confirm the dysregulated expressions of the 3 hub RBPs
(BICC1, GNL3L, and KHDRBS2) in GBM, western blot was
carried out to measure their protein levels in GBM cells and
normal glial cells. Figure 9 indicated BICC1 and GNL3L were
upregulated in GBM cells, while KHDRBS2 was
downregulated.

DISCUSSION

GBM is featured with complicated background on the molecular
level (Reifenberger et al., 2016), while high-throughput data on
GBM studies makes it easier to find the molecular diagnosis and
prognosis biomarkers. In our context, we comprehensively
investigated the DERBPs of GBM from TCGA and GTEx
cohorts, and uncovered 3 hub RBPs (BICC1, GNL3L, and

FIGURE 8 | Nomogram for predicting 1, 2, and 3-years OS of GBM patients in the TCGA cohort.

FIGURE 9 | Validation of the differential expression of the 3 RBPs in GBM cells. (A–D)Western blot images (A) and the relevant quantification of BICC1 (B), GNL3L
(C), and KHDRBS2 (D) in GBM cell line U-87, primary GBM cells (GBM-1 and GBM-2), and normal glial cell line HEB. The relative expression of target proteins is
quantified in comparison with β-Actin and normalized to the corresponding expression in HEB cells. Data are shown as mean ± SEM from five independent experiments,
*p < 0.05, **p < 0.01, ***p < 0.001.
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KHDRBS2) abnormally expressing in GBM. The risk score model
originated from the 3 hub RBPs exhibited vital functions in the
prediction of GBM patients’ prognosis and treatment response.

Firstly, we screened for the GBM DERBPs through RNA
sequencing data from TCGA and GTEx datasets, rather than
only TCGA. The normal brain tissue samples in TCGA were
acquired from tissues surrounding tumors, which couldn’t
represent normal brain tissue samples completely. The GTEx
dataset contained 1,092 samples of 11 brain regions from 201
normal individuals (Consortium, 2015; Mu et al., 2019). In this
way, the discovered RBPs (52 upregulated and 108
downregulated) might surely have a stable and particular
expression in GBM than that in normal control. We built co-
expression and PPI networks for these RBPs by thoroughly
studying key biological pathways. Next, we discovered that
BICC1, GNL3L, and KHDRBS2 levels were associated with
survival by univariate and multivariate Cox regression
analysis. Among them, upregulated BICC1 exhibited a
negative correlation with survival, indicating it functioned as
an oncogene. Downregulated KHDRBS2 displayed a positive
correlation with survival, so it might function as a tumor
suppressor gene in GBM. Of note, expression of GNL3L was
considerably higher in GBM while being positively correlated
with survival, so GNL3L was an indicator of lower risk in GBM
(HR < 1). In addition, western blot analysis confirmed that the 3
hub RBPs were differentially expressed in GBM cells. As a result,
the risk score model was created using the signature of the 3
hub RBPs.

According to prior research, regulation of translation, RNA
processing and RNA metabolism are all linked to the incidence
and progression of a range of human diseases (Subramanian and
Simon, 2010; Caffarel and Coleman, 2014; Reifenberger et al.,
2016). In our study, the functional enrichment analysis
indicated the abnormal RBPs governed the carcinogenesis
and development of GBM via the mRNA surveillance
pathway, RNA degradation, ribosome synthesis, and RNA
degradation. Although most connections between RBPs and
tumors remain confusing, there are still some findings of them
(Wang et al., 2018). For instance, PTBP1 can enhance glioma
proliferation and migration by increasing the inclusion of exon
3 in RTN4 mRNA (Cheung et al., 2009). HNRNPA2B1
promotes glioma development and aggressiveness (Golan-
Gerstl et al., 2011). PTRF, alias Cavin1, is recognized as a
non-canonical RBP in GBM and is also identified as a
prognosis-related factor (Huang et al., 2018; Wang et al.,
2020a). In addition, FNDC3B, a membrane protein, not only
promotes migration and invasion of glioma cells, but can also
act as a prognostic biomarker (Fischer et al., 2017; Wang et al.,
2020a). SLC25A43, a molecular marker, is also proved to be
related to a poor prognosis in GBM (Haitina et al., 2006; Wang
et al., 2020a).

Herein, the 3 hub RBPs-derived risk score performed well in
predicting the GBM patients’ survival status in TCGA, and their
prognosis functions could be reproduced in CGGA. According to
the ROC curve study, the 3 RBPs signatures had the diagnosis
ability to determine the GBM patients with a bad prognosis. The

constructed nomogram facilitated the OS prediction in the
following 3 years more quantitatively. In addition, the risk
score model could forecast the treatment effects of GBM
patients undergoing radiotherapy or chemotherapy. Therefore,
a prospective risk score model derived frommulti-RBPs signature
was established, which could be utilized as a biomarker for GBM’s
prognosis and prediction.

Among the 3 hub RBPs, BICC1 is implicated in the post-
transcriptional regulation of mRNA (Rothé et al., 2015;
Davidson et al., 2016). Inhibition of BICC1 expression can
promote cell apoptosis and suppress cell proliferation in
tumor cells (Wang et al., 2020b). GNL3L, HSR1-MMR1
family, is a putative nucleolar GTPase existing throughout
eukaryotes (Thoompumkal et al., 2016). GNL3L has been
discovered as a factor involved in the maintenance of the
tumorigenic properties of tumor-initiating cells
(Kannathasan et al., 2020). Moreover, GNL3L may enhance
NF-κB-regulated tumor cell viability via the upregulation of
antiapoptosis-related genes (Thoompumkal et al., 2015;
Kannathasan et al., 2020). However, no previous study has
assessed the effects of GNL3L in GBM. As for KHDRBS2,
although the relation of KHDRBS2 overexpression to better
OS in lung adenocarcinoma is well understood (Li et al.,
2020b), little is known about it in GBM. The biological
activities of these 3 hub RBPs have offered some insight
into the value of risk score in GBM prognosis and
prediction, but more research of them in GBM
development and the potential mechanisms is needed.

The risk score’s applicable efficacy may be beneficial for
directing treatment options to improve the clinical outcome of
GBM patients. Patients with high-risk scores should accept
aggressive treatment, while those with low-risk scores should
avoid excessive therapies that might result in unwanted side
effects. As a result, it is critical to put the risk score into
clinical practice that is guaranteed by promising research to
deeply confirm the value of risk score in GBM prediction and
prognosis.

This study has some limitations. First, the number of clinical
samples used to verify 3 hub RBPs is not large enough. Secondly,
the biological functions of these 3 RBPs in GBM need to be
further explored. Finally, the clinical application value of risk
scores remains to be further verified.

Our systematic exploration of DERBPs through a sequence of
bioinformatics analyses in GBM, and identified a total of 160
DERBPs (52 upregulated and 108 downregulated). The results
of functional analysis showed that RBPs are mainly involved in
mRNA surveillance pathway, RNA degradation, ribosome
synthesis, and RNA degradation. Univariate and multiple
COX regression analysis showed that BICC1, GNL3L, and
KHDRBS2 are related to the prognosis of GBM patients. A
risk score model was constructed based on the differential
expressions of 3 hub RBPs. In addition, we analyzed the
expression levels of 3 hub RBPs in GBM tissues and cell
lines. This risk score model performs favorably in the
prediction of GBM patients’ therapy and prognosis, which
potentially optimizes treatment decisions.
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