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Abstract

Background: Expression of the minor virion structural protein VP2 of the calicivirus murine norovirus (MNV) is believed to
occur by the unusual mechanism of termination codon-dependent reinitiation of translation. In this process, following
translation of an upstream open reading frame (ORF) and termination at the stop codon, a proportion of 40S subunits
remain associated with the mRNA and reinitiate at the AUG of a downstream ORF, which is typically in close proximity.
Consistent with this, the VP2 start codon (AUG) of MNV overlaps the stop codon of the upstream VP1 ORF (UAA) in the
pentanucleotide UAAUG.

Principal Findings: Here, we confirm that MNV VP2 expression is regulated by termination-reinitiation and define the mRNA
sequence requirements. Efficient reintiation is dependent upon 43 nt of RNA immediately upstream of the UAAUG site.
Chemical and enzymatic probing revealed that the RNA in this region is not highly structured and includes an essential
stretch of bases complementary to 18S rRNA helix 26 (Motif 1). The relative position of Motif 1 with respect to the UAAUG
site impacts upon the efficiency of the process. Termination-reinitiation in MNV was also found to be relatively insensitive to
the initiation inhibitor edeine.

Conclusions: The termination-reinitiation signal of MNV most closely resembles that of influenza BM2. Similar to other
viruses that use this strategy, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to
the mRNA following termination at the VP1 stop codon. Our data also indicate that accurate recognition of the VP2 ORF
AUG is not a pre-requisite for efficient reinitiation of translation in this system.
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Introduction

For most eukaryotic mRNAs, translation initiation is a 59-end-

dependent process beginning with recognition of the cap structure by

the cap-binding complex eIF4F [1] and (usually) recognition of the

AUG codon of the first open reading frame (ORF) on the mRNA by

the scanning ribosome complex [2]. This 59-end dependence is a

problem faced by many RNA viruses with polycistronic genomes

and elaborate strategies have been developed to facilitate access of

ribosomes to downstream open reading frames (ORFs). Amongst

these, a number of unconventional translation strategies have been

described [3]. These include leaky scanning of 40S subunits past the

start codon of the first ORF [4], the possession of intercistronic

internal ribosome entry signal [5], programmed ribosomal frame-

shifting during elongation [6] and stop codon suppression at the

termination step [7–8]. Another strategy that has evolved to allow

expression of a downstream ORF is termination-reinitiation (also

referred to here as stop-start). In this process, ribosomes translate the

upstream ORF but following termination, a proportion of 40S

subunits remain tethered to the mRNA and go on to reinitiate at the

start codon of the downstream ORF. This termination-dependent

reinitiation strategy allows the coupled expression of products from

adjacent ORFs and thus the production of a defined ratio of gene

products.

Termination-reinitiation in virus systems [9] was first described

in the synthesis of the BM2 protein of the orthomyxovirus

influenza B virus [10] and subsequently in expression of VP2 of

feline calicivirus (FCV) of the genus Vesivirus [11–13] and VP10 of

the calicivirus rabbit haemorrhagic disease virus (RHDV) of the

genus Lagovirus [14]. A related phenomenon is also seen in

expression of the M2-2 protein [15–16] of the paramyxovirus

respiratory syncytial virus (RSV) and the M2-2 protein [17] of

pneumovirus of mice (PVM). In FCV, the stop codon (UGA) of

the major capsid stop-start protein VP1 overlaps the start codon

of the minor capsid protein VP2 (AUGA) (the stop-start

‘‘window’’). Efficient termination-reinitiation depends upon sev-

eral factors, including the close proximity of the stop and start

codons, the transit of ribosomes along the VP1 mRNA up to the

stop codon and a stretch of some 70–80 nucleotides (nt) of mRNA

upstream of the stop-start window whose primary sequence, rather
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than the encoded protein, is key. This region of the mRNA,

termed the termination upstream ribosomal binding site (TURBS),

is needed for the retention of post-termination 40S subunits [11].

A short sequence of the TURBS (termed Motif 1) that is

complementary to part of helix 26 of 18S rRNA likely acts to

tether the 40S ribosomal subunit to the mRNA post-termination,

allowing time for the ribosome to acquire the factors necessary to

initiate on the downstream ORF [12,14,18]. The TURBS may

also act by recruitment of eukaryotic initiation factor 3 (eIF3) or

eIF3/40S complexes [13]. Recent studies of termination-reinitia-

tion in the expression of the orthomyxovirus influenza BM2

protein have revealed a requirement for a shorter stretch of

mRNA (45 nt) upstream of the stop-start window, but neverthe-

less, the RNA contains a similar TURBS Motif 1 [19]. From RNA

secondary structure probing, it has been proposed that this stretch

may be displayed on the apical loop of a stem-loop structure that

may form following transit of the ribosome through the region and

termination at the upstream ORF stop codon [9,19].

In this paper, we describe an analysis of termination-reinitiation

in the expression of the VP2 protein of murine norovirus (MNV), a

calicivirus of the genus Norovirus. The VP2 start codon (AUG) of

MNV overlaps the stop codon of the upstream VP1 ORF (UAA)

in the pentanucleotide UAAUG, consistent with a termination-

reinitiation strategy, and a stretch of bases (59 UAUGGGAA 39)

complementary to 18S rRNA helix 26 is present upstream. Using

a luciferase-based reporter plasmid, we show that VP2 is expressed

by termination-reinitiation and provide evidence consistent with a

functional interaction between the coding region of the VP1

mRNA and 18S rRNA. The formation of mRNA secondary

structure within the TURBS is also investigated. Overall, our data

suggest that the mechanism of VP2 expression is broadly similar to

that of the other caliciviruses and influenza B. However, in

contrast to what was observed with the FCV signal [13] and seen

here with influenza BM2, termination-reinitiation at the MNV

signal shows resistance to the initation inhibitor edeine. Thus the

mechanism by which the AUG of the downstream ORF is

recognised may differ.

Results

The Murine Norovirus VP2 Protein Is Translated via
Termination-Dependent Reinitiation

To investigate termination-reinitiation in the synthesis of the

MNV VP2 protein, a 255 bp fragment of viral cDNA was cloned

between the SalI and BamHI sites of the dual-luciferase reporter

vector p2luc [20]. The cloned fragment, which contained 203 bp

of sequence information upstream of the UAAUG stop-start

window, and 52 bp downstream was suspected, on the basis of

work with other viruses (see Introduction), to contain all of the

required sequences for termination-reinitiation. The cDNA

fragment was cloned in such a way that the Renilla and Firefly

luciferase ORFs were in frame with the stop and start codons

respectively of the termination-reinitiation motif to give an ORF

configuration 59 rlucVP1-VP2fluc 39 (Figure 1). This vector,

named p2luc-MNVwt, contains a T7 RNA polymerase promoter

allowing synthetic mRNAs to be generated to investigate the stop-

start process in in vitro translation reactions.

The translation of in vitro synthesised wild-type (wt) mRNA from

p2luc-MNVwt was carried out in FlexiH rabbit reticulocyte lysate

(FlexiHRRL) supplemented with 140 mM KCl (see Materials and

Methods) and gave products of the expected sizes (upstream

rlucVP1 ORF, ,42 kDa, downstream VP2fluc ORF, ,64 kDa,

Figure 1b). The molar ratio of VP2fluc to rlucVP1 (taking into

account the methionine content of the two proteins) was typically

in the region of 1:10. Thus, initiation on the downstream ORF

occurred at a frequency of about 10% of that of the upstream

ORF. That this was indeed the product of the second ORF was

further confirmed by comparing the migration of RRL translation

products from mRNAs derived from p2luc-MNVwt that had been

linearised at different points within the second ORF (data not

shown). Termination-reinitiation is distinct from IRES-mediated

expression of downstream ORFs as translation through the

upstream ORF is an absolute requirement [11,14,16]. In order

to establish whether this is also the case for MNV expression, a

premature in-frame stop-codon was inserted close to the end of the

rluc ORF but upstream of VP1 sequence information (219 bp

upstream of the authentic rlucVP1 termination codon). If the

expression of VP2fluc is a result of termination-reinitiation,

translating ribosomes would be unable to reach the AUG start

Figure 1. Minimal sequence requirements for MNV termina-
tion-reinitiation. A) Schematic of the p2luc-MNV reporter mRNA. The
termination-reinitiation region (203 nt upstream and 52 nt downstream
of the UAAUG motif) was cloned into the SalI and BamHI sites of the
p2luc reporter plasmid. HpaI run-off transcripts for in vitro translation
were generated using T7 RNA polymerase. The location of the T3
promoter present in the structure mapping construct p2luc-MNV-T3 is
indicated. B) Deletion analysis of MNV termination-reinitiation. A series
of p2luc-MNV variants were prepared with stepwise, in-frame deletions
from the 59 end of the inserted viral sequence. The wild-type (wt),
premature stop (ps) and deletion mutant plasmids were linearised with
HpaI and run-off transcripts translated in FlexiH RRL at a final RNA
concentration of 50 mg/ml in the presence of [35S]-methionine and
140 mM added KCl. The products were resolved by 12% SDS-PAGE and
visualised by autoradiography. The number of nucleotides of viral
sequence remaining up to the AUG start codon of the MNV ORF is
shown below the gel. The product of the full-length or truncated
versions of the rlucVP1 ORF (predicted size of MNVwt is 42 kDa) is
marked rluc, and the VP2fluc product (predicted size, 62 kDa) is marked
fluc. The MNV ps rluc product is the shortest (predicted size, 33 kDa).
RRF denotes the relative reinitiation frequency in comparison to MNVwt
(set at 100). The figure in brackets represents the ratio of the intensity of
the fluc and rluc products (adjusted for methionine content and
expressed as a percentage) for the MNVwt mRNA.
doi:10.1371/journal.pone.0008390.g001

MNV Termination-Reinitiation

PLoS ONE | www.plosone.org 2 December 2009 | Volume 4 | Issue 12 | e8390



codon of VP2fluc in the mutant mRNA and the ORF could not be

translated. As is clear in Figure 1b, the introduction of a premature

stop codon into the rluc/M1 ORF abolished expression of the

VP2/fluc product, but had no effect on synthesis of the upstream

ORF (rlucVP1ps, ,33 kDa). These data are thus consistent with a

termination-reinitiation strategy for the expression of the VP2

protein and confirm a requirement for translation through the

upstream ORF.

Expression of MNV VP2 Is Dependent on ,40–43 nt
Upstream of the UAAUG Motif

Previous work has suggested that viral termination-reinitiation

events show little dependence on sequence information down-

stream of the ‘‘stop-start’’ window but require 45–250 nt of

upstream primary sequence [11,14,16.19]. In order to determine

the minimal sequence requirements for termination-reinitiation in

VP2 expresssion, deletions of increasing size were made from the

59 end of the inserted viral information (Figure 1b). The stop-start

product was synthesised efficiently with up to 43 nt of VP1

information present upstream of the UAAUG motif, and to a lesser

extent with 40 nt. However, deletion to 37 nt or less abolished

expression of the termination-reinitiation product (Figure 1b).

These data indicate that only 40 nucleotides of VP1 primary

sequence immediately upstream of the stop-start window are

required for termination-reinitiation in vitro, although 43 nt are

required for full activity.

Termination-Reinitiation of MNV VP2 Synthesis Is
Dependent upon an mRNA Sequence with
Complementarity to 18S rRNA

In FCV, RHDV and influenza B, it has been shown that

termination-reinitiation requires a closely conserved primary

sequence element (referred to as Motif 1) that is complementary

to a region of helix 26 of 18S rRNA [11–12,14]). The position of

Motif 1 varies somewhat, with the 59 base 73 nt (RHDV), 63 nt

(FCV) or 34 nt (influenza B) upstream of the stop codon of the

first ORF. Mutational analysis has revealed that this sequence is

essential for the stop-start process [12–14,18–19]. Within the

,43 nt minimal region of the MNV VP1 RNA required for VP2

expression, a stretch of bases with a similar level of complemen-

tarity to 18S rRNA is also found (Figure 2a, complementary bases

are shown in italics). To investigate whether this region plays a

role in termination-reinitiation in VP2 expression, two point

mutations were made to disrupt potential mRNA:rRNA pairs

(Figure 2a). In the first, the A at –31 was mutated to a G (p2luc-

MNV GU), creating a presumably slightly weaker putative U-G

base pair between the rRNA and mRNA. In the second, the G at

–32 was changed to a C (p2luc-MNV CC), which would act to

disrupt the interaction between 18S rRNA and mRNA. As can

be seen in Figure 2b, the latter mutation greatly reduced

expression of the VP2fluc product, supporting the idea that an

interaction between the 18S rRNA and the mRNA just upstream

of the termination-reinitiation site is required. In the mutant

where pairing was predicted to be maintained (p2luc-MNV GU)

termination-reinitiation was clearly detectable, although the

efficiency was reduced somewhat compared to that of wild-type

mRNA.

RNA Secondary Structure Analysis of the Region
Required for Termination-Reinitiation in MNV VP2
Synthesis

The experiments described above confirm the existence of Motif

1 and its role in reintiation in MNV. It was therefore of interest to

determine the context of this 18S rRNA complementary region

within the global RNA secondary structure of the minimal

functional sequence, and to compare the structure with that

determined for the influenza BM2 signal [19]. To achieve this, a

bacteriophage T3 promoter was inserted upstream of the viral

sequence of the p2luc-MNV.61 plasmid (Figure 1b). The plasmid

was linearised with BamHI, T3 run-off transcripts synthesised and

the RNA end-labelled with [33P]-cATP. The labelled transcripts

were subjected to limited chemical and enzymatic probing prior to

analysis on denaturing polyacrylamide gels. The chemical probes

used were imidazole and lead acetate, specific for cleavage of

single stranded regions. Enzymatic probes were RNases T1, U2

and CL3, which preferentially cleave single-stranded G, A and C

residues respectively, and RNase CV1, which cuts in helical

regions in double-stranded or stacked conformations. A represen-

tative stucture mapping gel is shown in Figure 3 and in Figure 4,

the data are mapped onto mfold predictions of the secondary

structure of the ‘‘stop-start’’ region.

Structure probing analysis of the MNV signal revealed that, like

the BM2 signal, the mRNA in the region essential for termination-

reinitiation is not highly structured. This was especially evident

from the chemical probes, with most residues sensitive to

imidazole and lead cleavage. The enzymatic probes were also

active against the majority of bases in the region and consistent

with this, CV1 probing identified very few double-stranded or

stacked bases. We also noticed a few CL3 cuts at residues other

than C, although the reason for this is uncertain. Minimal free

energy mfold predictions, performed using the online server of

Zuker (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) indi-

Figure 2. Investigating the role of the MNV 18S rRNA
complementary region (Motif 1) in termination-reinitiation. A)
Comparison of part of the sequence of helix 26 of 18S rRNA and the
complementary sequence present upstream of the termination-
reinitiation site of MNV. Contiguous nucleotides complementary to
the 18S rRNA are shown in italics. Putative mRNA-rRNA base pairing is
marked, with the mRNA bases numbered relative to the stop codon of
rlucVP1. The sequence of the two constructs generated to address the
role of the complementary region is also shown, with changes in bold
and underlined. B) Plasmids were linearised, transcribed, translated and
analysed according to the legend of Figure 1. Lanes are labelled with
the last two letters of each reporter plasmid name.
doi:10.1371/journal.pone.0008390.g002

MNV Termination-Reinitiation

PLoS ONE | www.plosone.org 3 December 2009 | Volume 4 | Issue 12 | e8390



cated that the most stable RNA fold was the bulged stem-loop

shown in Figure 4. However, the correspondence between this

mfold and the mapping data was not absolute. Whilst in general,

the single-stranded probes displayed more activity against regions

of the model predicted to be single-stranded than they did against

predicted helices, there were anomalies. For example, residues

G51-52 were sensitive to RNase T1, yet were predicted to be in a

double-stranded region (stem 2). Generally, the predicted duplexes

showed more reactivity to single-stranded probes than one would

expect for stable double-stranded stretches. Therefore, it seems

likely that the RNA in this region is metastable, potentially

adopting a number of co-existing structures. In our model, the

sequence complementary to 18S rRNA is sequestered between two

putative stems (stems 2 and 3; Figure 4) at a location similar to that

found with BM2 [19]. Given that the termination-reinitiation

process requires the ribosome to translate through the VP1 ORF,

secondary structure in the RNA upstream of the ‘‘stop-start’’

window would be unwound and perhaps remodelled as the

ribosome transits to the termination codon. Toeprinting of

ribosomes paused at initiation codons has shown that the 59 edge

Figure 3. Structure probing of the MNV termination-reinitia-
tion signal. RNA derived by transcription of p2luc-MNV-T3/BamHI with
T3 RNA polymerase was 59 end-labelled with [c-33P]-ATP and subjected
to limited RNase or chemical cleavage using structure-specific probes.
Sites of cleavage were identified by comparison with a ladder of bands
created by limited alkaline hydrolysis of the RNA (OH-) and the position
of known RNase U2 and T1 cuts, determined empirically. Products were
analysed on a 10% acrylamide/7M urea gel containing formamide. Data
was also collected from 6% and 15% gels (gels not shown). Enzymatic
structure probing was with RNases T1, U2, CL3 and CV1. Uniquely
cleaved nucleotides were identified by their absence in untreated
control lanes (0). The number of units of enzyme added to each
reaction is indicated. Chemical structure probing was with imidazole
(I, hours) or lead acetate (Pb; mM concentration in reaction). The water
lane (W) represents RNA which was dissolved in water, incubated for
four hours and processed in parallel to the imidazole-treated sample.
The sequence of the probed RNA and the inferred secondary structure
is shown in Figure 4.
doi:10.1371/journal.pone.0008390.g003

Figure 4. Summary of the MNV structure probing results. The
sensitivity of bases in the MNV termination-reinitiation region to the
various probes is shown for an mfold prediction (see text). The first base
of the transcript is numbered 1. The bases are also numbered (in red)
with respect to the VP1 stop codon (with the U of the UAA codon
numbered +1, the preceding base numbered -1). The reactivies of the
T1 (black triangle), U2 (asterisk), CL3 (open triangle) and CV1 (black
square) probes are marked. The size of the symbols is approximately
proportional to the intensity of cleavage at that site. Lead and imidazole
cleavages are not marked, but bases resistant to cleavage by both
reagents are shown in bold/outline font. The two large arrows show the
boundaries beyond which no structure mapping information was
obtained. The stretch of bases in red indicate the 18S rRNA
complementary region. Bases that form the stop-start overlap are in
blue. The blue line indicates the start of the minimal essential region
required for efficient termination-reinitiation. The purple line indicates
the likely location of the 59-edge of a ribosome poised at the
termination codon (UAA, in blue). Bases in lower case are of vector
origin. The mfold shown in the box shows part of an alternative pairing
possibility in which the 59 arm of stem 2 pairs with a different region (to
give stem 29; see text).
doi:10.1371/journal.pone.0008390.g004
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of the ribosome is some 12 to 13 nt from the first base of the AUG

[21]. This would place the 59 edge of the terminating ribosome

(with the UAA codon in the A-site) close to residue C78 on our

mRNA. Thus a terminating ribosome would prevent formation of

the secondary structure, conceivably releasing the 18S rRNA

complementary region for interaction with the ribosome (see

Discussion). An alternative structure can be predicted under such

circumstances, shown in the inset box in Figure 4. In this structure,

the 59 arm of the original stem 2 is predicted to pair with

alternative bases to generate a new stem (stem 29) with Motif 1

forming part of the apical loop. This alternative fold is attractive

for a number of reasons. By displaying Motif 1 on an apical loop,

this could promote 18S rRNA binding and ribosome tethering

[19]. Until ribosomes transit through this region, Motif 1 would

remain within a larger structure with potentially reduced access to

the ribosome which could, at least in part, account for the

observation that the signal does not appear to function as an IRES.

The deletion analysis of Figure 1 is also consistent with a role for

this alternative structure as the functional ‘‘end-point’’ maps to the

start of the 59 arm of stem 29. Furthermore, most, if not all, viral

TURBS have the potential for base-pairing between regions

flanking Motif 1 [18]. Nevertheless, it should be noted that the

structure mapping data are not fully consistent with this alternative

structure, for example, there is considerable sensitivity to RNase

T1 cleavage within the 59 arm of stem 29. This is considered

further in the Discussion section.

Effect of Moving the Stop Codon of rlucVP1 Further
Downstream of the Start Codon of VP2fluc

Efficient termination-reinitiation seems to require the close

proximity of the stop and start codons [12,14,19]. To investigate

whether this is also the case for MNV, the authentic stop codon of

rlucVP1 (in the context of the fully functional MNV49; see

Figure 1b) was mutated from UAA to CAA such that the first ORF

was extended by 13 amino acids (MNV49.1 Figure 5). The

separation of stop and start codons by such a distance in BM2 is

known to reduce reinitiation about 10-fold [19], but with the

MNV signal, only a three-fold reduction in flucVP2 synthesis was

observed (Figure 6). A possible explanation for this lies in the fact

that the ‘‘new’’ stop codon is itself embedded within a second

potential stop-start sequence (UGAUG) which could facilitate

some reinitiation, but perhaps at a lower frequency, as it would not

necessarily be spaced appropriately with respect to Motif 1.

Another possibility is that 40S subunits terminating at the

downstream stop-start sequence can reinitiate, at a reduced

frequency, at the correct (upstream) AUG, despite the increased

spacing, with the 40S subunit remaining tethered to the mRNA

and ‘‘snapping-back’’ to the normal position of reinitiation. In an

attempt to distinguish between these possibilities, additional

constructs were prepared in which point mutations were

introduced into pMNV.49 such that the termination and start

codons in the two stop-start regions were changed separately and

in combination (MNV49.2 to MNV49.8; see Figures 5 and 6).

From this analysis, it is evident that modification of the authentic

termination-reinitiation motif reduces reinitiation, irrespective of

whether the stop or start codon is eliminated. Alteration of the

AUG codon had the most effect, with reinitiation reduced to

8–38% of the wild-type level. When the natural termination site

was changed such that termination now took place 13 or 15 amino

acids downstream, the frequency of termination-reinitiation was

also reduced, to 25–49% of the wild-type level. In MNV49.8,

where termination of the upstream ORF occurred 30 amino acids

downstream of the natural site, very little reinitiation was seen (8%

of the wild-type level), indicating that the ribosome is unable to

locate the authentic AUG from such a distal termination site. In

the translation of this mRNA, an additional product was seen

(asterisked in Figure 6) whose size is consistent with a fusion of the

encoded ORFs (this is considered in the Discussion section).

Reinitiation events that take place at either the authentic or the

downstream stop-start motifs would produce polypeptides that

differ in size by only 13 amino acids, thus we would not expect to

be able to distinguish them by SDS-PAGE, and this is clear in

Figure 6, where the reinitiation products show very similar

electrophoretic mobilities. Thus we cannot say with confidence

whether a particular AUG (or both) is used. However, the

substantial reintiation activity displayed by MNV49.7, an mRNA

in which both AUGs were changed, indicates that non-AUG

codons can act as reinitiation codons, although probably at

reduced efficiency. This is consistent with other work demonstrat-

ing that reinitiation can occur at non-AUG codons within the

context of a termination-reinitiation signal [12,14,19]. Whilst in

principle, reinitiation of translation of the MNV 49.7 VP2fluc

ORF, following termination, could occur at the next available

AUG, this is located 54 amino acids from the natural stop-start

signal and initiation here would produce a substantially shorter

product that would have been detectable by SDS-PAGE. Thus in

this mRNA, a significant proportion of ribosomes (25% of the

wild-type level) that terminate 13 amino acids downstream of the

authentic stop-start site can reinitiate in an AUG-independent

manner within the stop-start window.

The MNV Termination-Reinitiation Signal Shows
Resistance to the Action of the Initiation Inhibitor Edeine

The precise mechanism of termination-reinitiation is not

known, but the sensitivity of FCV VP2 protein expression to the

translation initiation inhibitor edeine suggests that the reinitiation

process bears at least some similarity to standard initiation at AUG

codons [13]. To ascertain whether edeine sensitivity is a general

feature of termination-reinitiation, we analysed the effect of the

peptide on the activity of the MNV and BM2 signals (with FCV as

a control) using translation time-courses (Figure 7). Reactions were

programmed with the relevant mRNA and at various times an

aliquot was removed, edeine added (to 5 mM) and the aliquot re-

incubated such that the total time of translation was 60 minutes.

To determine the time of first appearance of the termination and

reinitiation products, identical reactions were also performed in

which the elongation inhibitor cycloheximide replaced edeine. In

the edeine experiments, it was evident that for FCV and BM2,

only a trace of ‘‘stop-start’’ product was synthesised at the early

time points. In these experiments, the vast majority of ribosomes

did not reach the stop-start window until at least 7.5 minutes had

passed (as shown in the cycloheximide time course experiments

[data not shown; see legend to Figure 7]), thus the trace of VP2fluc

seen likely corresponds to the product of infrequent internal

initiation at the VP2fluc AUG or is derived from those few

ribosomes that had reached the stop-start window prior to edeine

addition. At later time points, however, the termination-reinitia-

tion product steadily accumulated, with the ratio of the upstream

and downstream ORFs stabilising after 30 minutes (at a

reinitiation frequency of ,4%). Thus for the FCV and BM2

signals, when edeine is present prior to arrival of ribosomes at the

stop-start signal, it greatly inhibits termination-reinitiation, but has

little effect on translation post-reinitiation. Unexpectedly, the

MNV signal responded differently, with the termination-reinitia-

tion product being more evident at early times post-edeine

addition (in comparison to FCV and BM2). At these early time

points, few ribosomes would have reached the stop-start window

prior to edeine addition, thus the MNV signal shows increased

MNV Termination-Reinitiation
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resistance to the effects of edeine. Examination of the kinetics of

synthesis of the two ORFs (Figure 7d) reveals that in all cases, the

frequency of termination-reinitiation at early time points was

higher than that seen at the steady state. This is indicative of a

titration effect; early in the time course, when fewer ribosomes

have loaded onto the mRNA (due to the earlier addition of

edeine), the greater frequency of reinitiation may reflect the

increased relative abundance of a necessary factor. The molecular

basis of the resistance to edeine seen with the MNV signal is

difficult to explain. It may be that recognition of the stop-start

motif is indeed blocked by edeine but somehow, a proportion of

initiation complexes still recognise the AUG present in the second

pentanucleotide motif (UGAUG; see above) on the mRNA.

Discussion

In this paper we show that expression in vitro of the murine

norovirus VP2 protein occurs by coupled translation termination-

reinitiation. The process requires the close proximity of stop and

start codons, a defined region of mRNA upstream of the stop-start

window that includes a functional TURBS Motif 1 and translation

by the ribosome through this region up to the site of termination-

reinitiation. Secondary structure mapping indicates that the RNA

in this region is weakly structured, with Motif 1 loosely embedded

in the 59 arm of a putative stem-loop structure. The MNV signal

thus exhibits many of the features and functional characteristics of

the stop-start signals of FCV, RHDV and influenza B. The

Figure 5. The effect of moving the stop codon of the termination-reinitiation window further downstream on the mRNA. A series of
plasmid constructs were prepared, based on MNV.49 (a fully functional, truncated version of pMNVwt [see Figure 1] which acts as the ‘‘wild-type’’
reference construct [WT] in these experiments), in which the stop and start codons of the termination-reinitiation signal were altered. The figure
shows the primary sequence and three-frame translation of the relevant region of the mRNA encoded by each construct. The natural stop-start motif
is shown in pink and emboldened text, the downstream fortuitous stop-start motif in pink. Mutations within the mRNA sequence are highlighted by
uppercase, red emboldened characters. The upstream rlucVP1 ORF is highlighted in grey, as is the downstream VP2fluc ORF where this is known.
Likely key methionines (start codons) or their replacement amino acid are highlighted in green.
doi:10.1371/journal.pone.0008390.g005
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molecular mechanism of termination-reinitiation remains to be

fully elucidated, however. Central to the discussion is the TURBS

and in this context the purpose of the identified Motifs, the role (if

any) of RNA secondary structure, and the functional requirement

for translation through the TURBS.

Regarding Motif 1, it is clear that in all studies so far, mRNA

mutations that would destabilise an interaction with 18S rRNA

reduce or abolish reinitiation and changes not predicted to affect

pairing having a lesser effect or none at all. Recently, the

reciprocal experiment was performed, where mutations were

introduced into the relevant region of (yeast) 18S rRNA. Their

effect on termination-reinitiation was found to be highly consistent

with a role for mRNA-18S rRNA pairing [18]. These experiments

confirm a role in tethering through rRNA, although do not rule

out the contribution of other factors, for example, binding of eIF3

[13]. A comparative alignment of the MNV signal with other

known or suspected termination-reinitiation signals (Figure 8)

reveals that Motif 1 is always present and that the stop and start

codons of the termination-reinitiation site are in close proximity to

each other. What does vary is the spacing between the two

elements, from only 26 nt in the case of BM2 to 29 nt in MNV,

53 nt in FCV, 61 nt in RHDV and 62 nt (the longest) in the

Lagovirus European brown hare syndrome virus. It is not clear

whether the ‘‘additional’’ sequences present in viruses with longer

TURBS have a role in termination-reinitiation. Deletion analysis

of the FCV and RHDV TURBS has revealed some dispensible

sequences - there may be some flexibility in the spacing of Motif 1

that allows other biological information to be accommodated into

the TURBS without affecting function in stop-start. However,

there is little sequence conservation between the signals of viruses

of different genera, arguing against the presence of other primary

sequence motifs. Another stretch of bases of functional conse-

quence has been identified in FCV and RHDV, namely TURBS

Motif 2, which is located closer to the stop-start window than

Motif 1 and is speculated to help position ribosomes correctly at

the reinitiation codon [12,14]. Recent work has shown that the

functional requirement for Motif 2 is in its participation in a base-

paired region that forms between this motif and a stretch of bases

immediately upstream of Motif 1 [18]; see Figure 8. This base-

pairing has previously been noted from structure predictions of the

signal of FCV [13] and direct RNA secondary structure probing of

BM2 stem 2 [19] and the MNV stem 2 (see Figure 4). Based on the

observations of Luttermann and Meyers [18], the formation of this

stem is likely to be important to termination-reinitiation in the

BM2 and MNV systems. Indeed, it is noticeable that in the

deletion analysis of the MNV signal, and that of BM2 [19], those

deletions that would affect formation of stem 2 showed reduced

activity in termination-reinitiation (Figure 1b, Figure 4).

Despite this progress, the occurence and role of RNA secondary

structure within viral TURBS is poorly understood. Direct

structure probing and mfold analysis indicates that the RNA

upstream of the stop-start window is metastable and whilst the

secondary structures proposed for FCV [13], BM2 [19] and MNV

Figure 6. Effect of moving the stop codon of the termination-
reinitiation window further downstream on the mRNA. The
plasmid constructs of Figure 5 were linearised with HpaI and run-off
transcripts translated and analysed as decribed in the legend to Figure 1.
The product of the full-length or truncated versions of the rlucVP1 ORF
is marked rluc, and the VP2fluc product (predicted size, 62 kDa) is
marked fluc. The longer product observed in the 49.8 translation is
asterisked.
doi:10.1371/journal.pone.0008390.g006

Figure 7. Effect of edeine on termination-reinitiation. Reporter
mRNAs containing the termination reinitiation signals of FCV (panel A),
BM2 (panel B) and MNV (Panel C) were translated in FlexiH RRL at a final
RNA concentration of 50 mg/ml in the presence of [35S]-methionine and
140 mM added KCl. At the indicated time points (min), an aliquot was
removed, edeine added to 5 mM, and the sample reincubated for a total
of 60 min. The translation products were resolved by SDS-PAGE on 12%
gels and visualised by autoradiography. Identical experiments were
performed in which cycloheximide replaced edeine (data not shown). In
the cycloheximide experiments, it was found that in all cases, no
termination-reinitiation product was evident until the 7.5 min time
point, when only a trace was visible. The 7.5 min time point in the
edeine gels is emboldened to reflect this. The relative levels of the rluc
and fluc bands was determined by densitometry and in Panel D, the
Rluc/Fluc ratio is plotted against the time of edeine addition for the
three mRNAs.
doi:10.1371/journal.pone.0008390.g007
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Figure 8. Comparison of caliciviral termination-reinitiation signals and 59 flanking regions. The termination-reinitiation signal of
influenza BM2 is also shown, as is a putative signal in the cellular gene glutamic acid decarboxylase [33]. Confirmed and potential Motif 1 sequences
are highlighted in pink and the stop-start window in blue. Potential base-pairing interactions flanking Motif 1 [18] are indicated in grey (or underlined
in the case of the glutamic acid decarboxylase gene). Within the murine noroviruses, in reference to EU004666, base changes are highlighted in
green. Abbreviations used: EBHSV, European brown hare syndrome virus; RHDV, rabbit hemorrhagic disease virus; VESV, vesicular exanthema of
swine virus; FCV, feline calicivirus; SMSV, San Miguel sealion virus.
doi:10.1371/journal.pone.0008390.g008
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(this study) are superficially similar, the largely single-stranded

nature of the TURBS weakens these models and their comparison.

The insertion of a premature termination codon upstream of the

TURBS blocks reinitiation, ruling out the possibility that VP2

expression occurs by ribosome recruitment to a conventional,

structured, viral IRES or by shunting from the untranslated region

of the upstream ORF. The requirement for translation through

the TURBS may simply reflect the need to deliver ribosomes to

the stop-start window, but it could also indicate a requirement to

remodel the TURBS, conceivably by alteration of RNA secondary

structure or displacement of a bound factor. Based on chemical

and enzymatic RNA structure probing of the BM2 signal and

folding predictions (mfold), it has been suggested that transit of the

ribosome to the stop-start window leads to melting of one stem-

loop structure and the formation of an alternative structure that

has Motif 1 displayed on its apical loop [19]. The position of MNV

Motif 1 relative to the stop-start window is very similar to that of

BM2 suggesting that the same remodelling could operate (Figures 4

and 8). However, whilst transit and termination of the ribosome

would destabilise the identified secondary structure (Figure 4),

liberating TURBS motif 1 in close proximity to helix 26, it is not

clear whether this motif would subsequently be displayed as part of

an alternative secondary structure. Whilst mfold analysis of the

MNV region present locally upstream of the terminating ribosome

does suggest an alternative secondary structure, further work will

be needed to confirm this possibility.

Studies on the FCV signal have revealed that the reinitiation

process occurs in the standard fashion by the criterion of sensitivity

to edeine, but it is distinct in being completely independent of

eIF4G or the eIF4F complex [13]. Analysis of the MNV signal

here provides further evidence that the process deviates from the

standard mechanism. First, like BM2 [19], there appears to be

efficient use of non-AUG codons to reinitiate translation,

indicating a relaxed requirement for the full complement of

initiation factors, which would include eIF1 and eIF1A, thought to

play important roles in locating and correct recognition of the

AUG start codon [22–23]. Secondly, in contrast to what has been

observed with FCV and BM2, the MNV signal is more resistant to

treatment with edeine. Edeine does not inhibit binding of the

eIF2/GTP/Met-tRNAi ternary complex to the 40S ribosomal

subunit, nor Met-tRNAi/40S complex scanning, but there is a

complete failure of AUG codon recognition, so that scanning

continues past all AUG codons, and, probably as a secondary

consequence, there is no ribosomal subunit joining [24–25]. The

relative insensitivity of the MNV signal to edeine suggests that

recognition of the AUG start codon during reinitiation may not

require a scanning ternary complex. It is not clear why the FCV

and BM2 signals respond differently to edeine, especially as the

organisation of the BM2 signal (with regard to the position of

Motif 1 and the primary sequence of the stop-start window) is so

similar to that of MNV. Another observation that hints at non-

standard reinitiation mechanisms relates to the the translation

pattern seen with the MNV49.8 transcript. In this mRNA, the two

termination-reinitiation windows (the natural UAAUG and the

fortuitous downstream UGAUG) were mutated to eliminate the

stop codon in each case. In translations of this mRNA, where

termination occurs 30 amino acids downstream of the authentic

site, very little termination-reinitiation product was seen, but an

additional product was synthesised whose size is consistent with

that of a fusion of the two reporter ORFs (asterisked in Figure 6).

The origin of this protein is uncertain. It could have arisen through

a ribosomal frameshift event, although no obvious conventional

frameshift signals are present in the region of overlap between the

two ORFs [26–27]. It could also represent the outcome of a failed

attempt to terminate and subsequent resumption of translation by

ribosomes on the downstream ORF. Further work will be required

to elucidate the nature and origin of this product and how it relates

to the mechanism of termination-reinitiation.

Materials and Methods

Construction of Plasmids
Plasmids used to assay termination-reinitiation were based on

the p2luc reporter vector [20]. Sequences encompassing the stop-

start signal of MNV (203 bp of sequence information upstream of

the VP1 stop codon and 52 bp downstream) and FCV (97 bp

upstream of the VP1 stop codon and 14 bp downstream) were

generated by PCR (using Pfu polymerase [Roche]) from,

respectively, plasmids pT7:MNV (kind gift of Dr Ian Goodfellow,

Imperial College, London) and pSG-2/3* [13], a kind gift of Dr

Tuiya Pöyry, University of Cambridge. The PCR products and

p2luc were digested with SalI and BamHI and ligated together.

Sequences were confirmed by dideoxy sequencing (using the

facility at the Department of Biochemistry, University of Cam-

bridge). The influenza B termination-reinitiation assay plasmid

(p2luc-BM2wt; 250 bp upstream of M1 stop-codon, 18 bp

downstream) was described previously [19].

Site-Directed Mutagenesis
Site-directed mutagenesis was performed using the Quikchange

II site-directed mutagenesis kit (Stratagene) according to manu-

facturer’s instructions. For large deletions (greater than 48 bp) a

modification of the manufacturer’s protocol was used with the

primers containing ,30 bp of complementary sequence either

side of the site of deletion, as described previously [28].

Mutagenesis to introduce insertions longer than 6 bp was

performed in two steps [29], by first subjecting mutagenesis

reactions (containing either the sense or antisense primer) to three

cycles of PCR, then mixing the reactions and performing a further

18 cycles according to manufacturer’s instructions.

In Vitro Transcription and Translation
Reporter plasmids were linearised with HpaI and capped run-off

transcripts generated using T7 RNA polymerase as described [30].

Messenger RNAs were recovered by a single extraction with

phenol/chloroform (1:1 v/v) followed by ethanol precipitation.

Remaining unincorporated nucleotides were removed by gel

filtration through a NucAway spin column (Ambion). The eluate

was concentrated by ethanol precipitation, the mRNA resus-

pended in water, checked for integrity by agarose gel electropho-

resis and quantified by spectrophotometry.

Unless otherwise stated, mRNAs were translated in FlexiH
rabbit reticulocyte lysate (FlexiHRRL, Promega) programmed with

50 mg/ml template mRNA. Typical reactions were of 10 ml and

composed of 60% (v/v) FlexiHRRL, 20 mM amino acids (lacking

methionine), 500 mM MgOAc, 2 mM DTT, 5U RNAse inhibitor

(RNAguard, GE Healthcare Life Sciences), 130 mM-160 mM

KCl (optimised for each batch of FlexiHRRL) and 0.2 MBq [35S]-

methionine. Reactions were incubated for 1 h at 30uC and

stopped by the addition of an equal volume of 10 mM EDTA,

100 mg/ml RNase A followed by incubation at room temperature

for 20 minutes. Samples were prepared for SDS-PAGE by the

addition of 10 volumes of 2X Laemmli’s sample buffer [31], boiled

for 3 minutes and resolved on 12% SDS-PAGE gels. The relative

abundance of products on the gels was determined by direct

measurement of [35S]methionine incorporation using a Packard

Instant Imager 2024.
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RNA Structure Mapping
A plasmid encoding the putative termination-reinitiation signal of

MNV (p2luc-MNVwt) was modified by site-directed mutagenesis to

include a T3 RNA polymerase promoter 30 bp upstream of the

minimal required viral sequence generating plasmid p2luc-MNV-

T3. RNA for structure mapping was prepared by in vitro transcription

of BamHI-digested p2luc-MNV-T3 using T3 RNA polymerase.

Transcription reactions were performed on a 200 ml scale essentially

as described [30]. Structure mapping was performed using a 59 end-

labelling procedure as described previously [30,32]. All probing

reactions were performed in a final volume of 50 ml and contained

,40,000 c.p.m. 59 33P-end-labelled transcript, 10 mg Escherichia coli

rRNA and the relevant enzymatic or chemical probe. Further details

are provided in the legend to Figure 3.
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