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Abstract

Introduction

Analytic approaches to clinical validation of results from preclinical models are important in

assessment of their relevance to human disease. This systematic review examined consis-

tency in reporting of glioblastoma cohorts from The Cancer Genome Atlas (TCGA) or Chi-

nese Glioma Genome Atlas (CGGA) and assessed whether studies included patient

characteristics in their survival analyses.

Methods

We searched Embase and Medline on 02Feb21 for studies using preclinical models of glio-

blastoma published after Jan2008 that used data from TCGA or CGGA to validate the asso-

ciation between at least one molecular marker and overall survival in adult patients with

glioblastoma. Main data items included cohort characteristics, statistical significance of the

survival analysis, and model covariates.

Results

There were 58 eligible studies from 1,751 non-duplicate records investigating 126 individual

molecular markers. In 14 studies published between 2017 and 2020 using TCGA RNA

microarray data that should have the same cohort, the median number of patients was

464.5 (interquartile range 220.5–525). Of the 15 molecular markers that underwent more

than one univariable or multivariable survival analyses, five had discrepancies between

studies. Covariates used in the 17 studies that used multivariable survival analyses were

age (76.5%), pre-operative functional status (35.3%), sex (29.4%) MGMT promoter methyl-

ation (29.4%), radiotherapy (23.5%), chemotherapy (17.6%), IDH mutation (17.6%) and

extent of resection (5.9%).
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Conclusion

Preclinical glioblastoma studies that used TCGA for validation did not provide sufficient

information about their cohort selection and there were inconsistent results. Transparency

in reporting and the use of analytic approaches that adjust for clinical variables can improve

the reproducibility between studies.

Introduction

Glioblastoma, the most common primary brain cancer, is a fatal disease with patients’ median

survival of 6–8 months [1,2]. Novel therapies from translational research are desperately

needed because current therapeutic options have only a modest and temporary impact on sur-

vival [3,4]. Discovery science has advanced our understanding of cancer cell biology and is a

step towards developing novel therapies [5]. These discoveries are usually based on preclinical

models, from which the relevance to human disease must be established. Demonstrating rele-

vance requires quality clinical and biological data. The Cancer Genome Atlas (TCGA) [6] and

the Chinese Glioma Genome Atlas (CGGA) [7] are two open-access resources from which lab-

oratory scientists can interrogate human data to verify their findings in preclinical glioblas-

toma research. These resources are valuable for the molecular characterisation of glioblastoma

and can also be used to examine the associations between molecular markers of interest and

survival. An association with survival might implicate a molecular marker as a potential drug

target.

Survival analyses using only genomic data are unlikely to have adequate clinical relevance

because clinical factors also affect survival. An imbalance of clinical characteristics between

comparison groups can confound the association between the molecular marker and survival.

Univariable survival analyses that take on only one molecular marker do not account for other

markers or clinical characteristics [8]. The resulting associations from such analyses are sub-

jected to confounding effects, which may render them unreliable. Confounding is a fundamen-

tal issue that affects observational health-related research, and it should be controlled for when

possible [9]. Multivariable analyses are methods to control for confounders and are, therefore,

preferable. Open access policies for data and code sharing should facilitate the re-use of data

and reproducibility of results [10]. Transparent and detailed reporting of the analytic approach

is crucial for replicability and comparison of analyses. These methodological aspects can

ensure the science that progresses to clinical trials is well-founded.

Clinical validation of results from preclinical glioblastoma studies using TCGA or CGGA

data represents a common experimental step to substantiate research findings. This systematic

review examined these studies for their consistency in reporting of cohorts from TCGA and

CGGA and whether they included patient characteristics in their survival analyses.

Methods

Eligibility criteria

This review included studies that used data from TCGA or CGGA to examine the association

between at least one molecular marker and overall survival in adult patients aged�18 years

diagnosed with non-recurrent histopathologically confirmed glioblastoma. Studies using any

molecular data type from TCGA or CGGA were eligible. Studies using both TCGA and

CGGA were eligible if they had separately reported results for TCGA and CGGA. We only
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included studies that used cell or animal models to first identify molecular markers associated

with tumour biology, then examined the association between these markers and overall sur-

vival in humans using TCGA or CGGA data. We excluded case reports, reviews, editorials and

conference abstracts (S1 File).

Study selection

We searched Embase and Medline on 02 February 2021 for potentially eligible studies pub-

lished after January 2008 using search terms relating to “glioma”, “survival”, “TCGA” and

“CGGA” (S2 File). The lower limit of the search period was set because data from TCGA first

became available in 2008. After removing duplicate studies, two independent reviewers (B.F.

and G.L.) performed screening using titles and abstracts followed by full-text eligibility assess-

ment. Any disagreements at each stage were resolved through discussion with a third reviewer

(M.T.C.P.).

Data extraction and data items

Two reviewers (B.F. and G.L.) independently collected data from each study using the online

systematic review management software Covidence (Veritas Health Innovation, Melbourne,

Australia. Available at www.covidence.org). Disagreements were resolved by discussion

between the two reviewers or by involving a third reviewer (M.T.C.P.). Data items included

study characteristics, TCGA cohort characteristics, CGGA cohort characteristics, genomic

data used, molecular markers, and details of survival analysis. Molecular markers included

expression, variants, or methylation of genes, RNAs and microRNAs. A set of molecular mark-

ers was defined by the analysis of>1 molecular markers together.

Each study can report results from multiple survival analyses using the overall cohort or

specific subgroups (S1 Fig). We collected information on all survival analyses performed in the

studies. We categorised survival analysis into univariable and multivariable analysis, and we

collected the covariates entered into the multivariable analysis. To describe the association

between molecular markers and survival, we considered the reported p value of<0.05 as statis-

tical significance. If a study reported results from both TCGA and CGGA cohorts, we extracted

the statistical significance of these results separately. Data on effect sizes and their correspond-

ing 95% confidence intervals (CI) were not collected because studies using log-rank (Mantel-

Cox) tests to compare survival between study-specific groups do not provide these data and

there was no plan for meta-analysis.

Quality assessment

There was no risk of bias assessment tool directly relevant to studies in this review. However,

we assessed components of the study design relating to risk of bias. These measures of quality

included types and size of cohorts used for survival analysis, types of genomic data used from

TCGA or CGGA, and the criteria used to select patients for survival analysis. We did not quan-

tify the quality of study based on risk of bias items because this review aimed to assess the

reporting and approach to analyses rather than to summarise effect sizes.

Summary statistics

We presented study characteristics, results and quality measures using descriptive statistics

with stratification by type of survival analysis, univariable and multivariable, where available.

The availability of data in TCGA increased over time and there are different numbers of

patients in whom various types of data are available. To assess the reproducibility of cohort
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selection from TCGA, we summarised the number of patients in studies published between

2017–2020 using TCGA RNA microarray. These studies should have the same number of

patients because they all used the same RNA microarray dataset from TCGA when there was

no further accrual of patients. There were occasions when two or more survival analyses within

or between studies investigated the association between a molecular marker and survival. We

presented findings on these molecular markers that underwent two or more analyses to dem-

onstrate the consistencies of results. There was no meta-analysis of any association between

molecular markers and overall survival.

Results

Study characteristics

This review included 58 eligible studies from 1,751 non-duplicate records retrieved from our

systematic search (Fig 1 and S1 References). Individual study characteristics are presented in

S1 Table. These studies investigated 126 individual molecular markers and 32 sets of molecular

markers. Most (62.1%) studies were published in 2017–2020 and were from research teams

based in the United States (34.5%), China (27.6%) and Europe (24.1%). The pre-clinical glio-

blastoma models used were cell lines and orthotopic mouse models in 51.7% and 48.3% stud-

ies, respectively. All studies used a form of data from TCGA with various combination with

other data sources and two studies used data from CGGA (Table 1). RNA microarray data was

the most common data type, used in 45 (77.6%) studies. Three (5.2%) studies did not specify

the data type used. Six studies (five using TCGA data and one using both TCGA and CGGA

data) did not provide the number of patients included.

When investigating the association between their markers of interest from pre-clinical

models and survival using genomic data, more studies used univariable survival analyses only

(70.7%) compared to those that used multivariable analyses (29.3%). All univariable analyses

used the non-parametric log-rank (Mantel-Cox) method and all multivariable analyses used

the Cox proportional hazards regression. There were 16 (27.6%) studies that described addi-

tional criteria for patient inclusion within the selected TCGA cohort.

Reproducibility and survival analysis. The date and requested data type of query in

TCGA can result in a different number of patients available for survival analysis. To assess

reproducibility of cohort selection from TCGA in the included studies, we summarised the

numbers of patients in studies with similar data specifications. In 14 studies published between

2017 and 2020 using TCGA RNA microarray data without additional patient inclusion crite-

ria, the median number of patients included was 464.5 (interquartile range [IQR] 220.5–525).

Of these studies, 12 studies did not perform a multivariable survival analysis, therefore all

should have the same number of patients included; the median number of patients included in

the univariable survival analysis was 467 (IQR 196.75–528.75).

Among the 126 distinct molecular markers investigated in the included studies, 15 markers

underwent more than one univariable or multivariable survival analysis (Table 2). The associa-

tion of these markers with outcomes were consistent between different analyses most of the

time. However, there were discrepancies between results for C-X-C Motif Chemokine Ligan

14 (CXCL14), epidermal growth factor receptor (EGFR), netrin 4 (NTN4),

SRY-Box transcription factor 2 (SOX2), serglycin (SRGN) and miRNA-17-5p microRNA

(Table 2). These discrepancies appear to relate to the type of survival analysis used (CXCL14,

SOX2, SRGN) or the data type (EGFR, NTN4).

There were 17 studies that investigated the association between their molecular markers of

interest and overall survival using a multivariable survival analysis. All these studies used

TCGA data, which have clinical data available. The most frequently included clinical variable
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in the multivariable model was age (76.5%) (Fig 2). Other variables included pre-operative

functional status (35.3%), sex (29.4%), MGMT promoter methylation (29.4%), radiotherapy

(23.5%), chemotherapy (17.6%), IDH mutation (17.6%) and extent of resection (5.9%).

Discussion

There were studies in glioblastoma research that used data from publicly available genomic

repositories to correlate pre-clinical experimental findings with clinical survival benefit in

Fig 1. PRISMA flowchart of study selection.

https://doi.org/10.1371/journal.pone.0264740.g001
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humans. These studies often had different numbers of patients included despite using the

same data source and data type. Survival analyses often did not include other critical clinical

variables associated with survival such as extent of resection [11], chemotherapy and radio-

therapy [3,12]. In studies that performed a multivariable survival analysis, most clinical vari-

ables such as extent of resection and oncological treatment were not included. This yielded

Table 1. Characteristics of 58 included studies that used TCGA or CGGA data to validate findings from experiments using pre-clinical models of glioblastoma.

Survival analysis type

Overall N = 58 Univariable N = 41 Multivariable N = 17

Year of publication

2009–2012 4 (6.9%) 2 (4.9%) 2 (11.8%)

2013–2016 18 (31.0%) 13 (31.7%) 5 (29.4%)

2017–2020 36 (62.1%) 26 (63.4%) 10 (58.8%)

Country / region

United States 20 (34.5%) 13 (31.7%) 7 (41.2%)

Europe (inc. UK) 14 (24.1%) 9 (22.0%) 5 (29.4%)

China 16 (27.6%) 13 (31.7%) 3 (17.6%)

Other countriesa 8 (13.8%) 6 (14.6%) 2 (11.8%)

Pre-clinical model

Cell lines 30 (51.7%) 24 (58.5%) 6 (35.3%)

Orthotopic mouse models 28 (48.3%) 17 (41.5%) 11 (64.7%)

Data source

TCGA only 34 (58.6%) 26 (63.4%) 8 (47.1%)

TCGA & CGGA 1 (1.7%) 0 (0.0%) 1 (5.9%)

TCGA and other public sources 9 (15.5%) 6 (14.6%) 3 (17.6%)

TCGA and own patients 13 (22.4%) 8 (19.5%) 5 (29.4%)

TCGA, CGGA and other public sources 1 (1.7%) 1 (2.4%) 0 (0.0%)

Experimental strategy

RNA microarray only 27 (46.6%) 24 (58.5%) 3 (17.6%)

RNA sequencing only 7 (12.1%) 4 (9.8%) 3 (17.6%)

miRNA microarray only 2 (3.4%) 1 (2.4%) 1 (5.9%)

RNA microarray and RNA sequencing 4 (6.9%) 3 (7.3%) 1 (5.9%)

RNA microarray and miRNA microarray 10 (17.2%) 6 (14.6%) 4 (23.5%)

RNA sequencing and miRNA microarray 1 (1.7%) 0 (0.0%) 1 (5.9%)

RNA microarray and DNA methylation 1 (1.7%) 0 (0.0%) 1 (5.9%)

RNA sequencing, RNA microarray and miRNA microarray 2 (3.4%) 0 (0.0%) 2 (11.8%)

RNA sequencing, RNA microarray and DNA methylation 1 (1.7%) 0 (0.0%) 1 (5.9%)

Unspecified 3 (5.2%) 3 (7.3%) 0 (0.0%)

Prognostic marker of interest

One marker only 21 (36.2%) 20 (48.8%) 1 (5.9%)

>1 individual markers 13 (22.4%) 10 (24.4%) 3 (17.6%)

Set(s) of markers only 7 (12.1%) 4 (9.8%) 3 (17.6%)

One marker and set(s) of markers 2 (3.4%) 2 (4.9%) 0 (0.0%)

>1 individual markers and set(s) of markers 10 (17.2%) 4 (9.8%) 6 (35.3%)

One marker and sets of markers with clinical variable(s) 4 (6.9%) 1 (2.4%) 3 (17.6%)

Sets of markers and markers with clinical variable(s) 1 (1.7%) 0 (0.0%) 1 (5.9%)

aOther countries included Brazil, Canada, India, Israel, Republic of Korea and Taiwan. UK = United Kingdom; TCGA = The Cancer Genome Atlas; CGGA = Chinese

Glioma Genome Atlas; miRNA = micro-RNA.

https://doi.org/10.1371/journal.pone.0264740.t001
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some inconsistent results between studies. Other results were subject to confounding effects by

clinical variables that were not accounted for.

Reproducibility

Research reproducibility encompasses several aspects: consistent results based on the same

data and analysis, consistent results based on the same data but different analyses, consistent

results from new data based on previous study design of another study, and consistent results

from another study with a similar study design [13,14]. Our review addressed the first two of

Table 2. Results of molecular markers that were reported in two or more separate survival analyses.

Molecular marker Consistency Author Data type Analysis type Direction of association

CXCL14 No Zeng 2018 RNA-Seq, RNA microarray and miRNA microarray U Neg

M -

EGFR No Kuang 2018 RNA microarray only U Pos

Li 2018 RNA-Seq only U -

HOTAIR Yes Xavier-Magalhaes 2018 RNA-Seq, RNA microarray and DNA methylation U Neg

M Neg

IDO1 Yes Zhai 2017 RNA microarray and RNA-Seq U Neg

M Neg

IL-8 Yes Hasan 2019 RNA microarray only U Neg

M Neg

MARCKS Yes Jarboe 2012 RNA microarray and DNA methylation U Pos

M Pos

miR-17-5p No Zeng 2018 RNA-Seq, RNA microarray and miRNA microarray U Pos

M -

miR-181d Yes Genovese 2012 RNA microarray and miRNA microarray U -

Ho 2017 RNA-Seq, RNA microarray and miRNA microarray U -

miR-34a Yes Genovese 2012 RNA microarray and miRNA microarray U Neg

M Neg

NTN4 No Hu 2012 RNA microarray only U Pos

Li 2018 RNA-Seq only U -

PD-L1 Yes Nduom 2016 RNA-Seq only U Neg

M Neg

POSTN Yes Mega 2020 RNA microarray only U Neg

Liu 2019 RNA microarray and miRNA microarray U Neg

Mega 2020 RNA microarray only M Neg

SFRP1 Yes Delic 2014 RNA microarray and miRNA microarray U Pos

M Pos

Sox2 No Sathyan 2015 RNA microarray and miRNA microarray U Pos

M -

SRGN No Mega 2020 RNA microarray only U Neg

M -

Consistency refers to the association between a molecular marker and survival being statistically significant in different analyses. Inconsistencies of associations with

survival: Same analysis type and different data type (EGFR, NTN4) and different analysis type on same data type (CXCL14, miR-17-5p, Sox2, SRGN). Molecular

markers ordered alphabetically. Full references available in Supplementary Materials. RNA-Seq = RNA sequencing; No = not consistent between different analyses;

Yes = consistent between different analyses; U = univariable survival analysis; M = multivariable survival analysis; Pos = positive association i.e. higher levels of the

molecular marker associated with better survival and p<0.05; Neg = negative association i.e. lower levels of molecular marker associated with worse survival and

p<0.05;— = statistical significance not demonstrated (p�0.05).

https://doi.org/10.1371/journal.pone.0264740.t002
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these aspects. Development of novel cancer therapies relies on reproducible results from pre-

clinical research. The need for improving reproducibility is not new [15]. In cancer research,

there is a heavy reliance on the preclinical literature for drug development [16]. However,

issues with reporting bias, suboptimal reporting quality, varying reproducibility and preclini-

cal model representation of disease impede the success in finding new therapies [17]. The

availability of survival data in publicly available data from cancer genomics programmes pres-

ents an opportunity for researchers to assess the association between molecular markers and

patient survival in a reproducible manner. These open access data sources provide data on the

same cohort of patients, which encourages reproducibility between studies. However, our find-

ings demonstrate that patient selection was not adequately described, resulting in different

numbers of patients between studies that supposedly used the same dataset. There are repro-

ducible ways of querying TCGA data, for example, using the ‘TCGABiolinks’ R/Bioconductor

package [18] where code-based commands can be shared as supplementary materials.

Fig 2. Clinical variables entered analyses in 17 studies that used a multivariable survival model. Rows represent studies that used a multivariable model for

survival analysis (S1 References). Columns are clinical variables relevant to survival in patients with glioblastoma.

https://doi.org/10.1371/journal.pone.0264740.g002

PLOS ONE Analytic approaches to validating preclinical glioblastoma models

PLOS ONE | https://doi.org/10.1371/journal.pone.0264740 March 1, 2022 8 / 12

https://doi.org/10.1371/journal.pone.0264740.g002
https://doi.org/10.1371/journal.pone.0264740


Adopting relevant aspects of reporting guidelines such as Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) [19], Transparent reporting of a multivari-

able prediction model for individual prognosis or diagnosis (TRIPOD) [20] and REporting

recommendations for tumour MARKer prognostic studies (REMARK) [21] can further

improve transparency in reporting.

Confounding effects of clinical variables

Confounding is an important consideration in analysing observation data. A confounder can

diminish or exaggerate the association between the exposure and the outcome, leading to spu-

rious results [22]. Confounding effects may be controlled by design or by analysis—the latter is

most relevant in this review. Control by analysis refers to adopting an analysis method that

adjusts for confounders. There are many ways to achieve this, such as stratified and various

regression models [9]. The most commonly used multivariable survival analysis is the Cox

regression [8]. Most studies in this review did not consider clinical variables as potential con-

founders to the association between the molecular marker of interest and survival. There are

nevertheless examples of associations that no longer exhibit a statistical significance after

adjustment to clinical variables in a multivariable analysis (Table 2). Therefore, it is important

to explore and consider confounders when assessing the effect of molecular markers on sur-

vival [23]. This is not a simple task because of data missingness, relatively small numbers of

patients available, as well as correlations between clinical variables. Both data driven and clini-

cally informed choice of covariates would be a reasonable approach [24].

Strengths and limitations

This systematic review assessed all pre-clinical studies that used data from TCGA or CGGA to

validate findings from their laboratory experiments. Our data collection allowed comparison

of findings between and within studies, which allowed our evaluation of replicability.

Clinical studies that examined associations of previously investigated molecular markers

with survival were not included in this review. These studies may provide more detailed

descriptions of cohort selection and may be more likely to consider confounding effects from

clinical variables. This would mean an overestimation of inconsistencies and suboptimal ana-

lytic approaches in our review. However, any omission of consideration about patients being

more than their tumours should be highlighted to re-orientate research focus to patient bene-

fits. Collecting data on p values only to denote statistical significance was a pragmatic approach

to describing associations reported in the included studies, since most studies did not report

any effect sizes. This does not represent our views on the appropriate statistical approach and

reporting of findings. We advocate reporting of effect sizes with their corresponding precision,

adjusting for confounders. P values should not be used as a cut-off for the significance of an

association [25]. There are other aspects of survival analyses that we did not assess, such as

whether included studies tested for the proportional hazard assumption when using a Cox

regression [26]. While these analytic procedures are important, reporting of these would not

affect our findings. We were unable to perform meta-analyses of the associations between

molecular markers and survival because studies were not comparable and there were few effect

sizes reported. This limitation prevented us from quantifying the consistency based on hetero-

geneity and variance measures.

Conclusions

Translational studies in glioblastoma research should increase their transparency to facilitate

replicability. The validation of laboratory experimental findings using human data is
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important to demonstrate translational value; but this should be done with consideration of

patient characteristics. Integration of expertise in pre-clinical, genomic and clinical studies

may help to address the challenge of producing replicable and meaningful research through

collaboration between scientists in different fields.
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