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ABSTRACT: The rise of partially wetting liquids along the
corners of noncircular capillary tubes is observed in many practical
science and engineering applications such as wastewater treatment
using membranes, remediation, oil recovery from petroleum
reservoirs, and blood flow. In this paper, rivulet rise at the corners
of polygonal capillary tubes is studied for partially wetting liquids
with contact angles below the critical value. The presence of
corners changes the distribution of a liquid in an incomplete
wetting condition. In this study, geometrical models are proposed
to better understand the capillary rise and flow behavior at the
corners. A geometrical solution for the capillary rivulet height and
profile is derived under gravity in triangular, square, and pentagonal
capillary tubes. The effects of several factors including contact
angle, number of polygon sides, and liquid properties on the capillary rivulet height are examined. It was found that the ratio of liquid
surface tension to density directly affects the corner rise, while it has an inverse relationship with other factors. The maximum rivulet
height of 91.6 mm is obtained in the triangular capillary tube with a side length of 1 mm and a contact angle of 30° for
polydimethylsiloxane (PDMS-20)-air fluid pair. The minimum capillary rivulet height of 6.2 mm, on the other hand, is achieved in
the pentagonal capillary tube, with a side length of 3 mm and a contact angle of 30°. To validate the developed analytical approach,
comparisons are made between the model results, literature predictions, and experimental data. In addition, the geometrical model
for a square capillary tube is compared with previous published studies, revealing a good agreement. This study provides quantitative
results for the influence of capillary tube shape on the flow behavior of fluids in noncircular tubes that can be useful for control and
optimization of transport phenomena in corresponding systems.

1. INTRODUCTION

Capillarity is a common and natural phenomenon that plays an
important role in major engineering and science branches such
as drying processes, remediation, capillary-driven heat pipes,
capillary pumps, and crude oil extraction from reservoir
rocks.1,2 There are several studies in the literature on the
experimental aspects of the capillary rise phenomenon. For
instance, Siebold et al. (2000) experimentally investigated the
effect of dynamic contact angle on the capillary rise
phenomenon.3 Extrand et al. (2013) measured the rising
force of ethylene glycol, glycerol, and silica oil in glass and
polytetrafluorethylene tubes with a tensiometer and correlated
it with the capillary rise height.4 Siebold et al. (1997) used
capillary rise experimentation methods to thermodynamically
characterize the irregular solid particle surfaces.5 There are also
several studies in the literature dealing with the theoretical
aspects of the capillary rise phenomena. For instance, Wang et
al. (2019) provided an analytical solution in the form of a
dynamic model to predict the oscillatory behavior of the liquid
rise in vertical capillaries.1 A theory-based approach was also
proposed by Liu et al. (2014) by which the maximum capillary

rise in a porous sample was correlated with the contact angle,
dry sample density and specific gravity, saturated sample
hydraulic conductivity, and air entry height.6 In another
theoretical study, Gründing (2020) used mass and momentum
balance to propose an enhanced model for the capillary rise
problem.2 In addition, some capillary rise experiments and
numerical simulations were conducted by Khan et al. (2020)
to investigate the spontaneous imbibition behavior of fluids in
vuggy carbonates.7

The principle of capillary theory goes back to one century.
Understanding the concept of capillary rise in porous media is
very important because it is applicable in a wide variety of
sciences and engineering disciplines.8 Not all the practical
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porous media prototypes are composed of capillaries with well-
rounded spherical cross-sectional area. In practice, porous
structures with capillaries of polygonal cross section are
abundant in nature as well as in synthesized materials.9

Therefore, it is essential to investigate fluid displacement under
the effect of surface tension and gravity in polygonal capillary
tubes since square and polygonal capillary tubes represent
some of the smallest units of porous media.10−12

Analysis of liquid invasion through porous media corners has
attracted much attention in various processes/cases such as oil
recovery, pharmaceuticals, and biotechnology, especially with
the application of microfluidic systems to study fluid flow and
transport in porous structures. For instance, use of rectangular
capillaries in microfluidic systems can increase heat and mass
flux.13−15 The cross-sectional geometry of a capillary influences
the distribution of two immiscible liquid and gas phases.16 In
angular capillaries, for instance, the liquid (i.e., the wetting
phase) invades the corner region, while the nonwetting gas
phase remains at the center region, and a meniscus is created
across the interface.16,17

Capillary behavior and meniscus rise in a cylindrical tube
have been substantially studied experimentally and theoret-
ically in numerous research works, and the proposed models
are different from those of angular tubes.15 For example, Lucas
(1918) and Washburn (1921), for the first time, presented a
solution for capillary rise in the absence of gravity effect, which
better reveal the role of liquid properties such as surface
tension in the liquid rise in capillary structures.18−20 The
Lucas−Washburn equations and Jurin’s law (1728) are
proposed for circular capillaries and should be modified for
different pore geometries.19−22 Rayleight and Bashfort-Adams
calculated the static meniscus height and meniscus shape in the
cylindrical geometry tube.23,24

The competition between the viscous and capillary forces
affects the fluid penetration/flow in porous media. Capillary
number is defined as the ratio of viscous forces to capillary
forces. Capillary fingering, viscous fingering, and stable
displacement are different types of fluid penetration in porous
media. Depending on the viscosity of the invading as well as
the displaced fluids, these three types of fluid penetration in
porous media could occur.25 Sarah and Ulrich (2018)
measured liquid penetration in porous sheets using ultrasonic
liquid penetration measurement, contact angle measurement,
and scanning absorptiometry method.26 3D multiphase lattice
Boltzmann model was also used by Shi et al. (2019) to
investigate droplet and liquid penetration in porous
structures.27

Analysis of capillary behavior in the complex geometry of
porous media, with focus on corner structure problems, has
been performed in various studies.28 There are several
experimental methods including mercury entrapment and gas
sorption to directly map fluid distribution in a pore structure.29

On the other hand, the models describing liquid rise in
noncircular capillary geometries are more complicated and
require intensive computations to include several factors such
as nonuniform pore geometry as well as wetting properties.28

Mayer (1965) and Stowe-Princen (1969) proposed the MS-P
theory which determines the meniscus curvature in polygonal
tubes with square and triangular cross-sections and a zero
contact angle.28,30 Mason and Morrow (1991) employed the
MS-P method and carried out a survey on the curvature of the
interface in irregular triangular tubes for complete wetting
conditions.31 They introduced a dimensionless shape factor

(G) based on the perimeter and area of the cross-section and
determined the equivalent shape factors for various geo-
metries.17,31 Ponomarenko et al. (2011) derived a general law
for the capillary rise of wetting liquids in the corner of various
geometries.32

Finding the correct meniscus curvature in different pore
shapes is important because it changes the capillary pressure,
and as a result, the displacement pattern in porous media will
be affected.33 The presence of corners in a porous structure
affects the interface curvature; therefore, the capillary effect
increases.14 The curvature of interface menisci can be obtained
by solving the well-known Yong−Laplace equation for capillary
pressure.34,35 The contact angle, the corner angle, and the
relation between the vertical and horizontal characteristic
lengths (i.e., which represent the magnitude of the capillary
tube height and that of the tube radius, respectively) have a
significant impact on the capillary pressure, and their role is
demonstrated in transverse and axial curvature equations.36

Long and Zhang (2017) analyzed the distribution of fluids and
interface curvature based on single-corner capillary model in
irregular capillary tubes.31

Concus and Finn (1974) introduced a method for
determining the critical contact angle value (θc) in an n-
sided regular polygon tube. This value depends on the
polygonal corner angle. If the contact angle in partial wetting
condition is below the critical value (θ < θC = π/2 − α), where
α = π (n−2)/2n is half of the corner angle, the meniscus rises
along the corners to an infinite height, and rivulets or arc
menisci appear in the corners. However, when the contact
angle is equal to or greater than the critical angle value (θ ≥
θc), the meniscus height is limited to a finite value, which refers
to the bulk or pore meniscus, and rivulet rise does not appear
along the corners.30,37−43 The critical contact angle for the n-
sided polygonal tube reaches zero, becoming similar to a
circular tube shape as “n” approaches infinity, and the corner
menisci will be vanished.31 The rivulet rise in the corners and
the increase in the corner menisci radius due to the increasing
side number in regular capillary tubes are schematically shown
in Figure 1.

Static capillary behavior at the corners of a capillary was also
studied in the literature.34,44−47 The 3D menisci shape, without
considering gravity, was calculated in regular polygonal
capillary tubes (i.e., with three, four, and six sides) as well as
in rectangular capillary tubes from the augmented Young−
Laplace equation by Wong et al. (1992). The researchers used
a numerical method to eliminate the free boundary problem.47

The iterative numerical method has been suggested instead of
analytical methods in the literature to prevent solving a more

Figure 1. Schematic representation of rivulet rise and arc-menisci
profiles in triangle, square, and pentagon capillary tubes.
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complex analytical integration.21 Son et al. (2016) investigated
the capillary rise in square and triangular tubes with a
numerical lattice Boltzmann model.30 Gurumurthy et al.
(2018) simulated the spontaneous rise of a liquid phase in a
square capillary using the InterFoam solver.39 Hilden and
Trumble (2003) numerically predicted the capillary pressure of
liquids in planar close-packed spheres with the Surface Evolver
software.48

Despite a few attempts on the analysis of the 3D interface
shape in different cross-sectional geometries,38 there is no
general equation for determining the rivulet height in angular
capillary tubes with consideration of the gravity effect. In this
study, the geometrical method is applied using rivulet thickness
for obtaining the rivulet height and shape of the menisci in
triangle, square, and pentagon capillary tubes, considering the
gravity effect. The developed models are then programmed in
MATLAB R2014a, and the 3D menisci profiles are
determined. In addition, the effects of various parameters
such as the number of polygon sides, the contact angle, and the
side length on the rivulet height are examined.
Liquid penetration in porous structures has attracted

significant attention in various chemical processes. In this
study, the quantitative results are used to investigate fluid
displacement and the displacement pattern under the effect of
surface tension and gravity in polygonal capillary tubes. The
main goal of this study is to better understand the multiphase
flow physics in porous media including capillaries with
polygonal cross sections and offer a reliable and simple
method that prevents solving a complex analytical integration
problem.
The manuscript is structured as follows: in Section 2, the

details of geometrical model development for triangular,
square, and pentagonal capillary tubes are presented after a
brief review of the literature. The shape of the menisci for
various cross-sectional geometries is then determined by
programming the developed geometrical model in MATLAB
and is discussed in Section 3. A sensitivity analysis is then
performed to study the impact of key parameters (such as the
contact angle, the number of polygon sides, the capillary tube
cross-sectional area, and the liquid properties) on the capillary
rivulet height (Section 4). In Section 5, the developed
geometrical models are validated by calculating the critical
contact angle from the rivulet height equations, and the results
are compared with the experimental data and values from the
literature. Finally, the concluding remarks are presented in
Section 6.

2. MODEL DEVELOPMENT
2.1. Rivulet Thickness CalculationLiterature Re-

view. When a capillary tube is vertically dipped into a pool of
liquid, the liquid phase moves upward in the tube in the z
direction, against gravity, due to surface tension force, and
therefore, a concave meniscus is developed whose radius of
curvature depends on the degree of wetness of the capillary
wall with the particular liquid phase. In such a condition, the
rivulet is assumed to become static over a large time interval (t
→ ∞), and the stationary solution can then be proposed to
calculate the rivulet thickness. The rivulet thickness (δ(z)),
defined as the distance between the meniscus surface and the
corner, was previously calculated for square tubes using a
balance between the Laplace pressure and the hydrostatic
pressure along the apparent contact line in the z direction.39,49

The rivulet thickness varies along the height of the capillary

tube from the bottom of the concave meniscus all the way to
the maximum height of rivulet rise along the corners. The
rivulet thickness in capillaries with triangle and pentagon cross-
sections was also calculated based on the corner angle and the
critical contact angle.50 These correlations are reported in
Table 1, where σ is the interfacial tension, θ is the contact

angle between the meniscus and the wall, and ρ is the density
difference between the liquid and air. These computations
were confirmed with experimental measurements where the
capillary tubes were dipped vertically in polydimethylsiloxane
(PDMS-20) with a density of 930 kg/m3 and a surface tension
of 19.8 mN/m. The thickness equations are valid for θ < θc
where their values are positive. To simplify the calculations, the
variation of curvature in the vertical direction was ignored, and
only horizontal curvature related to the cross-sectional
geometry was considered. It was also assumed that the liquid
partially wets the capillary wall with a contact angle of θ < 90°.
In all these computations, the origin of the z coordinate (z0)
was located at the bottom of the concave meniscus, and the
origins of the x and y coordinates were considered at the center
of the polygon cross section.

2.2. Geometrical Method for Triangle, Square, and
Pentagon Cross-Sectioned Capillary Tubes. To study the
infinite rivulet rise in this paper, we consider three categories of
polygonal cross sections: triangle, square, and pentagon. The
shape and height of the rivulet, in the form of z = f(x, y), for all
(x,y) values in regular cross-sectional geometries are obtained
in 3D Cartesian coordinates of x, y, and z. In order to derive a
geometrical model for each capillary tube, a horizontal plane P
is passed through the tubes’ cross section. The intersecting
area of the horizontal plane with the capillary tubes and the top
view of the arc menisci are depicted in Figure 2. It should be
noted that the rivulet height is not calculated at some distance
from the corner; it is rather calculated at the corner. The
rivulet thickness at the bulk meniscus height (i.e., δ) is indeed
a function of the cross-section dimensions. The distance
between each vertex of the polygon and the center of gravity
(d) depends on the side length of the capillary (Figure 2a−c).
This is based on simple trigonometric relations, as evident
from Figure 2a−c. Therefore, a change in the side length will
change the “d” parameter (see eqs 2, 7, and 10), which
therefore changes the δ parameter. To develop and solve the
equation for the rivulet height, the shape of the interface for all
tubes is considered as circular at a certain elevation (i.e., z).
The radius of the interface circle varies over the height as the
thickness of the rivulet changes in the z direction due to the
advancement of rivulet along the corners (Figure 3). The
calculations below are conducted for only one corner of each

Table 1. Rivulet Thickness, Half Corner Angle, and Critical
Contact Angle for Regular Polygons

cross-
section

half corner angle
(α) (deg)

critical contact angle
(θc) (deg)

rivulet thickness
(δ)39,50

triangle 30 60
σ θ

ρ
−

+g z z
(2 cos 1)

( )0

square 45 45
σ θ

ρ
−

+g z z
( 2 cos 1)

( )0

pentagon 54 36
σ θ

ρ
−

+g z z
(1.24 cos 1)

( )0
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cross section since all sides of the polygons have the same
length.

2.2.1. Triangular Cross Section. In Figure 2a, the projection
of the 3D interface in the horizontal x−y plane forms the
triangle ABC where each side’s length is 2a. In the triangle
ABC, the origin of coordinates is placed at the center of gravity
of the triangle. Using simple trigonometry, the coordinates of

the three vertices are A(−a,− a3
3

,z), B(a,− a3
3

,z), and C(0,

a2 3
3

,z). The coordinates for the center of gravity (G) can be

determined considering positions of the three vertices of A, B,
and C as follows

+ + + + + +

=

i
k
jjjj

y
{
zzzzG

x x x y y y z z z

z

3
,

3
,

3

(0,0, )

A B C A B C A B C

(1)

The distance between each vertex and the center of gravity,
d, is equal and can be calculated as follows

= − + − + − =d x x y y z z a( ) ( ) ( )
2 3

3G A
2

G A
2

G A
2

(2)

Simple trigonometric calculations involving Figure 2a result
in the following equation

δ− =a
2 3

3
r

(3)

where r is the radius of curvature of the meniscus. Plugging eq
3 into the rivulet thickness equation in the triangular tube from
Table 1 leads to

σ θ

ρ
+ = [ − ]

−
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

z z
g a r

2 cos 1
0 2 3

3 (4)

The radius of curvature of the meniscus is determined with a
circle equation format (i.e., the inscribed circle in Figure 2) as
follows

= +r x y2 2
(5)

The distance between the rivulet tip and the bulk meniscus,
which is rivulet height, can be obtained by plugging eq 5 into 4,
as given below

σ θ

ρ
= −

− +
−Ä

Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

z
g a x y

z
(2 cos 1)

2 3
3

2 2 0

(6)

2.2.2. Square Cross Section. From the geometry of the
square in Figure 2b, the following equation can be obtained in
the x−y coordinate

δ− =a r2 2 (7)

where a is the half-side length of the square capillary and r
refers to the radius of horizontal curvature of the meniscus.
The radius of curvature increases along the z direction as the
thickness of the rivulet decreases by height, and its maximum is
equal to the half of the square diameter where δ = 0. By
substituting the rivulet thickness in the square capillary from
Table 1 in eq 7, the rivulet height is obtained as follows

σ θ
ρ

+ = [ − ]
[ − ]

z z
g a r

2 cos 1
20

(8)

Using eq 5, eq 8 is converted to the following form

Figure 2. Cross-section geometry and top view of the arc menisci profile in (a) triangle, (b) square, and (c) pentagon capillary tubes.

Figure 3. Development of the meniscus curvature in triangular,
square, and pentagonal capillary tubes along the z-axis (top view).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06141
ACS Omega 2022, 7, 9310−9321

9313

https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06141?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06141?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


σ θ

ρ
= [ − ]

[ − + ]
−z

2 cos 1

g a 2 x y
z

2 2 0
(9)

2.2.3. Pentagonal Cross Section. The rivulet height in the
pentagonal capillary tube (Figure 2c) can be determined
similar to that for the triangle and square cross sections. The
following equations are used where d is the radius of the
circumscribed circle

δ− =d r (10)

σ θ
ρ

− −
+

=a
g z z

rcsc 36
(1.24 cos 1)

( )0 (11)

The pentagon cross section is inscribed in a square, where b
is the half-length of the circumscribed square in Figure 2c. The
relationship between the side length of the square and the
pentagon tubes is given below

+ =a a b2 cos 72 (12)

=
+

a
b

1 2 cos 72 (13)

By substituting “a” (the half-length of the pentagon in Figure
2c) from eq 13 into eq 11 and also the rivulet thickness
equation for the pentagon capillary tube (from Table 1), the
rivulet height is obtained by the following expression

σ θ

ρ
+ = −

−+

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

z z
g r

(1.24 cos 1)
b0 csc 36

1 2 cos 72 (14)

σ θ

ρ
= −

− +
−

+

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

z
g x y

z
(1.24 cos 1)

b csc 36
1 2 cos 72

2 2 0

(15)

Figure 4 illustrates a simple algorithm for determination of
the rivulet height in triangle, square, and pentagon cross-
sectioned capillary tubes.

3. CALCULATIONS IN MATLAB

The models developed for calculation of the rivulet height in
capillary tubes with various cross sections are programmed in
MATLAB using surf (X, Y, Z) function. Matrices X and Y are
defined based on the cross-section shape of the capillary tube,
and a 0.01a-sized mesh (where a is the geometrical length
based on Figure 2) is used in the X and Y directions to produce
a grid. The liquid properties (density and surface tension),
solid properties (height of the capillary tube), and liquid−solid
properties (wetting contact angle) are included as initial input
data in the MATLAB software to obtain the rivulet shape and
height calculated based on the algorithms developed in this
paper. The following assumptions/conditions are considered
when developing these geometrical models:

1) For all three models developed in this study, the
denominator would be undefined when the rivulet
thickness reaches zero (δ = 0). This implies that the thin
liquid film does not exist at the corner. Under this
assumption, the radius of curvature is equal to “d,” giving
an infinite height of the rivulet rise. However, it was
proved by Mason and Morrow (1984) that the meniscus
does not reach the corner of the regular polygon.46

Wong et al. (1992) also considered a space filled with a
thin liquid film between the wall and the meniscus (i.e.,
the precursor film assumption) to remove the contact
line singularity.47 Therefore, the assumption of zero
rivulet thickness should be discarded. To rectify this
issue in our models, it is assumed that the liquid films at
the tip of the rivulet, around the corners of the polygon’s
cross-sections, are thin enough, and the 3D topology of
the interfaces is plotted when the rivulet thickness (i.e.,
the intersecting point of liquid, gas, and solid) reaches a
threshold value of 0.02a in all corners. The thickness of
the liquid film between the walls and the meniscus is
selected depending on the geometrical length. Since the

Figure 4. Main steps for obtaining the rivulet height in regular polygonal capillary tubes.
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size of geometry does not lead to any error in our
calculations, the same rational assumption is selected at
different capillary lengths.

2) For all geometrical models, PDMS-20 is considered as
the partially wetting liquid with a density of 930 kg/m3

and a surface tension of 19.8 mN/m.
3) The gravity effect is considered in all models.
4) The proposed models fail to predict the capillary rise

when the contact angle is equal to or greater than the
critical contact angle associated with each geometry.

5) For all models, the Reynolds number is much smaller
than unity; hence, the impact of inertial effects on rivulet
flow can be ignored.

4. RESULTS AND DISCUSSION
From the geometrical model development section, it is clear
that the rivulet height at the corners of the capillary tubes
depends on several parameters such as the polygon cross-
section shape (i.e., the number of polygon sides), the contact
angle, and the side length (i.e., length of the base edge).
According to the rivulet thickness equation in Table 1, (2 cos θ
− 1), θ −( 2 cos 1), and (1.24 cos θ − 1) expressions appear
in the numerator of the fraction for equations expressing
rivulet rise in capillary tubes with triangle, square, and
pentagon geometries, respectively. Thus, the rivulet thickness
is positive for contact angle values smaller than the critical
angle and becomes negative and/or undefined outside of this
range. It also varies over the height of the capillary tube with an
inverse proportionality as the height increases. This can be
described as δ = K/z, where K is the change in the rivulet
thickness relative to the one at polygon cross section (i.e.,
height of the main meniscus). To calculate the radius of the
inscribed circle in each polygon, matrices X and Y are defined
based on the shape of the cross section for each capillary tube.
It was found that the threshold mesh size is 0.03a, where “a” is
the half-side length of the capillary, through qualitative
assessment of the 3D plots of the rivulet rise as well as the
menisci profiles. The radius of the meniscus curvature is

determined using a circle equation format ( = +r x y2 2 ). By
selecting a fine mesh, the number of points in the matrices X
and Y increases, which results in obtaining an accurate curve in
the 3D profile. For mesh size values greater than 0.03a, the 3D
rivulet rise as well as menisci profiles are distorted with
discontinuities in the perimeters. However, for the coarse mesh
sizes equal to or smaller than 0.03a, perfectly distinguishable
profiles are obtained, with no sensitivity to mesh size in terms
of the clarity of the profile perimeters. In other words, the
mesh size affects the curvature and the 3D profiles of the
menisci in all capillary tubes. The finer the mesh size, the larger
the number of points in the matrices X and Y. This decreases
the distance between the points, which leads to a higher
resolution, that is, more accurate profiles. Therefore, a fine
mesh size of 0.01a is selected in the x and y directions in order
to generate mesh size-insensitive results. A schematic
representation of the computational mesh size details along
the x and y coordinates is demonstrated in Figure 5.
In the sections below, the impacts of various parameters on

the rivulet profile and height are studied, and the minimum
and maximum values of the corner rise are determined.
4.1. Effect of Polygon Shape. The cross-sectional

geometry of the capillary tube has a great impact on the
rivulet height. The 3D profiles of the menisci in the triangular,

square, and pentagonal capillary tubes are shown in Figure 6.
For the purpose of comparison, similar input values for the side
length (i.e., 3 mm), wetting contact angle (30°), and fluid
properties are used to compute menisci profiles in all capillary
tubes. It is clear that the presence of corners affects the rivulet
rise when the wetting contact angle (i.e., 30°) is less than the
critical contact angle (i.e., 60, 45, and 36° for triangular,
square, and pentagonal cross sections, respectively). The
rivulet height is the same at all corners in each particular cross-
sectional geometry. This is due to the fact that the capillary
action increases in the corner region, which causes the rivulet
to appear among the three phases.43 It is also observed that the
meniscus is concave for all three cross-sectional geometries. In
addition, the menisci boundaries do not touch the corners of
the cross sections (i.e., there are films of the wetting liquid
occupying the corner spaces when the horizontal projections of
the menisci are concerned in the x−y plane passing through at
the bottom of the concave menisci), which satisfies assumption
1.
For all capillary tubes, the arc meniscus advances in all

corners, and the same behavior of the liquid film along the
corner is observed in the models. Figure 6 clearly shows that
the surface shape is a function of z = f (x, y). Numerical
solution of the proposed model gives the infinite rivulet heights
(in z) in the corner (x, y) and finite rivulet height (in z) at the
other (x, y) points in the cross section and on the perimeter.
From Figure 6, it is also observed that the radius of

curvature for the meniscus increases along the z direction,
while the liquid film thickness (i.e., rivulet thickness), close to
the corner region, decreases by height. The thicker volume of
the liquid film is situated near the bulk meniscus, and the liquid
film at each corner becomes thinner at the tip position of the
rivulet. Far from the bulk meniscus, the rivulet thickness is
relatively insignificant. These observations are in agreement
with the numerical simulation results presented by Guru-
murthy et al. (2018).39

The rivulet height at the corners varies by changing the
geometry of the capillaries’ cross sections. The rivulet height
lowers from 37.8 mm in the triangular capillary to 11.5 and 6.2
mm in the square and pentagon capillaries, respectively. It is
concluded that the rivulet height at the corners has an inverse
relation with the number of sides in regular polygonal capillary
tubes. Since the contact angle for all three studied cases is less
than the critical contact angle associated with each tube,
rivulets appear at and rise along the corners.

Figure 5. Schematic representation of the computational mesh size
sensitivity aspect in the x and y directions.
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4.2. Effect of Contact Angle. In order to understand the
impact of contact angle on the rivulet height, three contact
angle values of 0, 15, and 30° are examined when all other solid

and liquid properties as well as the side length of the capillary
cross section (i.e., 3 mm) are the same. Note that all these
contact angle values are smaller than the critical contact angle

Figure 6. 3D plots of rivulet rise and menisci profiles in (a) triangle, (b) square, and (c) pentagon capillary tubes with a = 1.5 mm and θ = 30°.
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associated with each capillary tube. Figure 7 compares the
rivulet profile and equilibrium height in one corner at different

contact angles for various capillaries. It is clear that the contact
angle has a significant impact on the meniscus profile in the x−
z plane (when the y coordinate is fixed, i.e., at a particular
corner) as well as on the equilibrium rivulet height at the
corner. The greater the contact angle value (i.e., the closer it
gets to the critical contact angle for each particular cross-
section geometry), the smaller the rivulet height at the corner.
For circumstances where the solid surface is wetted better with
the liquid (i.e., lower contact angle), the capillary action is
greater in magnitude which results in greater spontaneous
advancement of the liquid film edge at the corner and hence a

higher rivulet height. The gas−liquid profiles displayed in
Figure 6 also confirm assumption 1 according to which there is
a liquid film occupying the corner; thus, the menisci
circumference does not touch the solid surface. Rise of the
height of liquid in the triangle capillary tube is obtained as
51.6, 48.1, and 37.8 mm at 0, 15, and 30°, respectively. In
square and pentagon capillary tubes, more decline is observed.
The height decreases to 21.2 and 20.3 mm at the contact angle
of 0° for the square and pentagon capillaries, respectively. It
continues to decrease to 18.7 and 16.7 mm at a contact angle
of 15° and 11.5 and 6.2 mm at a contact angle of 30°. The
lowest height of 6.2 mm is observed in the pentagon capillary
tube at a contact angle of 30°.
The calculated rivulet height values are also plotted versus

contact angle (Figure 8). A quadratic function is fitted to the

calculated rivulet height values for each dataset associated with
a particular capillary tube, with perfect correlation coefficients.
The decreasing trend of the rivulet height versus contact angle
is evident from the descending trends in Figure 8. The
accuracy of our calculated rivulet height values can also be
double checked by predicting the critical contact angle value
for each capillary tube (where the rivulet height becomes
negligible) from the trend-lines fitted on the datasets. One
could approach the rivulet height to zero and solve the
quadratic equation for each capillary tube, which results in
critical contact angle values very close to those reported in
Table 1.

4.3. Effect of Side Length. The side length of the capillary
tube is found to significantly affect the height of rivulet rise at
the corners. Three side lengths of 1, 2, and 3 mm are used in
three capillary geometries at a fixed contact angle of 30°. The
heights of rivulet rise at one particular corner (i.e., fixed y-
coordinate) for the three capillary types are displayed in Figure
9. Clearly, the capillary rivulet rise at the corner has an inverse
relation with the side length of the capillary. The greatest
rivulet rise values are obtained in capillaries with less number
of corners as well as the smallest side length. This is due to the
fact that the smaller the side length of the capillary, the smaller
the radius of curvature associated with the concave meniscus
formed at the gas−liquid contact surface. This will lead to an
increase in the capillary action which subsequently increases
the height of capillary rise associated with the advancing rivulet

Figure 7. Effect of contact angle on the rivulet height for (a) triangle,
(b) square, and (c) pentagon capillary tubes with a side length of 3
mm.

Figure 8. Change in rivulet height with contact angle for different
capillary tubes.
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at the corners. This finding is in agreement with previous
studies presented in the literature.39

4.4. Effect of Liquid Type. To investigate the impact of
liquid properties (i.e., surface tension and density) on rivulet
height calculations, we consider three types of liquids, namely,
water, polydimethylsiloxane (a silicone oil) with kinematic
viscosity of 20 and 100 cSt (PDMS-20 and PDMS-100),
respectively, with the properties listed in Table 2. The effect of
liquid properties on the rivulet capillary rise is summarized in
Table 3. According to Tables 2 and 3, the greater the ratio of
surface tension to density, the larger is the rivulet rise value.
The smallest rivulet height values are obtained for the
pentagon capillary tube dipped into PDMS-100. In all three
proposed geometrical models, the rivulet height is governed by

the surface tension and density of the liquid. The impact of this
ratio was also observed in stationary solution of the corner rise
in the literature, and a similar conclusion was made.39,51

5. MODEL VALIDATION
To investigate the accuracy of the three geometrical models
developed in this study, one may look at the predicted critical
contact angles, obtained from curve fitting presented in Figure
8, and compare them with the literature values (Table 1). The
positive root of the three quadratic equations from Figure 8
represents the critical contact angle at which the rivulet height
becomes negligible. These values are obtained as 58.24, 44.25,
and 36.09° for the triangle, square, and pentagon capillaries,
respectively. The relative error between the calculated and
literature values of these critical contact angles are 2.93, 1.67,
and 0.25% for triangle, square, and pentagon capillary tubes,
respectively. The very small relative error values, with respect
to the literature data, suggest that the accuracy of our
predictions is significant.
In addition, the experimental capillary heights measured in

the triangular and square tubes are 172 and 70 mm for the
water/air system, respectively, which are very close to the
corresponding calculated values (174.4 and 71.7 mm as
reported in Table 3). The average error percentage is about
2%, revealing a very good match between the predictions and
experimental data.
Another way of validating our geometrical formulations is

through a comparison with a recently published paper by
Gerlach et al. (2020) that describes a stationary solution for
the rivulet rise in a rounded corner square capillary tube.51 The
stationary solution proposed by Gerlach et al. (2020) is as
follows

σ
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− −

−

θ
θ +( )

z
gR

2 1 1

( 2 1)max
w

tan ( )
(tan ( ) 1)

2

2

(16)

δ
θ

=
−

R
2 cos 1w (17)

where Rw is the radius of curvature of the wetting liquid on the
wall at the corner region.
Similar to our geometrical models (eqs 6, 9, and 15), the

spontaneous capillary rise at the corners expressed by eq 16 is
also governed by surface tension, gravity forces, and density.

Figure 9. Effects of side length on the rivulet height at a contact angle
of 30° for (a) triangle, (b) square, and (c) pentagon cross-section
capillary tubes.

Table 2. Properties of the Liquids Used in Rivulet Height
Calculations

properties PDMS-20 PDMS-100 water

surface tension (mN/m) 19.8 20.1 72
density (kg/m3) 930 970 1000
surface tension to density ratio (m3/s2) 0.0213 0.0207 0.072

Table 3. Effect of Liquid Type on Rivulet Capillary Rise
(Base Edge Length: 3 mm; Contact Angle: 0°)

rivulet height (mm)

liquid type triangular square pentagon

PDMS-20 51.6 21.2 20.3
PDMS-100 50.1 20.6 19.7
water 174.4 71.7 68.6
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The maximum rivulet rise height (zmax) is obtained from the
stationary solution when θ = 0, as shown below51
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ρ δ
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Our geometrical model for rivulet height in a square
capillary tube also suggests that the maximum capillary rise will
occur at zero contact angle, as follows

σ

ρ
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− +
−z

g a x y
z

( 2 1)

( 2 )
max 2 2 0

(19)

It should be noted that the origin of the z coordinate (i.e.,
z0) is located at the lowest point of the concave meniscus.
Comparison of the maximum rivulet rise height expressions

from our geometrical model, eq 19, with that obtained from
the stationary solution,51 eq 18, suggests that the thickness of
the rivulet in the stationary solution for the square capillary can
be approximated by

δ = − +− a x y2square capillary
2 2

(20)

A review of Figure 2b clearly shows that the difference
between the half diameter of square (a 2 ) and the radius of

the inscribed circle ( = +r x y2 2 ) is equal to the rivulet
thickness. In other words, the relationship between the
parameters included in our geometrical model, eq 9, is similar
to the one proposed by Gerlach et al. (2020) in eq 16.
It should be emphasized that all methods presented in the

literature to plot the rivulet rise in nonsquare capillaries have
some deficiencies, and the absence of meniscus on the flat wall
portions is the limitation of our model as mentioned in Figure
6. This error is resulted from the simplifying assumptions
considered in this study. It is known that the curvature of the
rivulet is also present in the vertical direction near the bulk
meniscus; therefore, it would be better in general to consider
this curvature in the vertical plane as well in order to obtain a
more accurate rivulet rise. However at a large distance from the
bulk meniscus, the rivulet thickness is insignificant; it is much
smaller than the radius of meniscus. To simplify the final
equations (eqs 6, 9, and 15), the horizontal curvature is only
considered, based on which the remote stationary shape of the
rivulet is obtained. The rivulet shape is estimated from the
proposed rivulet thickness along the vertical centerline of the
rivulet. It is not possible to calculate the vertical curvature
using analytical methods. For the remote solution of the
model, however, consideration of the horizontal curvature
could provide an approximate rivulet height. This assumption
was also used by Gurumurthy et al. (2018) by which the
remote rivulet shape was obtained based on rivulet thickness
using numerical methods.39,43

The capillary rise at the corners of capillary tubes has been
the subject of numerous experimental, analytical, and
simulation studies in the literature. Various scientific and
engineering applications of noncircular capillary tubes make it
inevitable to find a robust yet practical methodology to predict
the rivulet rise and thickness in polygonal capillaries. The
experimental methodologies are time consuming, could be
challenging to execute for more complex geometries, and are
subject to measurement errors. Use of mathematical modeling
and geometrical relations, however, can provide an exact
method to compute the rivulet rise and thickness, and

determine the exact topology of the 3D menisci. The presented
geometrical models could form the basis of a detailed yet quick
methodology for computation of liquid rise in complex
capillary corners.

6. CONCLUSIONS
The results of rivulet profile and tip position in the triangle,
square, and pentagon capillary tubes under the effect of gravity
are presented in this study. With the geometrical consideration
of capillary tubes, the rivulet rise equations for a partially
wetting condition are developed, and the algorithms are
introduced in MATLAB software to plot the 3D surfaces of
menisci. The following conclusions are obtained from this
study

• Based on our analytical solution, the corner meniscus
rises when the contact angle is below its critical value. In
all three capillary tube geometries, the rivulet advances
close to the intersecting point of the liquid, gas, and
solid. The radius of curvature for the meniscus increases,
and the rivulet thickness decreases along the z direction.

• It is observed that the menisci are all concave, and the
rivulet height is the same at all corners for each
particular capillary tube.

• It is found that the number of polygon sides, the contact
angle, and the side length inversely affect the corner rise.
Upon an increase in the contact angle, a quadratic
function is able to closely predict the rivulet height for
each particular capillary tube.

• Investigating the impact of liquid type on the height of
rivulet rise reveals that the height is directly related to
the ratio of surface tension to density of the liquid.

• In order to validate the geometrical models, the critical
contact angle values are calculated by solving the
quadratic equations describing the change of rivulet
height versus contact angle. The calculated values of the
critical contact angle are in agreement with the values
reported in the literature. A comparison between the
experimental and predicted rivulet height in triangular
and square tubes also show very good agreement. In
addition, the model of rivulet capillary rise in the square
capillary tube is compared against another formulation
presented in the literature, and both methodologies
result in a similar relationship between the model
parameters and almost the same results.

• For more complicated capillary tube geometries, the
exact analysis of the rivulet profile is a relatively difficult
task. For such cases, it is recommended to numerically
simulate the 3D rivulet shape and profile in order to
better visualize the corner rise as well as the 3D topology
of the interface. The analytical model proposed in this
study could also be generalized for the case of “n”
corners.

7. EXPERIMENTAL PHASE
A simple experimental setup is designed to measure rivulet
capillary rise in two noncircular capillary tubes, namely,
triangular and square (see Figure 10). The pentagonal capillary
was not available in our lab to conduct tests. The capillary rise
measurements in only two capillary tubes are adequate for
comparison and validation purposes.
A proper stand/holder was designed to firmly hold the

capillary tubes in the vertical direction. To attain zero contact
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angle, deionized water was used in the experiments, and the
internal surface of the glass tubes was carefully cleaned before
each experimental run. This was confirmed in the tests as the
measured contact angles were all lower than 10°. The capillary
tubes were dipped in a water container so that water can easily
enter the tubes. A high-speed camera (Panasonic Lumix DMC-
FZ300 Digital Camera) was used to record the liquid-rising
process in the tubes. The capillary rise was measured from the
point that the tube touched water to the point where the
meniscus stopped. An image processing software helped to find
the instantaneous and equilibrium capillary heights over the
process. The equilibrium capillary height can also be measured
using a ruler in a simple way. Each test was repeated three
times, and the average heights are calculated and reported in
this work. The possible errors in the experiments were
measurement errors and the presence of contaminants in the
tubes and water.
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Letters/variables
a, half-length of polygon, m
A, B, C, D and E, vertex coordinates, m
b, half-length of the circumscribed square, m
d, distance between each vertex and the center of gravity, m

g, gravitational acceleration, m/s2

G, center of gravity, dimensionless
K, constant, dimensionless
n, number of polygon sides, dimensionless
r and Rw, curvature radius of meniscus, m
z, rivulet height, m
z0, origin of the z coordinate (i.e., the bottom of the concave
meniscus), m
Zmax, maximum rivulet rise height, m

Greek symbols
θc, critical contact angle, degrees
α, half corner angle, degrees
σ, surface tension, mN/m
θ, contact angle between the meniscus and the wall, degrees
ρ, density, kg/m3

δ, rivulet thickness, m
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Figure 10. Simple schematic of the experimental setup used in this
research.
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