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Abstract

Background

To evaluate QT-interval dynamics in patients and in drug safety analysis, beat-to-beat QT-

interval measurements are increasingly used. However, interobserver differences, aberrant

T-wave morphologies and changes in heart axis might hamper accurate QT-interval

measurements.

Objective

To develop and validate a QT-interval algorithm robust to heart axis orientation and T-wave

morphology that can be applied on a beat-to-beat basis.

Methods

Additionally to standard ECG leads, the root mean square (ECGRMS), standard deviation

and vectorcardiogram were used. QRS-onset was defined from the ECGRMS. T-wave end

was defined per individual lead and scalar ECG using an automated tangent method. A

median of all T-wave ends was used as the general T-wave end per beat.

Supine-standing tests of 73 patients with Long-QT syndrome (LQTS) and 54 controls

were used because they have wide ranges of RR and QT-intervals as well as changes in

T-wave morphology and heart axis orientation. For each subject, automatically estimated

QT-intervals in three random complexes chosen from the low, middle and high RR range,

were compared with manually measured QT-intervals by three observers.

Results

After visual inspection of the randomly selected complexes, 21 complexes were excluded

because of evident noise, too flat T-waves or premature ventricular beats. Bland-Altman

analyses of automatically and manually determined QT-intervals showed a bias of <4ms
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and limits of agreement of ±25ms. Intra-class coefficient indicated excellent agreement

(>0.9) between the algorithm and all observers individually as well as between the algorithm

and the mean QT-interval of the observers.

Conclusion

Our automated algorithm provides reliable beat-to-beat QT-interval assessment, robust to

heart axis and T-wave morphology.

Introduction

Prolongation of the QT-interval on the electrocardiogram (ECG) has been associated with

Torsade de Pointes, a potentially lethal cardiac arrhythmia.[1,2] A prolonged QT-interval can

be caused by Long-QT syndrome (LQTS), which can be either inherited or acquired due to an

underlying medical condition or medication.[2] The measurement of the QT-interval is used

world-wide on a daily basis in the diagnosis of LQTS or in the evaluation of possible effects of

a new drug on the QT-interval.[3]

Although the value of a prolonged QT-interval for risk assessment of future malignant

arrhythmias is widely understood [1], most physicians, including cardiologists, have difficul-

ties to correctly identify a prolonged QT-interval.[4] Additionally to measurement difficulties,

diagnosing LQTS is challenging since there is a considerable overlap of the QT-interval

between LQTS patients and healthy controls.[5,6] Because of this overlap in QT-intervals,

additional measurements like QT dispersion [7,8] and QT variability [9] were introduced and

assessed on their value to diagnose LQTS. Because these relatively new parameters are used to

study QT dynamics, they require evaluation of large numbers of RR- and QT-intervals. QT

variability, for example, is typically determined from 256–512 beats or 256–512 seconds dura-

tion ECG.[9] Furthermore, supine-standing tests are introduced to study QT-interval adapta-

tion [10,11] and changes in T-wave morphologies [12] due to heart rate changes induced by

brisk standing. In these tests, QT-interval dynamics are assessed based on a small number of

QT-intervals. [10,11] Beat-to-beat analysis of supine-standing tests might give more insight in

the dynamic behaviour of the QT-interval and therefore improve its diagnostic value. Measur-

ing these large numbers of RR- and QT-intervals manually is very time consuming and there-

fore automated QT-interval algorithms are necessary.

Currently, automatic algorithms for measuring the QT-interval embedded in commercial

ECG systems measure the QT-interval on an average or median complex over time (cf. Appen-

dix Kligfield et al.[13]). As a consequence, beat-to-beat detection algorithms which include the

QT-interval dynamicity have been published, but often use only a single ECG lead (mostly II

or V5), which makes the QT-interval susceptible to heart axis orientation and electrode place-

ment.[14] In this article we present and validate an automatic QT-interval algorithm based on

the tangent method [15] which is unaffected by heart axis orientation and that can be applied

on a beat-to-beat basis regardless of the T-wave morphology.

Methods

Population and ECG recordings

Five minutes long ECGs from supine-standing tests recorded between December 2008 and

February 2016 of 73 LQTS patients and 54 controls were included in this study. These
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recordings were performed in the initial evaluation of individuals referred to the department

of Cardiology and Cardiogenetics of the Academic Medical Centre in Amsterdam, The Neth-

erlands, in the work-up during family screening for LQTS (i.e. after a diagnosis was made in

an index patient). LQTS patients had a confirmed pathogenic mutation in either the KCNQ1,

KCNH2 or SCN5A gene resulting in LQTS type 1 (LQT1), type 2 (LQT2) or type 3 (LQT3)

respectively. Controls were genotype-negative family members or healthy volunteers. We

obtained a waiver from the local ethical committee for ethical approval for the conduct of this

study.

ECG recordings during supine-standing tests were used to validate the algorithm since

these recordings consist of a wide range of RR and QT-intervals as well as changes in T-wave

morphology and heart axis orientation. [10–12]

Development of an automatic QT-interval detection algorithm

Data acquisition and pre-processing. All individual (pre-)processing steps of the algo-

rithm are shown in Fig 1. All ECGs were recorded with a 600Hz sample frequency using

Welch Allyn CardioPerfect (Welch Allyn, Skaneateles Falls, NY, USA). Data analysis was per-

formed offline using a custom-made Matlab (2015b, The MathWorks, Natick, MA, USA) pro-

gram. After acquisition, ECG data were filtered using a 2nd order bidirectional Butterworth

band pass filter (0.5-100Hz [16]) and a 2nd order infinite impulse response notch filter (50Hz)

with a -3dB bandwidth of 0.33Hz. For all individual leads, the residuals of a median filter with

a 501 samples window were regarded as baseline deviations and were subtracted from the indi-

vidual ECG leads to correct for baseline wander. The filtered ECGs were thereafter upsampled

to 1000Hz to make the analysis sample frequency independent so it can be applied to ECGs

recorded with different sample frequencies as well.

Scalar ECG construction. Three types of scalar ECGs are constructed to emulate ECG

signals unaffected by heart axis orientation. The root mean square (ECGRMS) and standard

deviation (ECGSD) are calculated as follows:

ECGRMSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9

X9

i¼1
ð ECG2

i ðtÞ Þ
r

ð1Þ

ECGSDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9

X9

i¼1
ð ECGiðtÞ � ECGðtÞ Þ2

r

ð2Þ

where ECGi(t) is the ECG signal at time t from lead i and ECGðtÞ is the mean ECG in time

over the various leads. Note that there are only nine leads used in this calculation. Ideally, one

would use unipolar precordial leads and unipolar limb leads to reconstruct a scalar ECG from.

Unfortunately, true unipolar limb leads are not recorded (or saved) in a standard 12-lead

ECG. Mathematically, augmented limb leads are scaled true unipolar ECG leads. For example,

the unipolar foot electrode (VF) would be calculated by:

VF ¼ �f � �WCT ¼ �f �
�f þ �r þ �l

3
¼

2�f � �r � �l

3
ð3Þ

with ϕf, ϕr and ϕl the potential recorded at the foot, right arm and left arm respectively and

ϕWCT the Wilson central terminal.

The augmented limb lead aVF is calculated by:

aVF ¼ �f �
�r þ �l

2
¼

2�f � �r � �l

2
ð4Þ

Development and validation of a new QT-interval algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0184352 September 1, 2017 3 / 14

https://doi.org/10.1371/journal.pone.0184352


Fig 1. Schematic representation the algorithm’s steps. A detailed description is given in the main text.

Fs = sample frequency, Hz = hertz, IIR = infinite impulse response, FFT = fast Fourier transform, |VCG| =

magnitude of the vectorcardiogram, SD = standard deviation, RMS = root mean square, SecDer = second

derivative, Tend = T wave end.

https://doi.org/10.1371/journal.pone.0184352.g001
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So, VF can be calculated from aVF by scaling aVF with 2/3.

2

3
�
ð2�f � �r � �lÞ

2
¼

2�f � �r � �l

3
ð5Þ

We used these calculated unipolar limb leads (2/3 aVR, 2/3 aVL, 2/3 aVF) and the unipolar

precordial leads (V1-V6) to construct the ECGRMS and ECGSD.

Lastly, a vectorcardiogram (VCG) was constructed using the method described by Kors

et al.[17] The magnitude of this VCG (|VCG|) was used as the third scalar ECG.

R peak and QRS onset detection. R peaks were detected from the ECGRMS signal using

the Pan Tompkins algorithm.[18] The largest peak in the second derivative of ECGRMS (calcu-

lated using a simple numerical differentiation) within a window of 100 to 20 milliseconds (ms)

preceding the R peak was regarded to indicate the onset of the QRS complex, see Fig 2.

T-wave landmarks. The peak of the T-wave (Tpeak) and the end of the T-wave (Tend) are

estimated for every individual ECG lead as well as for the constructed scalar ECG signals. T-

wave landmarks obtained from individual scalar ECG signals or ECG leads are called local T-

wave landmarks. Since individual ECG leads are affected by heart axis orientation and scalar

ECGs may blur information which is only present in one or two individual ECG leads, local T-

wave landmarks are determined from both the individual ECG leads and the scalar ECGs.

Fig 2. Illustration of global QRS onset and local T wave landmarks detection. Global R peak is detected using a Pan-Tompkins

algorithm on the ECGRMS signal. The global QRS onset is thereafter detected as a peak in the second derivative of the ECGRMS within a

certain window preceding the global R peak. The local T peak (Tpk) is detected as the maximum or minimal peak between R+50ms and R

+0.7RR. Thereafter, the tangent trough the point of maximum deflection between Tpk and Tpk+0.3RR is calculated from the first derivative.

The intersection between this tangent and the baseline is detected as the local end of the T wave (Tend). Tpk = T-wave peak, Tend = T-wave

end, RMS = root mean square, SecDer = second derivative, ms = milliseconds.

https://doi.org/10.1371/journal.pone.0184352.g002
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These effects are minimized by determining one global T-wave landmark from the local T-

wave landmarks obtained from ECG leads and scalar ECGs. To detect the local T-wave land-

marks, all individual ECG leads and the scalar ECG signals were smoothed using a 2nd order

Savitzky Golay filter with a 50ms window. First, the local peak of the T-wave (local Tpeak) was

detected as the maximum or minimum peak between the preceding R peak +50ms and the

preceding R peak +70% RR of the smoothed signal (see Fig 2). Second, the slope of the maxi-

mum deflection between local Tpeak and local Tpeak +30% RR was calculated. A tangent

through the point with the maximal slope in the final limb of the T-wave was estimated using a

simple numerical differentiation within a ten ms window (dVdt(t) = (V(t+5)-V(t-5))/10). The

intersection of this tangent and the baseline was used to detect the local end of the T-wave

(local Tend). The baseline was defined as the median amplitude of the 30ms preceding the QRS

onset of that particular complex. Local QT-intervals were calculated from the global QRS

onset and local Tend and can be used for QT dispersion measures.

Global T-wave landmarks. From the local T-wave landmarks, a median Tpeak and Tend

location was calculated for every complex. Local Tpeak and Tend landmarks that deviated more

than two times the standard deviation (SD) from the median Tpeak and Tend were considered

to be outliers and excluded. Global Tpeak and Tend locations were calculated as the median

from the remaining local Tpeak and Tend locations. Finally, QT-intervals were calculated by cal-

culating the interval between QRS onset and global Tend. Individual ECG leads with a local T-

wave amplitude smaller than 50 μV were considered to be too small for accurate determination

of local Tend and therefore were not taken into account for the determination of the global

Tend of that particular complex. For example, if the T-wave amplitude is low in all limb leads,

global Tend will be calculated from the local Tend of the precordial leads and the scalar ECGs

only.

Validation

From every ECG recording during a supine-standing test, one complex with an RR-interval

below the 10th percentile, one complex with an RR-interval above the 90th percentile, and one

complex with an RR-interval within the interquartile range were randomly selected by the

computer. This resulted in three complexes with a wide range of RR-intervals per supine-

standing test. From the randomly selected complexes, QT-intervals were calculated both auto-

matically using the algorithm described above and manually by three independent observers

(BH, FB, TD). The manual measurements of the QT-intervals were done on paper using the

tangent approach in a lead of choice.[15] All observers measured the QT-interval with an

accuracy of 0.5mm, which corresponded with 6ms. The observers were blinded for patient

characteristics, QT-intervals determined by the algorithm and the measurements of the other

observers. The algorithm was validated by determining the inter-method variability between

the QT-interval measured by the algorithm (QTalg) and (I) the individual manual QT-interval

measurements (QTobs1, QTobs2 and QTobs3) and (II) the mean QT-interval from all the

individual measurements (μQTobs). In addition, the QT-interval measurements of the three

observers were compared in order to assess the inter-observer variability.

Statistical analysis. Statistical analyses were performed in Matlab. Patient and ECG

characteristics were presented in frequencies (percentage) for categorical variables and mean

(± SD) for continuous variables with an approximately symmetric distribution. The inter-

method variability and the inter-observer variability were expressed as correlation coefficients

estimated by a Pearson correlation test, and the intra-class correlation coefficient (ICC) for

single and averaged measurements based on a two-way mixed absolute agreement model.[19]

Sample uncertainty was expressed as 95% confidence intervals (95% CI). Bland-Altman
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analyses were performed to assess the systematic bias and the limits of agreement for both the

inter-method and the inter-observer variability.[20] A p-value < 0.05 was considered to be sta-

tistically significant.

Results

Population

The total study population of 127 subjects included 34 (26.8%) subjects with LQT1, 28 (22.0%)

with LQT2, 11 (8.7%) LQT3, and 54 (42.5%) controls. The characteristics of the study popula-

tion are shown in Table 1.

Validation

The randomly computer based selected complexes were visually inspected and eight com-

plexes (2.1%) had to be excluded based on the presence of artefacts, three complexes because

of too flat T-waves in all ECG leads (0.8%), and two (0.5%) because the randomly chosen com-

plex was a premature ventricular complex.

In the remaining 358 complexes, the RR-intervals ranged from 470ms to 1419ms, with a

mean RR of 849ms (± 194ms). The mean heart axis was 42˚ (± 42˚) and the 95% percentile

confidence interval (PCI: 2.5th and 97.5th percentile of the data) ranged from -45˚ to 119˚. The

mean T-wave axis was 26˚ (± 42˚) with a 95% PCI ranging from -85˚ to 108˚.

By visual inspection by one of the observers, 127 (35%) complexes had aberrant T-waves

and/or prominent U-waves. Fig 3 shows an example of one complex with the QRS onset and

global Tend detected by the algorithm for an LQT1, LQT2 and LQT3 patient as well as for a

control.

Inter-method variability. Results of the comparison between the QTalg and the individ-

ual observers are shown in Table 2. There was a strong correlation (Pearson’s r ranging from

0.935 to 0.959) and agreement (ICC ranging from 0.933 to 0.956) between the QTalg and the

individual observers, with a systematic bias ranging between -1.88ms and 3.39ms. Fig 4 shows

the Bland-Altman plot for the inter-method variability of QTalg and μQTobs. The correlation

and agreement between QTalg and μQTobs was also strong (r = 0.962, ICC = 0.981).

LQTS type specific validation showed similar agreements between QTalg and μQTobs for

all LQTS types (ICC ranging from 0.934 (LQT2) to 0.989 (LQT1). See supporting information:

S1 Fig and S1 Table).

Inter-observer variability. Results of the comparison between observers are shown in

Table 3. The agreement between all observers was strong (Pearson’s r ranging from 0.945 to

0.964, ICC ranging from 0.939 to 0.958). The Bland-Altman analysis showed that the inter-

observer bias ranged from -0.74ms to 6.28ms. The limits of agreement range from 26ms to

31ms.

Table 1. Characteristics of the study population.

Gender (M/F) Age (years) Number (-) QTc at low RR (ms) QTc at mid RR (ms) QTc at high RR (ms)

LQT1 13 / 21 33.9 ± 13.9 34 486 ± 44 460 ± 37 439 ± 33

LQT2 17 / 11 40.5 ± 15.1 28 498 ± 49 449 ± 35 427 ± 34

LQT3 4 / 7 35.2 ± 15.2 11 472 ± 45 439 ± 35 422 ± 35

Control 31 / 23 40.8 ± 15.8 54 446 ± 38 410 ± 26 392 ± 25

Total 65 / 62 38.4 ± 15.2 127 469 ± 47 435 ± 39 415 ± 36

Data are given as mean ± standard deviation. M = male, F = female, RR = RR-interval, QTc = Corrected QT using Bazett’s formula.

https://doi.org/10.1371/journal.pone.0184352.t001
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Fig 3. An example of the results of our algorithm. The QRS onset and global Tend detected by the algorithm is shown for a healthy

control and patients with LQT-1, 2 and 3. QTalg = QT-interval determined by the algorithm, μQTobs = mean QT-interval determined by three

observers, ms = milliseconds.

https://doi.org/10.1371/journal.pone.0184352.g003

Table 2. Inter-method variability.

Pearson correlation Intra-class coefficient Bland-Altman

r (95% CI) p ICC (95% CI) p Mean difference (ms) Limits of agreement (ms)

QTalg vs. QTobs1 0.959 (0.949–0.966) < 0.001 0.956 (0.943–0.966) < 0.001 3.39 -23.23: 30.01

QTalg vs. QTobs2 0.935 (0.920–0.946) < 0.001 0.933 (0.917–0.945) < 0.001 -2.65 -36.09: 30.79

QTalg vs. QTobs3 0.948 (0.936–0.957) < 0.001 0.947 (0.935–0.957) < 0.001 -1.88 -31.53: 27.78

QTalg vs. μQTobs 0.962 (0.954–0.969) < 0.001 0.981 (0.976–0.984) < 0.001 -0.38 -25.41: 24.65

95% CI = 95% confidence interval, obs = observer(s), r = Pearson’s r, p = p-value, ICC = intra-class coefficient, ms = milliseconds.

https://doi.org/10.1371/journal.pone.0184352.t002
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Discussion

We have developed and validated an automatic QT-interval algorithm based on the tangent

method which is unaffected by heart axis orientation and that can be applied on a beat-to-beat

basis regardless of the T-wave morphology. There is a high agreement between the automatic

algorithm and manual measurements of the QT-interval. Measuring errors between our algo-

rithm and manual measurements are similar or even smaller than inter-observer measuring

errors. In contrast to manual measurements, our algorithm enables users to study large

amounts of complexes. Therefore, it can be used to study novel QT-interval parameters that

require beat-to-beat QT-interval analysis.

Measuring the QT-interval

Recognition of an abnormal QT-interval is an important element to gain an impression of the

risk for malignant arrhythmias and it guides treatment. However, determination of the QT-

interval can be challenging [4] and its result may frustrate treatment.[6] For manual QT assess-

ment, the tangent method in lead II or V5 has been proposed. It has been suggested that with

this method even inexperienced ECG readers can, after minimal education, accurately diag-

nose prolonged and normal QT-intervals.[15,21] However, manual assessment has consider-

able limitations. Proper manual QT-interval assessment is time consuming. Therefore, most

physicians pick one lead and one complex to measure. Whether the QT-interval from the

measured complex in the chosen lead is representative for the patient can be questionable.

Fig 4. Validation results of the μQTobs VS QTalg. A linear regression between μQTobs and QTalg. B Bland-Altman analysis shows no bias (solid black

line) and narrow limit of agreements (dashed lines). C The Distribution of differences shows that the differences are normally distributed around zero. All

numbers corresponding with this figure can be found in Table 2. QTalg = QT-interval determined by the algorithm, μQTobs = mean QT-interval determined

by three observers, SD = standard deviation, ms = milliseconds.

https://doi.org/10.1371/journal.pone.0184352.g004

Table 3. Inter-observer variability.

Pearson correlation Intra-class coefficient Bland-Altman

r (95% CI) p ICC (95% CI) p Mean difference (ms) Limits of agreement (ms)

QTobs1 vs. QTobs2 0.947 (0.935–0.957) < 0.001 0.939 (0.908–0.958) < 0.001 6.28 -24.67: 37.23

QTobs1 vs. QTobs3 0.964 (0.955–0.970) < 0.001 0.958 (0.932–0.972) < 0.001 5.54 -20.41: 31.49

QTobs2 vs. QTobs3 0.945 (0.934–0.956) < 0.001 0.946 (0.934–0.956) < 0.001 -0.74 -31.06: 29.58

95% CI = 95% confidence interval, obs = observer(s), r = Pearson’s r, p = p-value, ICC = intra-class coefficient, ms = milliseconds.

https://doi.org/10.1371/journal.pone.0184352.t003
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Measuring QT-intervals of multiple complexes over all leads is too time-consuming for daily

clinical practice. Therefore, objective, standardized automated QT-interval algorithms unaf-

fected by heart axis orientation are desirable.

Algorithms by manufacturers. All modern ECG machines provide users with automated

measurements of ECG intervals. A general downside of these algorithms is that the QT-inter-

val is determined on an averaged complex over time (cf. Appendix Kligfield et al.[13]). There-

fore, temporal fluctuations in QT-interval are lost and the dynamicity and adaptation of the

QT-interval to changes in heart rate cannot be studied using these algorithms. Another down-

side of these algorithms is that the details about the algorithms are often unavailable for their

users. Despite the latter, many cardiologists do use and trust the QTc-interval provided by the

ECG machine. Using a custom-made algorithm enables visualisation of the determined

QRS-onset and T-wave end, making it easier to distinguish between correct and erroneous

measurements.

Custom-made QT-interval algorithms. Custom-made (semi-)automated QT-interval

algorithms were developed in order to study QT dynamics. Berger et al. [14] for example,

described a template matching algorithm to study QT dynamics. In his algorithm, a template

(which is selected by the user) is matched to all complexes in order to measure individual

QT-intervals. A disadvantage of his algorithm is that it only uses one ECG lead (I or II) and is

therefore susceptible to heart axis orientation. For example, an algorithm that uses only lead

II will most likely be unable to define Tend in the ECG of the LQT2 patient as shown in Fig 3,

due to the low T-wave amplitude in ECG lead II. Since our algorithm takes all leads into

account, it is still able to define Tend as long as the T-wave is large enough in at least one lead

(see Fig 3).

More sophisticated single- and multilead algorithms have also been reported.[22–26] How-

ever, a general downside of those techniques is that they have not yet been validated for LQTS

patients with various T-wave morphologies. Therefore it remains unknown how well these

algorithms perform in T-wave morphologies alternated by LQTS. Almeida et al. proposed a

multi-lead ECG delineation algorithm which has been validated against multiple annotated

databases. [26] Almeida et al. report mean differences of 7.5 ± 11.2 ms and 7.9 ± 21.7 ms for

the QRS-onset and T-wave end detection, respectively. [26] Although the exact mean differ-

ences in QT-interval can’t be perceived from these results, the mean differences of QRS-onset

and T-wave end detection suggest the differences in QT-interval to be similar to our validation

results.

Development

Our algorithm is an extensive automated version of the tangent method first described by

Lepeschkin and Surawicz.[15] The tangent method has been shown to be an accurate and

reproducible method for diagnosing prolonged QT-intervals, even by inexperienced ECG

readers.[21] We applied this method to all 12 standard ECG leads as well as to the three con-

structed scalar ECGs (ECGRMS, ECGSD, |VCG|) to make it unaffected by heart axis orientation

and applicable regardless of the T-wave morphology. Since prominent U-waves, notches, low

T-waves and other altered T-wave morphologies often occur in only a few ECG leads, mor-

phology-induced erroneous local Tend detections will not affect the global Tend.

It is important to bear in mind that though our algorithm is applicable regardless of the T-

wave morphology, the T-wave morphology on its own can still be useful for the diagnosis of

LQTS.

The isoelectric baseline was defined as the median amplitude of the 30ms preceding a QRS

onset. The P-Q segment was chosen instead of the T(U)-P segment because the PQ segment is
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less affected by heart rate changes since at high heartrates the P wave can coincide with the T-

wave.

Validation

The results of our validation study show good agreements between observers and our algo-

rithm. The mean differences and limits of agreements between the observers and our algo-

rithm are in the same range as the inter-observers differences in this study as well as in a

previous study.[27] The same holds for the results from ICC. This suggests that our algorithm

is as accurate in determining the QT-interval as the observers.

The QT-intervals measured by the observers and the algorithm had an approximately nor-

mal distribution. To be sure not to make mistakes by using parametric tests, Spearman’s corre-

lation test and the Kendal’s W coefficient of concordance were also computed and the results

were compared with the Pearson’s correlation test and the intra-class correlation coefficient.

The differences between the parametric and non-parametric tests were small and the results of

the non-parametric tests did not change the conclusion.

From our results we conclude that our algorithm is a good alternative for manual QT-inter-

val measurements. Moreover, because the algorithm is unaffected by heart axis orientation

and can provide beat-to-beat QT-intervals, it might have an additional value in diagnosing

LQTS and evaluating new drugs.

Advantages

Additional advantages of our algorithm are that we are the first to combine T-wave landmarks

derived from individual ECG leads with landmarks derived from scalar ECGs. By doing so, the

algorithm combines the better of two worlds. The scalar ECGs are independent to heart axis

orientation but since they are a mean (ECGRMS), standard deviation (ECGSD) or weighted

mean (VCG) of individual ECG leads, information which is only present in one or two ECG

leads is blurred and would have been lost if our algorithm wouldn’t have used also the individ-

ual ECG leads. By calculating the median Tend after outlier removal, the global Tend is based on

both the scalar ECGs and individual ECG leads. Secondly, the ECGRMS and ECGSD are calcu-

lated from unipolar ECG leads only. By doing so, all ECG leads contribute equally to the scalar

ECGs. Another advantage is that our algorithm treats every complex individually and it does

not require a priori knowledge. Methods like the one described by Ritsema van Eck [23] might

run into problems by sudden changes in T-wave morphology because each individual complex

is cross-correlated with the average of the remainder complexes. Lastly, we described all neces-

sary details to rebuild the algorithm and kept it as simple as possible. By doing so, the algo-

rithm is reproducible and understandable for future users and clinicians.

Limitations

Although the algorithm had a high agreement with manual measurements, we acknowledge it

has some limitations. First, low T-wave amplitude will result in a smaller signal-to-noise ratio

and therefore might result in a larger error in Tpeak and Tend detection. This is partially dealt

with by excluding individual complexes on individual ECG leads if that particular complex has

a T-wave amplitude smaller than 50 μV. However, by excluding individual complexes on cer-

tain ECG leads, the remaining ECG leads become more important in those complexes. If respi-

ration affects T-wave amplitude, a different number of individual ECG signals might be used

for every complex within one respiratory cycle. This might induce detected QT variability.
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Second, Tend detection using the tangent approach is influenced by baseline deviations.

Robust baseline determination techniques are rare and although the validation of our algo-

rithm was successful, improving baseline determination might still improve the outcome.

Baumert et al. [28] stated that conventional QT algorithms are not the best choice to mea-

sure beat-to-beat QT-interval changes. However, the conventional QT algorithm that has been

studied in this article is a threshold method on the first derivative of a single lead ECG. Since

our algorithm is based on the tangent method and takes all leads into account, the statement

from Baumert et al. [28] can’t be projected on our algorithm. To find out whether our algo-

rithm can be used for beat-to-beat QT-interval parameters as described in the position paper

from Baumert et al. [9], a validation focused on these parameters is required.

Lastly, the observers measured the QT-interval from one lead only, while the algorithm

takes all leads into account. However, since there is no true gold standard in the measurement

of the QT-interval, we chose to validate the algorithm against the most objective manual

assessment available.

Conclusion

Our validation results show that the QT-interval detection algorithm is as accurate in deter-

mining QT-intervals as instructed manual observers are. Since the algorithm is fast, objective,

unaffected by heart axis orientation, applicable regardless of the T-wave morphology and can

provide beat-to-beat QT-intervals, the algorithm might be useful to help improving the diag-

nosis of LQTS or the evaluation of QT-interval prolonging effects of new drugs.
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