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Ovarian cancer is one of the most lethal malignancies. The population at the risk is
continually on the rise due to the acquired drug resistance, high relapse rate, incomplete
knowledge of the etiology, cross-talk with other gynecological malignancies, and diagnosis
at an advanced stage. Most ovarian tumors are thought to arise in surface epithelium
somehow in response to changes in the hormonal environment. Prolonged treatment with
hormone replacement therapy (HRT) is also considered a contributing factor. Estrogens
influence the etiology and progression of the endocrine/hormone-responsive cancers in a
patient-specific manner. The concept of hormonal manipulations got attention during the
last half of the 20th century when tamoxifen was approved by the FDA as the first selective
estrogen receptor modulator (SERM). Endocrine therapy that has been found to be
effective against breast cancer can be an option for ovarian cancer. It is now established
that global changes in the epigenetic landscape are not only the hallmark of tumor
development but also contribute to the development of resistance to hormone therapy.
A set of functionally related genes involved in epigenetic reprogramming are controlled by
specific transcription factors (TFs). Thus, the activities of TFs mediate important
mechanisms through which epigenetic enzymes and co-factors modify chromatin for
the worst outcome in a site-specific manner. Furthermore, the role of epigenetic
aberrations involving histone modifications is established in ovarian cancer
pathogenesis. This review aims to provide insights on the role of key epigenetic
determinants of response as well as resistance to the hormone therapy, the current
status of research along with its limitations, and future prospects of epigenetic agents as
biomarkers in early diagnosis, prognosis, and personalized treatment strategies. Finally,
the possibility of small phytoestrogenic molecules in combination with immunotherapy and
epi-drugs targeting ovarian cancer has been discussed.

Keywords: ovarian cancer, antiestrogens, chemohormonal, estrogen receptor, epi-drugs, hormone therapy,
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INTRODUCTION

Preclinical and clinical data suggest an important role of estrogen
in the institution and progression of certain ovarian cancers
(Langdon et al., 1994; Simpkins et al., 2013). Changes in the
size, shape, and histology of ovaries can occur during the
menstrual cycle, pregnancy, menopause, and post-menopause.
The development of ovarian cancers is linked to ups and downs in
hormonal levels during different stages of life. It is also influenced
by changes taking place during pregnancy and ovulation with the
chances of disease coincidently rising with rising estrogen levels
in circulation (Rodriguez et al.,, 2001; Riman et al., 2002). The
Million Women Study and Women’s Health Initiative have also
linked the rise in risk with Hormone Replacement Therapy
(HRT) (Glud et al., 2004; Beral, 2007). Several other studies
have also associated an increased risk of ovarian cancer with
HRT. Several reports indicate that incessant ovulation in case of
null or low parity has been linked with increased risk while
suppression  of (pregnancy, lactation, oral
contraceptives) is associated with decreased risk (Falhalla,
1971). According to the histopathological variations, ovarian
cancer can be divided into subtypes including epithelial, germ
cell, and sex cord-stromal tumors. Among these, up to 90% of
malignant ovarian tumors are epithelial, which further can be
divided into five subtypes, endometrioid (10%), mucinous (3%),
clear cell (10%), low-grade serous (<5%), and high-grade serous
(70%) (Peres et al., 2018). Low-grade serous ovarian cancer is
associated with the higher expression of estrogen receptors
(Hunter et al, 2015). However, there are some other
inconsistent reports reporting the expression status of ERa to
be expressed in 80% of high-grade serous ovarian cancer (Halon
et al., 2011; Matsuo et al., 2014). The application of endocrine
therapy in the case of breast and endometrial cancers has made it
an emerging research direction for a targeted cure of ovarian
cancer (Onwude 2015). According to the guidelines of NCCN OC
and that of the European Society of Gynecological Oncology,
endocrine therapy may be used to treat patients with platinum-
resistant and recurrent ovarian cancer (Daly et al., 2020; Colombo
etal, 2021). It is now well established that epigenetic factors are as
important as are genetic factors in regulating the cancer biology,
driving the primary tumor growth and invasion, and modulating
the immune response within the tumor microenvironment
(Roulois et al., 2015; Deblois et al, 2020). Thanks to high-
throughput CRISPR-Cas9 dropout screening, which has
enabled researchers through functional genomic screenings to
find out the specific driver or fitness genes that are differentially
expressed in tumor tissues including ovarian ones and are
essentially perturbed in cancer cells under a specific
environment (Faber et al, 2013; Yu and Yusa, 2019).
Alexandrova et al. (2020) performed Gene Ontology analysis
and elucidated functional pathways linked to the fitness genes in
the ovarian cancer context and obtained a distribution map of the
fitness genes which were key hallmarks of cancer, including
estrogen-mediated S-phase entry (cell cycle regulation) and
estrogen receptor signaling (for detailed study, please see the
article). They identified that 35 ERa associated fitness genes are
linked to many pathways including cell cycle regulation and cell
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proliferation (MTOR, CCND1 CDK2 CCNA2 CDK, PCNA,
PPPI1R12A PIK3C3 EIF4E HDACS3, and PPPICB), immune
response activation (EIF2B3, EIF2B4, EIF2B2, and EIF2B5),
and RNA polymerase II-dependent transcription (Moldovan
et al., 2007). The same group further explored three Ovarian
Serous Cystadenocarcinoma cohorts comprising 1,680 ovarian
cancer tissues from 1,668 patients and found that estrogen
receptor pathway associated fitness genes in ovarian cancer
cells were altered, mostly amplified, in 74% of patient tissues.
Targeting the dysregulated epigenetic avenues is less challenging,
and it is easier to target by small molecule drugs than fixing
genetic mutations. It has also been established that epigenome
modulations sensitize solid tumors toward immunotherapy.
Cancer cells evade the immune system by epigenetically
silencing the expression of cell surface molecules that render
them vulnerable to immune targeting. De-repression of tumor-
associated antigens with epi-drugs may render cancer cells and
tumors susceptible to elimination by the immune system (Garcia-
Martinez et al., 2021). The overall outcome of these developments
is the increased interest in epigenetics-based diagnostic and
prognostic tools. Notable are the DNA methylation diagnostic
screens either in the development phase or in clinical trials
(Berdasco and Esteller, 2019). Epigenetic alterations not only
contribute to tumor progression but also to the acquisition of
chemo-resistance (Zeller et al., 2012; Lue et al, 2015). The
development of epi-drugs is an important development in
precision medicine. Currently, many epi-drugs are under
clinical trials including inhibitors of methyltransferases and
histone deacetylases while nine such agents have been
approved by FDA. Among these trials, breast cancer phase II
trials (NCT04190056, NCT00828854, and NCT00676663) are of
interest which is testing the efficiency of epi-drugs in combination
with traditional therapies (Garcia-Martinez et al, 2021). The
most promising chromatin-modifying agents belong to histone
de-acetyltransferases inhibitors (HDACs). The epi-drugs of this
class are in different phases of clinical trials for the treatment of
ovarian cancer (Yang et al., 2018). Only three among those devise
personalized treatment strategies and provide better care to
patients with ER + ovarian cancer.

Estrogen Receptors and Downstream
Signaling Pathways

Estrogen receptors (ERa and ERp) are steroidal hormone
receptors (nuclear) that belong to the nuclear receptor
superfamily of transcription factors, along with others
including androgen receptors, thyroid receptors, progesterone
receptors, vitamin D receptors, retinoic acid receptors, and
mineralo-corticoid receptor (Pearce and Jordan., 2004). Both
are involved in the transcription of target genes on binding to
endogenous and exogenous ligands, thus mediating reproductive
organ development and function, as well as pathological
processes (breast, ovarian and endometrial cancer). Alongside,
many other interlinked pathways and proteins are also affected in
a very complicated way. However, other receptors (previously
categorized as orphan receptors) located in the plasma membrane
and endoplasmic reticulum known as G protein-coupled estrogen
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receptors (GPER) are the focus of recent research. Rapid cellular
responses initially referred to as “nongenomic” lately have been
found to be induced through G protein-coupled estrogen
receptor (GPER). The role of GPER in exerting nongenomic
estrogen effects is a topic of high interest. GPER is reported to be
highly expressed in cancerous breast tissue as compared to
normal tissue. In estrogen-responsive breast tumors, GPER
expression has been found to be associated with poor
prognosis and low survival rate (Filardo et al., 2008; Martin
et al., 2018). In response to E2, the GPER signaling pathway acts

through the generation of certain messengers (Ca2, NO, and
cAMP) and activation of receptor tyrosine kinases MAPKs,
EGFR, PI3K/Akt, and SRC. It is well known that GPER
activates EGFR which increases the expression of matrix
metalloproteinase ~ (MMP)  expression and  activates
downstream Src-related tyrosine kinase family (Filardo et al,
2008). These events activate the MAPK/PI3K pathways. In ER +
breast cancer cells (MCF-7), GPER and downstream PI3K/
MAPK/STAT pathways were shown to be mediating apoptosis
as well as resistance in response to tamoxifen (Rouhimoghadam
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FIGURE 1 | (Continued). 3D and 2D interactions of ERa with (A) E2 and (B) Tamoxifen; Interactions of ER with (C) E2 and (D) Tamoxifen.

etal., 2018). Activation of EGFR also triggers the downstream Src
kinase family to phosphorylate Raf, which in turn stimulates
extracellular signal-regulated kinases (ERK1/2) phosphorylation,
and activation of a number of transcription factors including,
c-Myc, c-fos, and c-jun (McCubrey et al., 2007). Low-grade
serous ovarian cancer seems to be mediated through activation
of the MAPK pathway via RAS/RAF and is associated with high
levels of estrogen receptor and progesterone receptor expression
(Hunter et al., 2015). However, in another report, the ovarian

cancer cells SKOV3 (ER responsive) were reported to undergo
apoptosis through cell cycle arrest, which was mediated through
GPER (Ignatov et al., 2013). While the association of GPER with
many other neighboring pathways is now well supported by
literature evidence (some of which mentioned above), the
inconsistent observations regarding the final outcome seem to
be influenced by the specificity of ligands and cell or tissue type
which decides whether GPER may result in the suppression or
progression of cancerous cells.
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Interactions of Estrogens and

Antiestrogens With Estrogen Receptors
The interaction of a particular ligand depends on the tissue or
organ (or distinct cellular subtypes within a tissue or organ) due
to different relative abundances of specific receptors in that tissue
or organ. Several studies have reported the presence of both ERs
in the breast, brain, bone, urogenital tract, ovaries, and
cardiovascular system (Kuiper et al, 1997). ERa is dominant
in the uterus and ovary in cancerous while ERp is predominant in
normal ovaries. Different effects arising from the activation of
ERa or ERP by different ligands seem to arise due to the
recruitment of different co-activators. Most of the studies on
ligand-receptor interactions have been carried out using ERa as a
model. The size of the ligand-binding site of ER (450A) is much
larger than the size of its natural ligand estradiol (250A). The
binding of estradiol involves a hydrogen bond between hydroxyl
groups of A ring to Glu523 (Figure 1A). The bulk of ligand (E2)
involving Rings A and C undergoes hydrophobic interactions
with Met522 and Lys520. This arrangement exposes AF-2 to be
available to co-activators, a requirement for the transcription
process to be initiated. ERa complexed with antagonists 4-OH
tamoxifen has shown hydrogen bonding between hydroxyl
groups at A ring with Glu423 (Figure 1B). Overall, these
changes result in adjusting the position of AF-2 in such a way
that co-repressor is recruited instead of a co-activator. 3D
structure of other isoforms, ERP, has shown that its ligand-
binding domain is very similar to that of ERa but still the
differential expression of two isoforms in different organs is
evident. Preferences for ligands are also obvious, especially
towards phytoestrogens. The size of the binding domain of
ERP is smaller than that of ERa due to the replacement of
smaller Glu523 with larger and bulky Leu298 in ERP (Figures
1A,C). Almost all-important known phytoestrogens including
genistein, coumestrol, and apigenin are found to have a greater
affinity for ERB. The main obvious reason for this preference is
the above substitution of amino acids. The hydroxyl groups of
genistein appear to contribute to this preference because the loss
of one (daidzein) or both hydroxyl groups (formononetin) results
in a reduced preference for ERP. However, the antagonist 4-
hydroxy tamoxifen does not show any favorable interaction with
ERB (Figure 1D). This differential cellular response to the
compounds of different origins depends upon the pattern of
ERa/ERP expression and their specific preferences for ligands
(Kuiper et al., 1998; Pike et al., 1999).

Interactions of Epigenetic Landscape With
Estrogen Signaling

The prospects of epigenetic control are being rapidly explored
because of the possibility of reversing the malignant events,
contrary to the irreversible genetic events. The epigenetic
landscape is strongly influenced by histone modifications
mainly through DNA methylation and histone acetylation.
Among eight histone modifications (phosphorylation,
ubiquitination, glycosylation, ribosylation, carbonylation,
sumoylation, ADP-ribosylation, methylation, and acetylation),

Insights Into the Role of Epigenetic Factors

disturbed acetylation and methylation manifest themselves as the
genesis of cancer including ovarian tumors (Huang et al., 2016).
Histone acetyltransferases (HATS), histone de-acetyltransferases
(HDAC:), histone methyltransferases (HMTs), and histone
demethylases (HDMTs) control the acetylation and
methylation of histone proteins of chromatin nucleosome. The
steady-state of chromatin is maintained as long as the balance
between histone methyl transferases-demethylases and
acetyltransferases-deacetylases is maintained, in a normal cell.
One manifestation of the disturbed balance towards hyper-
methylation and increased histone deacetylation is cancer
including ovarian malignancies (Yang et al., 2018). The
epigenome is a fundamental determinant controlling the
outcome of endocrine therapy (estrogen-based) in breast
cancer. The development of epigenetic targeting therapeutics is
based on understanding the complex molecular language of
chromatin signaling and its interactions with estrogen
signaling. Activation functions (AF) are important in this
context. They act as guides in the recruitment of co-activators
(promoters or repressors) which on deployment to AF result in
the initiation or inhibition of transcription. This has been
explained in Figure 2 with reference to the breast cancer in
response to clinically used selective estrogen receptor modulator
(SERM) tamoxifen, the first recognized endocrine therapeutic
agent. These events are cell specific. Accordingly, cells sense these
ER-ligand interactions and coordinate the regulation of gene
transcription. AF1 is a common phosphorylation target of
mitogenic kinases to alter ERa transcriptional activity. ERa
dimerization occurs on the LBD interface, which also binds
E2, resulting in a conformational shift. AF2, the major
transcriptional activation domain, mediates co-regulator
interactions based on this confirmation. The binding of
agonists with estrogen receptors results in their dimerization
and subsequent interaction with estrogen response elements
ERE (DNA sequence specific for ERa) in the promoters of
target genes. As explained in Figure 2, some co-activators are
also activated (recruited) in response to this ER-ERE complex
formation. The role of SRC-1, SRC-2, and SRC-3 (steroid
receptor co-activators types) are among the co-activators that
directly interact with DNA besides indirectly recruiting some
other integrators including p300/CREB-binding protein (CBP/
CREBBP). P300/CBP is one of the two histone acetyltransferases
(HATS), a key controlling factor of epigenetic events. In ER +
cancers, FOXA1, GATA3, PBXI, and AP-2y bind specific DNA
target sequences in condensed chromatin and facilitate ERa
chromatin binding in response to E2 stimulation through
deploying activating epigenetic marks such as H4R3mel and
H3K27Ac (resulting in hyper-methylation and acetylation).
Activated ERa can also recruit a cohort of co-activators or co-
repressors to mediate gene transcription or repression blocking
the gene transcription (co-activators amplify transcription
through attachments of ERs onto variable sites but have
specific sites for interaction with the receptor) (Garcia-
Martinez et al., 2021). One such co-activator of established
repute in the case of breast cancer is histone methyltransferase
DOT1L, which has been suggested to be of prognostic value in
ovarian cancer also. It is a promoter of cell cycle progression and

Frontiers in Genetics | www.frontiersin.org

July 2022 | Volume 13 | Article 812077


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Sarwar et al.

Insights Into the Role of Epigenetic Factors

Epigenetic activator

) o)

Cytoplasm

O

. ol

Co-activator

SRC1,23

& ﬁ/

Nucleus

- Epigenetic

activation -
&RCI.?B

{/
[__ERE

Co-fepressor

Hypermethylated state

FIGURE 2 | Schematic depiction of estrogen signaling and its interactions with epigenetic events in response to estradiol (ligand) and tamoxifen (antagonist).

Co-repressors

NCoR1/2
REA

/

Epigenetic
silencing

Repression

drug resistance by acting as a transcriptional co-regulator (Zhang
et al., 2017) and as a co-factor acting on multi-drug resistance
genes (Liu et al., 2018). However, recent evidence suggests that
inhibition of estrogen signaling by targeting this upstream ERa
co-factor and regulator may be an effective therapeutic approach
towards ERa positive ovarian cancers. ERa and DOTIL co-
expression is an indicator of poor survival in ovarian cancer
patients. Interfering with his duet with ERo/DOT1L inhibition
with selective antagonists has been shown to result in the
reduction of OC cell proliferation, a G1 phase arrest, mediated
by significant changes in the cell transcriptome. It might be the
outcome of selective inhibition of either protein interfering with
ERa and DOTIL co-recruitment and H3K79 methylation (Salvati
et al., 2019).

Another important factor in this context is histone acetylation
and deacetylation associated with gene transcription and
repression respectively. Both co-activators and co-repressors
also have acetyltransferase activity contributing to both histone
acetylation and histone deacetylation. The former is associated
with transcription while the latter is associated with repression. A
co-repressor of estrogen receptor activity (REA) was also isolated
in 1999 which later on was shown to selectively enhance the
effectiveness of antiestrogens towards estrogen receptors as
compared to un-liganded ER (Montano et al., 1999). REA
contributes more towards selective action by competing with
SRC-1 towards the trans-activating transcriptional activity of ER.
Hence the elevated level of REA in the cells is a factor favoring the
antiestrogenic action (Katzenellenbogan et al, 2000). Besides
ligands, co-activators also have specific preferences as applied
to the activation role. An example of such a co-activator is p68
RNA helicase which is more specific towards AF1 on ERa and
favors tamoxifen-ERa induced transcription (Endoh et al., 1999).
However, through interactions with co-repressors such as LCOR

and NCoR1/2, liganded ERa and tamoxifen-bound ERa also
recruit epigenetic repressors including histone deacetylases
(HDAC:s) and the NuRD complex to mediate gene repression
by removing active epigenetic marks (Figure 2).

Now it is recognized that global chromatin organization,
specific spatial arrangement of chromosomes in the nucleus, is
critical in genome stability and gene regulation. The transcription
of genes can be affected or modulated through the repositioning
of the chromatin. It was revealed in vitro in MCF-7 cells using
high-throughput chromosome conformation capture (Hi-C)
study that hormones and estrogens can modulate or influence
chromatin organization by changing the activating and repressive
chromosomal marks. In response to ERa binding, gene
expression was modulated through  higher  spatial
compartmentalization of active and repressed marks which
interacted differentially in response to E2 induction (Mourad
et al, 2014). More enriched loci were related to cancer
progression. ERa was revealed as a chromatin interaction
organizer. However, such studies are needed in ovarian cancer
cells or tissues to better relate this phenomenon in this context.

Current Status of Endocrine Therapy as

Combination Therapy

Increased interest in hormone manipulations in gynecological
cancers resulted in significant new information. It is well
recognized that at physiological concentrations, estrogens can
also regulate some important signaling pathways including
cAMP, PKC, and MAPK. Once activated, MAPK can be a key
player in ER-mediated signaling. Induced activation may involve
ERK]1, 2, 3, 5, MEKs, and tyrosine kinases in ras/raf dependent or
independent mode. In the absence of estrogenic stimulus, several
mitogenic growth factors can induce estrogenic effects in ER-
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TABLE 1 | Response to the use of antiestrogens and aromatase inhibitors in recurrent ovarian cancer patients administered alone and in combination in the literature.

Agent Dose Number of
patients
Tamoxifen 20 mg BID 29
Tamoxifen 20 mg/day 1
Tamoxifen 20 mg 29
Tamoxifen 20 mg 105
Tamoxifen 20 mg 102
Tamoxifen 20 mg 13
Tamoxifen Initially 40 mg/day for a week followed by 31
20 mg/day
Fulvestrant (pure 1000 mg on day 1 followed by 500 mg 26
antagonist) intermittently on 14th, 28th and every
28 days hereafter
Letrozole 2.5 mg/day 33
Letrozole 2.5 mg/day 13
Letrozole 2.5 mg/day 27
Letrozole 2.5 mg/day 42
Letrozole 2.5 mg/day 54
Anastrazole 1 mg/day 53
Exemestane 25 mg/day 22
Tamoxifen + goserelin ~ Tamoxifen 20 mg twice/day; Goserelin 26
(Hormonal agent) 3.6 mg/month
Tamoxifen + cisplatin -~ 80 mg/day for 30 days followed by 50
40 mg/day

positive cells; especially growth factor receptor tyrosine kinases
can activate MAPKs. MAPK phosphorylates ER at ser followed by
the transcription, thus inducing a ligand-independent activation
of ER. Such ligand-independent activation of ER produces a weak
estrogenic effect because it does not involve all estrogen-regulated
genes (Suga et al., 2007). There have been several reports from
in vitro studies showing that antiestrogens can block such ligand-
independent activity. Inhibitory effects of antiestrogens may
result from their interactions with the MAPK pathway. Several
other reports have shown that antiestrogens or aromatase
inhibitors cause estrogen deprivation resulting in cell cycle
arrest at the Gl phase by inducing p53, p21, and p27
inhibitors of cyclin-dependent kinases in the breast as well as
ovarian cancers (Cariou et al., 2000). This results from indirect
inhibition of cell proliferation by interfering with MAPK/ERK.
However, this kind of activation through MAPK, independent of
ER signaling, may contribute to antiestrogen resistance. These
observations strengthen the hypothesis that blocking such
interlinked pathways may be effective in achieving desired
therapeutic outcomes. In one study, the combination of
antiestrogen fulvestrant (AI) with MEK inhibitor decreased
ovarian cancer cells growth through enhanced p53 and p21
thus providing support to the said hypothesis (Slomovitz et al.,
2020). In a recent preclinical investigation reversal of fulvestrant

ER Recurrent/ Complete Partial Stable
status resistant response response disease
to
chemotherapy

ND Yes 3% 7% 21%

ER+ Yes - - Yes

ND Yes 0% 10% 41%

62/ Yes 10% 8% 38%

105 ER+

ND Yes 10% 7%

ER+/ER- Yes 0% 8% 31%

4/ Yes 3% 6% 19%

11 ER+/

ER

ER+ Yes 4% 4% 35%

33/ Yes 0% 3% 21%

33 ER+

13/ Yes 15% 15% 39%

13 ER+

20/ Yes 14% 1% 18%

27 ER+

42/ Yes Overall

42 ER+ response
>50%

ER+/ER- Yes 0% 9% 26%

ND Yes 44% clinical
benefit

ER+16/22 Yes 0% 0% 36%

ER+ Yes 3.8% 7.7% 38.5%

ER+/ER- Yes

resistance with Src inhibition in ER + ovarian cancer cell line and
xenograft tumor model was observed (Simpkins et al.,, 2013).
These and many other studies explain the presence of many rapid
responses which are unlikely to arise from the transcription route.
Such cell-specific regulations can be seen to result from the
interplay of several epigenetic factors including co-regulator/
co-repressor recruitment, ligands, cellular environment, the
status of phosphorylation of ER and estrogen pathway, and
homo or hetero-dimerization of receptors. This interplay is
being manipulated in three phases II clinical trials
(NCT04190056, NCT00828854, and NCT00676663) through
the combination of endocrine therapy/chemotherapy with epi-
drugs in hormone-responsive breast (Garcia-Martinez et al,
2021).

Future Prospects of Endocrine Therapy in

Ovarian Cancer

Looking back to the 1970s, when hormone/endocrine therapy
was not considered to be a realistic option, there has been a
significant advancement in understanding the basic underlying
mechanisms. Consequently, adjuvant endocrine therapy using
antiestrogens has resulted in increased survival of thousands of
breast cancer patients (Jordan et al., 2011). However, the situation
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is somewhat different in ovarian cancer. In spite of the fact that
most ovarian tumors are endocrine responsive and hormone-
dependent (as it is the case for normal ovaries), endocrine therapy
has less encouraging response. A careful analysis of reported
results (as shown in Table 1) employing hormone therapy, alone
as well as in combination, indicates multiple deficiencies in the
conducted studies including lack of systematic trials, lack of
verification of ER expression, inconsistencies in the correlation
of response with ER status, resistance to antiestrogens, inadequate
treatment design and lack of placebo versus hormone/chemo-
hormonal therapy. It is only recently that a better understanding
of the proper patient selection and sensitivity of specific tumor
subtypes to endocrine therapy has given some insight as to what is
needed to be done to better exploit its potential. Inappropriate
patient selection for any treatment regime can worsen the efficacy
while the same therapy if applied to proper targets may markedly
improve the response. Almost more than 90% of the available
reports on clinical studies employing hormone therapy are based
on tamoxifen (SERM) and letrozole (AI). In a review of the results
of hormone therapy in ovarian cancer reported up to that date,
Simpkins et al., 2013 discussed nineteen trials of tamoxifen
(SERM), as monotherapy, in recurrent ovarian cancer patients
over the last three decades. Out of the total of 695 recurrent
patients, the overall response rate was 13%; complete response
was 4% and partial response was 9%; disease stabilization was
35% (mean response duration 2-24 months; mean survival
6-36 months) while the progressive disease was 36%. Estrogen
receptor status was considered only in 6 out of 19 reports (out of
those where ER status was stated 53% were ER+). On the basis of
this analysis, they recommended the use of estrogen antagonism
for patients who did not receive prior heavy treatment or who
have an asymptomatic recurrence, or who need a break from
regular chemotherapy because of poor tolerance. Evidence of the
use of third-generation aromatase inhibitor letrozole is a mix
(Tablel) (Bowman et al, 2002; Papadimititrou et al., 2004;
Kavanagh et al, 2007). Better clinical benefit in terms of
complete and partial response was obtained in response to
letrozole in two small to medium scale studies when estrogen
receptor status (positive) was a criterion of patient selection.
Langdon et al,, 2020 in a review on the use of third-generation
aromatase inhibitor letrozole strongly advocated the use of
letrozole in epithelial ovarian cancer patients with recurrent
disease. In another investigation, they found a direct
association between CAI125 response and ERa expression
indicated by an increase in response rate with the increase in
expression of ERa.The work provided support to the use of
letrozole as adjuvant therapy to prolong the progression-free
survival following surgery/chemotherapy when the residual
disease is minimal. In other studies investigating the role of
two other 3rd generation aromatase inhibitors, anastrozole,
and exemestane, disease stabilization was significant
(DelCarmen et al., 2003; Freedman et al, 2006). Careful
analysis of conducted clinical trials reveals that results are
more positive in well-planned and well-conducted studies and
a combination of hormonal agents with chemotherapy (cisplatin
in this case) showed a better response than monotherapy
(Tablel). In this regard, the selection of proper patients is a
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crucial factor. In a clinical trial including both platinum-sensitive
and platinum-resistant patients, 64% of the former group and
39% of the latter group responded positively to the combination
of cisplatin with tamoxifen while the overall response rate was
50% (30% complete; 20% partial), overall median survival was 23
and 19 months with mild to moderate toxicities (Panici et al.,
2001). A very important study highlights specific circumstances
where tamoxifen can be the treatment of choice. It has been
shown that tamoxifen is a highly favorable agent compared to
cytotoxic chemotherapy in recurrent ovarian cancer patients with
chronic kidney disease (Sirisabya et al., 2008). Whereas
traditional chemotherapy may aggravate the condition due to
additional toxicity, no major adverse reactions (hot flashes and
nausea) occurred when tamoxifen was used (20 mg/day) in a
group of 29 ovarian cancer patients (22 epithelial; 4 peritoneal
and 3 fallopian tube). Thirteen showed mild CKD, thirteen
moderate, and the remaining three severe CKD. The response
was complete (0-18%), partial (10%), disease stabilization
(5-83%), and disease progression (48%) respectively. Small
sample size, and inconsistencies in treatment and response
evaluations, however, were the limitations of this study. Thus,
large-scale studies are needed to Dbetter understand
pharmacokinetics.

Areas Needed to be Focussed for Better
Outcome

The need to develop proper biomarkers to identify patients
with tumors sensitive to endocrine therapy is obvious. For
proper patient selection, there is a need for early-stage
detection of expression profiles of sensitive tumors which
are different from insensitive ones. Proper assessment of the
association of the biomarkers with clinical outcomes is also
highly desirable. While some of the target genes induced by
ERa are found to be expressed in both breast and ovarian
cancers, some others are exclusive to ovarian cancer. In breast
cancer, PR, cathepsin D, C-FOS, and PS2 have been identified
to be significant predictors of response to antiestrogen therapy
(Munez et al., 1987; Jordan et al., 2001; Rochefort et al., 2003).
PR, cathepsin D, and C-FOS have also been detected in ER +
ovarian cancers while C-MYC, SDF-1, and TGFa have been
found to be exclusively expressed in ovarian tumors. Fibulin-
1C and cyclins (D1, A, and E) were shown to be related to
ovarian cancer cell invasion and cell cycle regulation
respectively (Chien et al, 1994; Clinton and Hua, 1997;
Rochefort et al., 2003; Albanito et al., 2007). In an analysis
of 1200 cancer-related genes in ER + ovarian cancer cell lines,
PEO1, TNFDFI1, FOSL1, TRAPI1, cathepsin D, and TFAP4
were found to be upregulated in response to insult with
estrogens (O'Donnell et al,, 2005; Chien et al., 1999; Hall
and Korach, 2003). The results of two studies published in
2007 confirmed the presence of some already known estrogen-
regulated proteins along with some new ones (Table 2)
responsive to letrozole (Walker et al., 2007a; Walker et al,,
2007b). Among them, insulin-like growth factor binding
protein4 (IGFBP4), trefoil factors (TFF1 and TFF3), TNF
receptor-associated proteinl, topoisomerase II alpha
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TABLE 2 | Biomarkers associated with estrogen/antiestrogen response.

Biomarker Expression status in
responseto letrozole
ER Upregulated
PGR Upregulated
IGFBP4 Upregulated
TFF1 Upregulated
TFF3 Upregulated
TRAP1 Upregulated
TOP2A Upregulated
Vimentin Downregulated
PLAU Downregulated
IGFBP5 Downregulated

(TOP2A), and ubiquitin-conjugating enzyme E2C (UBE2C)
were found to be upregulated while insulin-like growth factor
binding proteins 3 and 5 (IGFBP3, IGFBP5), vimentin,
plasminogen activator, urokinase (PLAU) and Beta IG-H3
(BIGH3) were downregulated in response to letrozole
(Bowman et al., 2002; Walker et al, 2007b). Another
complication is the fact that invasive epithelial ovarian
cancer is not a single homogenous disease but is comprised
of five distinct subtypes. The five types are not only distinct
phenotypically, etiologically, and molecularly but also in the
relation between biomarker expression and survival. The
occurrence of inconsistencies in histology as well as
pathology across these subtypes (except in HGSc) has been
the main obstacle to proper biomarker identification. An
inspiring report based on a large study on 2933 women was
published (Sieh et al., 2013). Progesterone receptor (PR) and
ER expression were projected, on the basis of this study, as
potential prognostic biomarkers for endometroid and high-
grade serous ovarian cancers. It was found that expression of
both ER and PR was associated with significant improvement
in disease-specific survival as compared to those showing no
hormone expression. To use the aforesaid biomarkers as
criteria in patient selection for personalized treatment,
better clinical studies are needed as are further studies
exploring hormone pathways and their association with
other pathways.

Resistance to antiestrogen therapy in ovarian cancer cell lines
is a practical concern and an obstacle. A considerably large
proportion of estrogen-responsive ovarian cancers initially
responding to even single hormonal agents (antiestrogens)
become resistant after only a few months. The resistance is
innate in ovarian cancers. Investigation for markers predicting
resistance to antiestrogens is equally important. Histone
modifications pattern insensitive and resistant ER + ovarian
cancers need to be explored to be developed into new
therapeutic targets in the case of endocrine-resistant patients.
Many in vitro combination studies have been carried out using
phytoestrogens  (resveratrol,  genistein,  thymoquinone,
wedelolactone) in combination with platinum drugs in an
effort to find combinations that could overcome/reverse
resistance in ovarian cancer cell lines (Sarwar et al., 2021).
Among several combinations of phytochemicals with cisplatin
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Response to fulvestrant
clinical response

Progression-free survival

Significant

Non-significant
Non-significant
Non-significant
Non-significant
Non-significant
Non-significant
Significant

Non-significant
Non-significant

Non-significant
Non-significant
Non-significant
Significant

Non-significant
Non-significant
Non-significant
Significant

Non-significant
Non-significant

and other platinum drugs, some of the combinations have been
found to be synergistic. These synergistic combinations can have
additional benefits of reduced systemic toxicity and overcoming
resistance (Nessa et al, 2011; Nessa et al., 2012). Another
important aspect of antiestrogens in the apoptotic function
observed even in ER-negative ovarian cancer cell lines as
observed in response to tamoxifen and ICI182, 780 (Ercoli
et al,, 2000; Mabuchi et al., 2004). Tamoxifen was found to
bind competitively to type II estrogen binding sites (EBS) in
ovarian tumors. While both cisplatin and tamoxifen showed an
anti-proliferative effect, their combination was found to be
synergistic with 50-fold increase in potential (Scambia et al,
1992). In another study (McClay et al., 1994) a decrease in the rate
and magnitude of delay to resistance in ovarian cancer cell lines
by a factor of 2.4 (p < 0.01) was found to result from concurrent
exposure of cancer cells to tamoxifen and cisplatin; delay in the
development of resistance to cisplatin due to the combined
treatment may have important clinical implications. Similar
observations were made in oral squamous cell carcinoma
(OSCC) cell lines where treatments using a combination of
cisplatin and tamoxifen increased cytotoxic and apoptotic
effects (Kim et al., 2005). Few reports were published in the
last decade, one of them conducted by the Gynecologic Oncology
Group (GOG) using an epidrug belinostat—in combination with
carboplatin in resistant ovarian cancer patients which had to be
closed due to lack of drug activity (Dizon et al., 2012). However,
in the phase II expansion study, they used belinostat in
combination with a platinum-based regime comprising
carboplatin and paclitaxel offered clinical benefits to epithelial
ovarian cancer patients (Dizon et al., 2012). Belinostat is an
inhibitor of histone deacetylation (HDACis). There are few
other HDACis in Phase I and II or preclinical studies
including Trichostatin, valporic acid, romedepsin mocetinostat,
and panobinostat. Presently combination of chemotherapy and
hormone therapy makes up 5% of total combinations in trials in
the case of ovarian cancer. The promising results of the
combination of epi-drugs such as HDACs in combination
with tamoxifen and CDK4/6 inhibitors (ribociclib) and
aromatase inhibitors (exemestan) to restore sensitivity to
endocrine sensitivity in estrogen-responsive breast cancer is an
encouragement to the researchers and clinicians for such
combination regime in estrogen-responsive ovarian cancers.
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CONCLUSION

In ovarian cancer, the progress in treatment has been quite
slow and there is a need to explore all potential avenues
towards a better outcome. Antiestrogens have prospects in
recurrent and platinum-resistant ovarian cancer as they have
shown Dbetter response in disease stabilization and
occasionally, complete cure. If identified earlier, this
approach can be the primary treatment option for specific
patients (with tumors sensitive to estrogen blockade or
deprivation) with much better chances of recovery if treated
early rather than the last option. However, proper patient
selection is the key to success. The epigenome is being
recognized as a detrimental factor in hormone therapy
response; epigenetic factors may also be promising targets
for the improved outcome of endocrine therapy in estrogen-
responsive ovarian cancer. However, there is much to do in
this regard. There is a need to explore and highlight epigenetic
mechanisms underlying the pathogenesis of ER + ovarian
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cancer. This may provide new opportunities for targeting
estrogen-induced ovarian cancer with better armament.
Regarding diagnosis and prognosis, currently, there are no
reliable predictive markers of the disease. Those in clinical use
or the preclinical stage suffers from limitations including a lack
of sensitivity and selectivity in estrogen-responsive and non-
responsive diseases. In this perspective, histone modification
status in both ER + and other ovarian cancer can be explored as
a biomarker for early diagnosis as well as prognosis. However,
much more yet need to be done to explore this approach before
it may find a way into clinical care.
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