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Simple Summary: Although the dysfunction of the succinate dehydrogenase complex in mitochondria
leads to cancer and other diseases due to aberrant metabolic reactions and signaling pathways, it is
not well known how the succinate dehydrogenase complex is regulated. Our review highlights that
non-coding ribonucleic acids (RNAs), RNA editing enzymes, and RNA modifying enzymes regulate
expressions and functions of the succinate dehydrogenase complex. This research will provide new
strategies for treating succinate dehydrogenase-relevant diseases in a clinic.

Abstract: Succinate dehydrogenase (SDH) complex connects both the tricarboxylic acid (TCA)
cycle and the electron transport chain (ETC) in the mitochondria. However, SDH mutation or
dysfunction-induced succinate accumulation results in multiple cancers and non-cancer diseases.
The mechanistic studies show that succinate activates hypoxia response and other signal pathways
via binding to 2-oxoglutarate-dependent oxygenases and succinate receptors. Recently, the increasing
knowledge of ribonucleic acid (RNA) networks, including non-coding RNAs, RNA editors, and RNA
modifiers has expanded our understanding of the interplay between SDH and RNA networks in
cancer and other diseases. Here, we summarize recent discoveries in the RNA networks and their
connections to SDH. Additionally, we discuss current therapeutics targeting SDH in both pre-clinical
and clinical trials. Thus, we propose a new model of SDH–RNA network interaction and bring
promising RNA therapeutics against SDH-relevant cancer and other diseases.

Keywords: succinate dehydrogenase; cancer; disease; tricarboxylic acid cycle; electron transport
chain; metabolism; reactive oxygen species; non-coding RNA; RNA-editing; RNA-modification

1. Introduction

Succinate dehydrogenase (SDH) is a mitochondrial enzyme present in supporting metabolic
function through the tricarboxylic acid cycle (TCA cycle) and the electron transport chain (ETC).
The yme works by catalyzing succinate to fumarate by oxidation in the TCA cycle, then ubiquinone is
reduced to ubiquinol in the ETC [1]. As a part of the TCA cycle, SDH gains electrons and transfers them
through the four subunits (SDHA, SDHB, SDHC, SDHD) and continues this electron transfer through
the ETC as complex II. The electrons from FADH2 and reduced ubiquinone are transferred to complex
III to continue the production of adenosine triphosphate. This produces the energy for the cell. With the
regulation of this enzyme through its various complexes, the cells are able to perform cellular respiration,
hypoxic response, and other cellular activities such as gene expression. However, altered SDH activity
could give rise to disease and cancer development due to reduced electron flow, increased oxygen
toxicity, and accumulated succinate. Due to the various subunits within the SDH complex, the difference
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in functionality can be responsible for these metabolic changes. In some human cancer cells, SDH
demonstrates tumor-suppressive properties by inactivating hypoxia-inducible factor 1α (HIF-1α) via
reduced succinate [2]. Additionally, the subunits of SDH can interact with ribonucleic acid (RNA)
regulatory networks including non-coding RNAs, RNA-editing enzymes, RNA-modifying enzymes,
transcription factors, and small molecules. A consequence of RNA modifications and deregulation of
non-coding RNAs is the ability to act as tumor suppressors or oncogenes and alter gene expression,
dysregulate cell signaling pathways, and alter cell metabolism [3,4]. Among them, non-coding RNAs
can target SDH and contribute to complex dysfunction [5,6]. Additionally, SDH can be influenced by
non-coding RNAs that are regulated by RNA-editing [7] and RNA-modifying enzymes [8] as well
as transcription factors that have been found to contribute to various cancers. To combat the effects
induced by SDH mutations or metabolic dysfunctions, multiple molecules including SDH inhibitors
and activators are evaluated in current pre-clinical models and clinical trials. Here, we summarize
the SDH-relevant physiological and pathological mechanisms as well as diseases including cancer.
Additionally, we discuss innovative ways that RNA networks influence SDH state and promising
strategies for targeting the SDH complex.

2. Succinate Dehydrogenase-Associated Genes and Protein Structures

2.1. SDH Complex-Associated Genes

The SDH complex is composed of four subunits that are encoded through nuclear genes: SDHA-D
in mammals, SDH1-4 in yeast, and SDH1-8 in plants (Figure 1). Each subunit of the complex functions
through assembly genes including SDHAF1, SDHAF2, SDHAF3, and SDHAF4 or SDH5, SDH6, SDH7,
and SDH8 in yeast. SDHAF2 is an important assembly factor of flavination of SDHA, needed for the
SDH complex to be functional. SDHAF2 works in conjunction with dicarboxylates of the TCA cycle
by stabilizing the active site of SDHA [9]. SDHAF1 provides iron-sulfur (Fe-S) clusters for SDHB by
first binding then recruiting the iron-sulfur cluster co-chaperone protein HscB (HSC20) [10]. SDHAP1,
SDHAP2, and SDHAP3 are pseudogenes that are a part of the SDHA complex (refer to GeneCards).
Recently, it was found that lncRNA SDHAP1 upregulated the expression of EIF4G2 by reducing
miR-4465 levels in ovarian cancer cells [11]. This suggests that the pseudogenes may regulate gene
expressions through sponging microRNAs [12]. Further study of regulation by SDHAP1-3 in the
SDH complex could be beneficial for understanding the functions of the SDH complex that is beyond
metabolic reactions.
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both the tricarboxylic acid cycle (TCA) and the electron transport chain (ETC). Succinate is an enzyme
that is a part of the TCA cycle and is oxidized to fumarate through SDH; this is also present in the
reverse reaction. From the oxidization, two electrons are transferred to subunit A to protonate FAD
to FADH2 and release two electrons to the Fe-S clusters housed within subunit B. Assembly factors
SDHAF1 and SDHAF2 assist in the maturation of subunits A and B. SDHAF1 provides Fe-S clusters
to SDHB and SDHAF2 works in conjunction with dicarboxylate to stabilize the active site of SDHA.
The next subunits, C and D, house heme and are responsible for ubiquinone reduction to ubiquinol.
From here, ubiquinol is transferred to complex III of the ETC. The three known pseudogenes of SDHA,
SDHAP1-3, are also included, whose metabolic function is still unknown.

2.2. Maturation and Assembly of the SDH Complex

The SDH complex is assembled through different complex genes (Figure 1). SDHA is responsible
for the catalyzation of succinate to fumarate. In order for SDHA to be functional, it is dependent on
sufficient flavin adenine dinucleotide (FAD) levels because it is a cofactor. Advantages of FAD cofactor
binding to SDHA include increased redox potential to permit sufficient catalytic activity and stability of
the overall complex [13]. It has been found that SDHAF4 can serve as a chaperone of flavinylated SDHA
by direct interaction prior to SDHA-SDHB complex formation by blocking excess reactive oxygen
species (ROS) production [14]. The next subunit is SDHB, which stores Fe-S proteins; these proteins
help transfer electrons from FAD to ubiquinone. Frataxin is a mitochondrial protein, and its deficiency
can lead to Friedreich’s ataxia and iron accumulation in the mitochondria [15]. Frataxin deficiency can
reduce the activity of Fe-S proteins which as a result can compromise SDH function [16]. SDHAF1 and
SDHAF3 support SDHB maturation by transferring Fe-S clusters and bypassing respiratory distress
and supporting respiratory growth by shielding SDHB from the oxidants [17]. The final step in the
assembly of the complexes includes anchorage of SDHC and SDHD. This anchorage serves as the site
for ubiquinone binding and ubiquinone reduction to ubiquinol. The heme b also sits in this domain
but has been noted to not have a significant role in catalysis [18]. In mammalian structures, the heme b
supports the structure of the membrane anchorage domain [19].

2.3. Metabolic Reactions of the SDH Complex

The SDH complex plays a vital role in cell metabolism considering its participation in the TCA
cycle and ETC. This functional unit allows for the maintenance of ROS. SDH is responsible for oxidizing
succinate to fumarate through the FAD redox reaction in the TCA cycle. There are multiple electron
transfer pathways that allow the TCA cycle and ETC to function. Electrons are transferred to the three
Fe-S clusters throughout the SDH complex (complex II), and these clusters start to transfer the electrons
to ubiquinone. This is in preparation for ubiquinone reduction. Electrons are transferred from the
Fe-S clusters to the ubiquinone pool which allows electron transfer between complex II and complex
III [20]. Complex II is responsible for the reduction of ubiquinone to a semiquinone intermediate to
ubiquinol. Heme also has many roles within the cell and serves as a prosthetic group for mitochondrial
respiratory complexes. As discussed before, heme does not have a major role in catalysis, but it is
essential for SDH complex assembly. In mammalian cells mutations in SDHC H127A and SDHC H127Y
resulted in the decreased level of SDHC, a decrease in enzyme activity, and inhibition of complex II
assembly formation [21]. The ETC acts as a proton gradient with proton pumping through complexes
I, III, and IV. Although complex II is not involved in proton pumping, there is internal protonation
involved with catalysis.

3. Pathogenesis of Succinate Dehydrogenase-Relevant Diseases and Mechanisms

3.1. Cancers

Early studies linked SDH complex dysfunction with cancer, evidenced specifically by studies
that showed that SDHB [22], SDHC [23,24], and SDHD [22] mutations increased superoxide anion
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release (oxidative damage) which led to cells undergoing apoptosis or transformation. Recently, SDH
is classified as a tumor suppressor, mostly due to two well-known abnormalities that it experiences,
which allow for oncogenesis (Figure 2). First, SDH inactivation led to accumulation of succinate,
which competitively inhibits HIF-α prolyl hydroxylase domain (PHD) and leads to the stabilization of
HIF [25]. Stabilized HIF increases malignant cell proliferation by promoting angiogenesis [25] and
ROS production [2]. Increased levels of succinate also led to the production of ROS by inhibiting
α-ketoglutarate-dependent enzymes [26] and increasing the reverse flow of electrons from complex II
to complex I [27]. Furthermore, the accumulation of succinate leads to increased histone methylation
via binding directly and inhibiting histone demethylase JumonjiD3, which enhances epigenetic changes
and oncogenic transformation [28]. We will discuss mutations in the SDH complex that reconfigure the
aforementioned cellular mechanisms to induce tumorigenesis for certain cancers and their roles in
other diseases.
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Figure 2. Genetic and metabolic dysfunction of the SDH complex and its link to diseases. For instance,
SDHB mutations lead to the development of paraganglioma (PGL), pheochromocytoma (PCC), ovarian
cancer, colorectal cancer, gastrointestinal tumors (GISTs), and other cancers. Similarly, SDHB mutations
can cause non-cancer diseases such as leukodystrophy and premature aging. Another way that
abnormal SDH activity causes the disease is through its metabolic dysfunction, as seen with decreased
activities of SDHA and SDHB through epigenetic modification causing acute mountain sickness.

3.1.1. Paraganglioma and Pheochromocytomas

Mutations in SDHB [29], SDHC [30], and SDHD [31] have been implicated in causing two rare
tumors in the autonomic nervous system known as paraganglioma (PGL) and pheochromocytoma
(PCC) [32]. All of these specific genetic mutations are known to increase ROS production [22],
which leads to DNA damage and tumorigenesis [33]. Interestingly, SDHB [22] and SDHD [34]
mutations increased ROS production, which led to the onset of PGL and PCC through the stabilization
of HIF mode of action. Mutations in all four subunits of SDH encoding genes have been shown to cause
PCC and PGL through the inhibition of the histone demethylation route [28]. Interestingly, the same
study found that SDHB mutations had a stronger effect in inhibiting histone methylases which allowed
for increased hypermethylation [28]. This could explain why SDHB-mutated PGL and PCC are more
malignant than when caused by mutations in other SDH-encoding subunits [35]. More recently, a group
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of researchers found that mutations of SDHAF2 alone [36] were linked to PGL and PCC, despite research
suggesting that SDHAF2 does not cause PGL and PCC through the inhibition of histone demethylation
way of action [28]. However, no mechanism has yet been discovered. It is important to note that
PGL and PCC are the tumor types most commonly associated with inheritance/germline mutations,
specifically in the aforementioned SDH subunits [37], which highlights the dynamic role germline and
somatic mutations within the SDH complex have in causing cancers and the importance of genetic
counseling for the former.

3.1.2. Other Cancers

PGL and PCC are most commonly associated with SDH mutations, but other cancers may also arise
due to either SDH mutations or reduced SDH activities (Figure 2). For example, SDHB silencing led to
increased levels of HIF-1α and adenosine monophosphate-activated protein kinase which promoted
metastasis in ovarian cancer [38]. Likewise, the decrease in SDHB in hepatocellular carcinoma increased
its malignancy through the Warburg effect and increased expression of epithelial–mesenchymal
transition-related markers [39]. In colorectal cancer, wild-type SDHB has been shown to increase
expressions of tumor suppressors such as phosphatase and tensin homolog (PTEN), caveolin-1,
and cullin-5 to arrest the cell cycle, but its mutation led to increased cell division [40]. Carney–Stratakis
syndrome, caused by germline mutations in SDHA-B-C-D, has been linked to causing PGL and
GIST [41,42]. Specifically, SDH deficiency promoted DNA hyper-methylation at sites near the fibroblast
growth factor 4 and tyrosine-protein kinase kit oncogenes, which led to their activation and the onset
of GIST [43]. Although specific mechanisms such as the one elucidated for GISTs are not yet available,
research has implicated SDHB and SDHD [44] mutations in renal cell carcinoma and thyroid tumors,
SDHB defects [45] in pituitary adenomas, and loss of SDHB [46] in hemangioblastoma. The lack of
established mechanisms for these cancers is highlighted specifically in the study attributing SDHB
mutation to hemangioblastoma. Overall, there are few cases of hemangioblastoma, with only 19 of the
total 35 patients testing positive for SDHB mutation [46]. The study stops short of conducting other
experiments such as epigenetic analysis. Collectively, these issues do not allow for the relationship
between SDHB inactivation and hemangioblastoma to be fully elucidated and similar issues arise
when studying other SDH mutations and other cancers. Altogether, our understanding of the role of
SDH between PGL and PCC and other cancers varies, but further research could provide therapeutic
targets of SDH against cancer.

3.2. High-Altitude Illness (Acute Mountain Sickness)

Acute mountain sickness (AMS) is a result of the decreased partial pressure of oxygen at higher
altitudes that causes tissue hypoxia [47]. The effects of AMS-induced hypoxia on mitochondrial function
has been studied [48], with a consensus that oxidative damage increases with high altitude [49]. This is
due to high altitude exposure increasing ROS production at complex I and complex III of the ETC,
due to reduced electron flow [49,50]. Interestingly, Lu et al. compared AMS resistant individuals
to AMS susceptible individuals and found that those resistant to AMS decreased plasma succinate
levels through attenuation of SDHA and SDHB along with succinate-CoA ligase [51] (Figure 2).
Succinate-CoA ligase is a key enzyme involved in converting succinyl-CoA to succinate through the
following subunits: succinate-CoA ligase GDP/ADP-forming subunit alpha (SUCLG1), succinate-CoA
ligase GDP-forming subunit beta (SUCLG2), and succinate-CoA ligase ADP-forming subunit beta
(SUCLA2) [52,53]. The study suggested that the aforementioned genes were silenced due to exposure
to high altitude, with the exact mechanisms yet to be discovered [51]. Similarly, PGL exhibits the same
environmental and genetic crosstalk seen in AMS as prolonged exposure to high altitudes led to a
mutation in SDHB which caused PGL in patients [54]. A clear link is shown between high-altitude,
SDH, AMS, and cancer, and further research could be beneficial for a better understanding of this
intricate connection.
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3.3. Inflammation

SDH has shown the capability to play key roles in pro- and anti-inflammatory signaling (Figure 2).
For instance, lipopolysaccharide-stimulated interleukin 1 beta (IL-1β) release in macrophages promotes
inflammation via increased succinate levels, resulting in PHD-mediated HIF-1α accumulation [55]
or SDH-catalyzed ROS production [56]. IL-1β can also be produced independent of HIF-1α
through the inflammatory release of succinate by macrophages which activates succinate receptor 1
(SUCNR1)/G-protein coupled receptor 91 (GPR91) and enhances the adverse effects of rheumatoid
arthritis [57]. Conversely, inflammatory mononuclear phagocytes increase succinate levels to stimulate
SUCNR1/GPR91 which allows uptake of succinate by neural stem cells, and their subsequent
anti-inflammatory phenotype through reduction of IL-1β [58]. As exhibited, succinate has a role in
the inflammatory response of cells, and further research can provide therapeutic options as seen with
SUCNR1/GPR91 inhibitors for rheumatoid arthritis [57].

3.4. Neurodegenerative Disease

SDH has an important role in electron flow [19,59], exemplified by SDH activity causing electron
carriers such as nicotinamide adenine dinucleotide (NAD) to not be oxidized which in turn leads to a
decrease in electron flow to complex III and ubiquinone, and the production of ROS [60]. Mutations in
SDHA have been shown to lead to this mechanism and the development of Leigh syndrome [61,62].
Other mutations of SDH subunits that have been implicated in neurodegenerative diseases include
SDHA causing ataxia [63] and SDHA [64], SDHB [64], SDHD [65], and SDHAF1 [66] leading to
leukodystrophy, yet these studies have been limited to few patients (Figure 2). Nevertheless, as stated
in a recent review paper [67], succinate is linked with the mammalian target of rapamycin (mTOR) [68],
a kinase involved with a plethora of neurodegenerative diseases [69]. This provides interest for further
studying roles of succinate in neurodegenerative diseases, especially since SDHAF4 has been shown to
stabilize succinate accumulation, increase mitochondrial SDH activity, while limiting ROS production
and preventing neurodegeneration in drosophila [14].

3.5. Diabetes

The succinate mechanism of insulin release states that high mitochondrial levels of succinate
produce mevalonic acid, which triggers insulin release in pancreatic islet cells (refer to source paper
for full mechanism) [70]. Proteomic analyses of type 2 diabetes mellitus (T2D) patients with chronic
hyperglycemia showed that increased glucose levels led to inhibition of the ETC. This is due to
decreased expression of SDH along with citrate synthase and fumarate hydratase in the mitochondria,
which led to decreased insulin release of pancreatic β-cells [71]. While succinate levels decrease in
the mitochondria, circulating levels of succinate have been shown to increase in T2D patients [72].
This circulating succinate can accumulate in the diabetic kidney, leading to succinate induced activation
of GPR91, a receptor that activates the renin-angiotensin system [73]. The activation of renin-angiotensin
system in diabetic rats has been linked to induced hypertension and nephropathy [74]. Further research
of succinate’s role in diabetes is encouraged as a link has already been established.

3.6. Ischemia-Reperfusion Injury

Succinate is known to accumulate during cardiac ischemia, which is then consumed during
reperfusion and leads to oxidative damage due to increased ROS production [75]. A leading model
to explain this phenomenon is the upregulation of glycolysis and the TCA cycle, known to occur
during ischemia. These two processes drive the conversion of glutamate to 2-oxoglutarate, which is
then synthesized into succinate through succinate-CoA ligase [76]. Barth syndrome, a genetic disease
known to cause cardiomyopathy, leads to the loss of SDH in cardiac tissue and a subsequent increase
in ROS production [77]. Although cardiac ischemia and Barth syndrome are not caused by succinate,
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their effect on succinate has unfavorable consequences, and research of the effect of non-SDH induced
diseases on SDH dysfunction is a topic warranting further analysis.

4. A Network of RNA Regulators Interacting with Succinate Dehydrogenase

4.1. Non-Coding RNAs

Non-coding RNAs are transcribed RNAs known for their regulatory function on mRNA [78] and
their ability to affect several cellular processes to influence disease states [79–82]. Non-coding RNAs
include microRNAs (miRNAs), small non-coding RNAs (sRNAs), long non-coding RNAs (lncRNAs),
and circular RNAs among others [78]. Numerous non-coding RNAs, especially miRNAs, have been
shown to target SDH and lead to disease. In lung cancer, increased expression of miR-147b [6]
downregulates SDH and leads to drug tolerance to epidermal growth factor receptor tyrosine kinase
inhibitor, while upregulated miR-210 [5] lowers the enzymatic activity of SDHD to stabilize HIF-1α.
miR-31 was found to suppress SDHA expression in induced pluripotent stem cells to initiate the
Warburg effect [83]. An expression profile study found that miR-124 can inhibit the conversion of
succinate to succinyl-CoA by downregulating SUCLG2 [84], showing that other miRNAs could affect
SDH and perhaps other diseases. The sRNA, NrrF, after binding with the Hfq protein, binds to the
sdhCDAB mRNA transcript in N. meningitidis and upregulates SDHA, SDHB, SDHC, and SDHD [85].
Crosstalk between miR-488-3p and the lncRNA Cerox1 regulates mitochondrial complex I activity,
showing promise that interactions between non-coding RNAs may affect the SDH complex [86].
Altogether, non-coding RNAs have been shown to affect SDH levels and even modulate disease
progression (Figure 3).
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4.2. RNA-Editing Enzymes

RNA editing is a posttranscriptional mechanism that involves the alteration of RNA sequences
through insertions, deletions, or substitutions done by enzymes [87]. To date, the two well-known
RNA editing enzymes, adenosine deaminases acting on RNA (ADARs) [88,89] and apolipoprotein B
mRNA editing enzyme, catalytic polypeptide-like (APOBEC) [90], cause adenine to inosine (A-to-I) and
cytidine to uracil (C-to-U) editing on RNA transcripts, respectively. Hypoxic conditions in peripheral
blood mononuclear cells, along with their differentiation into macrophages, led to increased C-to-U
editing by apolipoprotein B mRNA editing enzyme catalytic subunit 1 (APOBEC1), a member of the
APOBEC family. This caused a nonsense mutation and the inactivation of the SDHB gene [91] (Figure 3).
Continuously, Baysal’s lab demonstrated for the first time that another APOBEC family member
APOBEC3A modifies SDHB RNA in monocytes and macrophages via a C-to-U editing mechanism
that is activated by hypoxia or interferons [92]. Section 3 of this review describes different ailments
such as cancer caused by mutations in SDH subunits, including SDHB, which signifies the importance
of studying the effects of RNA-editing enzymes on SDH. It is important to note that RNA editors can
also affect the processing of non-coding RNAs, as seen with increased A-to-I editing in miR-376 which
changes the targets of miR-376 [93]. The role of RNA editors in miRNAs and other non-coding RNAs
that subsequently affect SDH is a topic that is yet to be investigated but is an exciting prospect. This is
of significant interest to further study the effects of APOBEC and ADAR due to its wide-ranging effects
on SDH-affecting genes.

4.3. RNA-Modification Genes

N6-methyladenosine (m6A) modification of mRNA is the most abundant RNA modification and
plays a pivotal role in determining gene expression [94]. Fat mass and obesity-associated protein (FTO)
and alpha-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5) are two well-characterized
m6A erasers that reverse the actions of writers for m6A through demethylation [95]. These m6A
erasers are also identified as 2-oxoglutarate-dependent oxygenases. Inactivating SDH mutations
induces succinate accumulation, a product that competes with 2-oxoglutarate and hence may inhibit
the expression of FTO and ALKBH5 [96]. Similar to RNA editors, the role between RNA-modifiers and
non-coding RNAs has been elucidated (and its role in causing cancer) [97] (Figure 3). It is crucial to
investigate whether an interplay exists between RNA modifiers and non-coding RNAs that impact
SDH activity. Overall, it is critical to study the relationship between SDH complex dysfunction and
m6A erasers as the latter’s depletion has been linked to diseases such as male-infertility [98].

4.4. Transcription Factors

Transcription factors play an intricate role in gene expression as they activate or repress
transcription of DNA into RNA [99], and its misregulation has been implicated to cause disease [100].
Nuclear respiratory factor 1 (NRF1) silencing attenuated SDHA expression at transcriptional levels
in cardiac cells, causing complex II dysfunction, which had a final effect of decreased PHD activity
leading to hypoxia response through HIF-1α stabilization [101] (Figure 3). MYC enhances S-phase
kinase associated protein 2 (SKP2) activity, a proteasome that degrades SIRT3 deacetylase, which led
to increased acetylation of SDHA and its subsequent silencing [102]. MYC-mediated dysfunction of
SDH activity led to succinate accumulation and increased H3K3me3 modification on histones [102].
Overall, this modification promoted tumor progression in Burkitt’s lymphoma cell lines, but the
specific genes that were downregulated to cause this effect were not mentioned [102]. Here, we show
that increased and decreased activity of MYC and NRF1, respectively, modulate disease states through
transcriptional effects on SDH subunits.



Cancers 2020, 12, 3237 9 of 24

4.5. Alternative Splicing

The manipulation of the order of exons in mature mRNA due to alternative splicing mechanisms
is well known to alter gene expression [103]. In SDH, the SDHC ∆5 isoform which lacks exon 5, formed
by alternative splicing mechanisms, decreased SDH activity by 40%. This led to a notable increase in
the production of ROS [104] (Figure 3). However, another isoform of SDHC (∆3) had a marginal effect
on SDH activity and only minimal ROS production [104]. Nevertheless, alternative splicing in SDH
subunits provides another plausible explanation of how SDH subunit dysfunction can lead to disease.

5. Treatment against Succinate Dehydrogenase Dysfunction

5.1. Small Molecules Inducing or Blocking SDH Activity

While the study of mitochondrial regulation and SDH has been around for over 100 years, still little
is known about the details of the molecular pathways taken by SDH activators and inhibitors. SDH is
regulated through the genetic level and three distinct binding sites. These sites have been exploited for
use from fungicides to tumor cell regulation.

5.1.1. SDH Inhibitors

There are two distinct classes of metabolic SDH inhibitors based on where the inhibitor binds.
SDH inhibitors either bind in the ubiquinone pocket at the proximal (Qp) or distal (QD) binding sites,
or in the succinate pocket [105]. Briefly, binding to the ubiquinone pocket affects the reduction of
ubiquinone to ubiquinol which is a part of the ETC. Additionally, binding to the succinate pocket
influences the enzymatic activity of SDH inside of the TCA cycle [106] (Figure 4).
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Figure 4. Strategies for Targeting Succinate Dehydrogenase Complex. Ubiquinone binding inhibitors
carboxin, TTFA, and α-Tocopheryl succinate bind and deactivate SDH at the proximal QP and distal
QD ubiquinone binding sites. Ubiquinone binding inhibitors disrupt the reduction of ubiquinone to
ubiquinol, a key step in the ETC. Succinate binding inhibitors malonate, oxaloacetate, and malate bind
at the catalytic core or succinate pocket of SDH. Succinate pocket inhibitors are typically intermediates
from the TCA cycle that modulate SDH activity based on cellular needs. Genetic inhibitor TRAP1 is a
mitochondrial chaperone that inhibits SDH functions causing hypoxic environments that stimulate
tumorigenesis. SDH activators such as succinate, Rapamycin, and Naringin function as small molecules
activators of SDH. Additionally, genetic activator SIRT3 regulates the deacetylation of SDHA. NRF1 is
an oxygen-sensing protein that binds to SDH genetic promoters when there is a lack of oxygen to limit
ETC energy production until suitable oxygen conditions are resumed.

Carboxin is a ubiquinone inhibitor commonly used as a fungicide. Thenoyltrifluoroacetone
(TTFA) is another ubiquinone SDH inhibitor that was originally thought to be a chelating agent [107].
After the development of 19 SDH inhibitors, it was determined that all of them share a carbonyl
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center, a conserved amide function, and an amine functional group. Yao et al. took these common
groups and applied in silico library design and pharmacophore mapping to create potential novel
inhibitors. A16c showed to be the most promising inhibitor from this study, with increased potency
against standard fungal targets [108]. Genetic regulation of SDH subunits has also been documented.
SDHB expression has been shown to be lowered in maize leaves related to the amount of light
present [109]. This is due to the reduced need for energy from the TCA cycle when photosynthesis
is occurring. SDH2-3 gene function was downregulated in response to the lower expression of the
phytochrome interacting factor 3 gene, which is involved in several developmental processes of plants.
SDH inhibitors have been used as fungicides since the 1960s, but recently there has been a surge in
SDH inhibitors as a cancer therapeutic strategy.

The human application of SDH inhibitors is still in its early stages. SDH inhibitors functioning as
fungicides have been difficult to bring to human use mainly due to the cellular similarities between
fungi and humans causing cytotoxicity. TTFA, the original SDH inhibitor, was shown to induce cell
apoptosis in neuroblastoma cells [110]. Alpha-Tocopheryl succinate, a similar compound to vitamin E,
is another SDH inhibitor shown to induce cell apoptosis in cancer cell lines via binding to the QP and
QD [111]. Malonate, a synthetic compound, has been used as an SDH inhibitor to limit reperfusion
injury and infarct size in mice and pig hearts [112]. TCA cycle intermediates oxaloacetate and malate
are strong inhibitors of SDH binding to its catalytic site [113]. Mitochondrial chaperone tumor necrosis
factor receptor associated protein 1 (TRAP1) has been identified as an inhibitory SDHA binding protein
that is overexpressed in many types of cancers [114]. TRAP1 binding to SDHA decreases SDH activity
and limits mitochondrial-dependent respiration in cancer cells. The reduced SDH activity-induced
succinate accumulation leads to hypoxic response via activating HIF-1α. This scenario allows tumor
cells to survive nutrient-depleted environments and oxidative stress [115].

5.1.2. SDH Activators

SDH can be activated on both metabolic and genetic fronts. On the metabolic front, succinate
activates the catalytic function of SDH through dissociating any SDH inhibitors such as oxaloacetate
and malate in the TCA cycle [116]. Rapamycin is currently being studied as a potential treatment
against SDH deficiency. Exposing flies with mutated SDHA and SDHB to rapamycin improved the
enzymatic activity of SDH through the inhibition of the mTOR pathway [117]. In addition, naringin,
a bioflavonoid found in citrus fruit peel, restored SDH enzymatic activity that was impaired by
D-galactose via influencing ROS [118] (Figure 4). In the ETC, there is a balance of phosphorylation
and acetylation contributing to the activity of SDH [119]. The less acetylation and phosphorylation
present, the more active SDH is. Sirtuin-3 (SIRT3) is the primary deacetylase for SDHA and is the
main contributor to the catalytic ability of SDH inside the ETC [120]. This NAD-dependent enzyme
mediates the reversible acetylation of SDHA through post-translational modifications (Figure 4). NRF1
has been shown to bind to the promoters of the SDHA and SDHD genes in aerobic rat cardiac cells
resulting in increased expressions of SDHA and other subunits of SDH complex. This binding is a
response to a lack of oxygen where the cell relies on glycolytic ATP production until suitable conditions
resume for ETC production of ATP [101]. Additionally, reduced SDH expression is inversely related to
promoter methylation of Sdh1-2 which encode for SDHA in maize under anoxic conditions [121].

5.2. CRISPR

Clustered regularly interspaced short palindromic repeats (CRISPR) is a powerful gene-editing
tool [122]. Recent studies have shown the effects of editing different SDH subunits and the effect
on certain diseases. For example, the downregulation of SDHC using CRISPR in breast cancer cell
lines correlated with a smaller amount of the cancer cells undergoing epithelial to mesenchymal
transition [123].
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6. Pre-Clinical Models and Clinical Trials for Succinate Dehydrogenase

6.1. Approaches to Measuring SDH Activity

SDH activity can be measured using many different approaches. The Succinate Dehydrogenase
Assay Kit is a colorimetric assay designed to measure SDH activity in tissue culture or purified
mitochondrial samples. The assay detects the production of fumarate from succinate by SDH.
Fumarate hydratase converts fumarate to malate and then malic dehydrogenase converts malate
to pyruvate and nicotinamide adenine dinucleotide phosphate (NADP+) to nicotinamide adenine
dinucleotide phosphate hydrogen (NADPH) which is detected spectrophotometrically [124]. SDH
activity can also be measured using a redox dye such as an artificial electron acceptor reporter module
2,6-dichlorophenolindophenol (DCPIP). In a conversion from succinate to fumarate, SDH transfers the
electron to oxidized DCPIP, which changes the color from blue to the pink or colorless product. By
adding surface-enhanced Raman scattering, results can be specified and a more accurate level of SDH
activity can be determined [125]. SDH levels have also been measured using a microphotometric assay
coupled with human muscle samples [126]. This assay uses nitro blue tetrazolium (NBT) to bind to
mitochondria and function as a final electron acceptor. The enzymatic activity of SDH can then be
measured by taking absorbances at certain time points to create a reaction curve [127].

6.2. Pre-Clinical Models

SDH has been studied in plants since the 1960s. Plants are advantageous in that they have all four
SDH subunits and SDH serves a similar role in the TCA cycle and ETC as in humans. The disadvantage
of plants is that they contain four accessory subunits, SDH5–SDH8 [128]. These accessory subunits are
not conserved in humans and their specific functions are unknown. The plant SDH3 and SDH4 lack
sequences that help it bind to SDH1. Similar sequences have been found in plant SDH6 and SDH7 that
could help stabilize the complex. SDH5 is a more hydrophobic subunit that interacts with SDH2 and
SDH4, but its function is unknown. SDH8 is the least understood accessory subunit. The subunit is
only 4.9 kDa in size and does not show any similar sequences in the current genome mapping to any
other SDH subunits [129].

Yeast contains the same subunits as other eukaryotic organisms. Yeast is advantageous over
other organisms because both respiratory and fermentative metabolism can be observed in the same
model. Yeast has also been shown to recreate human SDH mutations specifically in SDHB and SDHC.
This ability allows researchers to study the specific mutations in detail in a preclinical model not
typically available in other organisms [130].

Most studies conducted with Escherichia coli focus on the adaptation to changing oxygen
environments and the gene expressions related to the changes. Through the E. coli study, it has
been determined that the alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthase are
regulated by SDHC. These enzymes are important in the TCA cycle component of SDH metabolism.
E. coli as a preclinical model is beneficial because of its easily manipulated genome [131].

Caenorhabditis elegans, commonly referred to as the nematode, is beneficial as a preclinical model
because of its thoroughly understood development, small genome, and short, complete life [132].
In SDH research, the nematode has been used to study mutations in SDHB leading to tumorigenesis.
The study found that the ubiquinone-binding site of SDH became a significant source of superoxide,
but the effects were abrogated with the administration of antioxidants [133].

The transgenic mouse is one of the most advanced preclinical models to investigate tumorigenesis
and other pathologies contributed to SDH mutations. Piruat and Millan-Ucles demonstrated knockout
mouse models for each SDH subunit gene and how it affected development [134]. Other mouse
models have also linked SDH mutations to tumorigenesis through oxygen-depleted environments and
epithelial to mesenchymal transition [135]. Preclinical models can show a general direction on how a
clinical trial will go and account for metabolic environments not replicable in vitro. These models are a
critical testing ground for higher stakes clinical trials.
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6.3. Clinical Trials

Clinical trials associated with SDH dysfunction range from advanced cancers to neurodegeneration
(Table 1). The broader study of mitochondrial dysfunction also accounts for many clinical trials where
SDH dysfunction plays a role.

Table 1. SDH relevant clinical trials.

Study Title Description Dates (Start–Completion)
and Status

Identifier and Study
Type (Enrollment)

Cancers

An Open-Label, Phase 2
Efficacy Study of
Temozolomide (TMZ) In
Advanced Succinate
Dehydrogenase
(SDH)-Mutant/Deficient
Gastrointestinal Stromal
Tumor (GIST)

Therapies already exist for
advanced GIST, but they are
not effective against SDH
mutant subtypes of GIST.
TMZ is already approved for
the treatment of other
glioblastoma tumors, but its
effect on SDH mutant GIST
has not been previously
studied.

September 2018-September
2024 (Recruiting)

NCT03556384
Interventional (N.A.)

A Phase II Trial of the
DNA Methyl Transferase
Inhibitor, Guadecitabine
(SGI-110), in Children
and Adults with Wild
Type GIST,
Pheochromocytoma and
Paraganglioma
Associated with
Succinate
Dehydrogenase
Deficiency and
HLRCC-associated
Kidney Cancer

To determine the overall
response to SGI-110 in tumor
growth and effects on the
body. GIST is resistant to
conventional radiation or
chemotherapy treatments.
Imatinib is the current
standard of care but
tumor-developed resistance
and mutations are becoming
more prevalent. SGI-110 is
targeting these tumors by
preventing DNA
methylation and has shown
to be effective against
imatinib resistant GIST.

May 2017-
February 2020 (Completed)

NCT03165721
Interventional (9)

Ph1 Study of the Safety,
PK, and PDn of
Escalating Oral Doses of
the Glutaminase
Inhibitor CB-839, as a
Single Agent and in
Combination with
Standard Chemotherapy
in Patients with
Advanced and/or
Treatment-Refractory
Solid Tumors

Tumor cells have been
shown to be dependent on
glutamine for cellular
respiration. Because this is a
unique trait to tumors, this
dependence serves as a
potential therapeutic target.
CB-839 is a highly specific
inhibitor targeting
glutaminase, the first
enzyme involved in
glutamine utilization. This
study looks at the potency of
this inhibitor across a wide
range of tumors.

February 2015-
March 2019
(Completed)

NCT02071862
Interventional (210)

A Phase 2 Open-Label
Study of Nivolumab
Combined with
Cabozantinib in Subjects
with Advanced or
Metastatic Non-Clear
Cell Renal Cell
Carcinoma (CA209-9KU)

Nivolumab is a programmed
cell death protein 1 inhibitor,
and cabozantinib is a
tyrosine kinase inhibitor.
Both drugs are approved
treatments against several
types of metastatic kidney
cancers, but there are limited
data on combination
treatments using these two
drugs.

August 2018-August 2021
(Recruiting)

NCT03635892
Interventional (N.A.)
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Table 1. Cont.

Study Title Description Dates (Start–Completion)
and Status

Identifier and Study
Type (Enrollment)

Impact of Environmental
Exposures on Tumor
Risk in Subjects at Risk
of Hereditary SDHx
Paraganglioma
(PGL-EXPO-1)

By studying environmental
and professional factors of
patients with an SDHx
mutation and comparing it
to a patient with the same
sex, age, and type of gene
affected but no tumor
progression, researchers
hope to identify novel
contributors to SDHx genetic
mediated tumor progression.

January 2021-December 2022
(Not yet recruiting)

NCT04481152
Observational (N.A.)

Non-cancer

Relationship Between
Succinate
Dehydrogenase
Mutations and
High-Altitude Illness
Associated with
Chemoreflex Failure

SDH dysfunction is known
to cause hypoxia. At high
altitudes where oxygen is
limited, a cell already coping
with SDH dysfunction
would be overwhelmed. The
chemoreflex causes
hyperventilation when the
pressure of oxygen falls in
the blood. A dysfunctional
chemoreflex can lead to
pulmonary and cerebral
edema at high altitudes.

March 2005-December 2006
(Completed)

NCT00202683
Observational (83)

North American
Mitochondrial Disease
Consortium Patient
Registry and
Biorepository (NAMDC)

The NAMDC is building an
international network of
researchers, patients, and
data to help both the
researcher and patient
connect with the proper
clinical trials and potential
treatments.

December 2010-December
2025 (Recruiting)

NCT01694940
Observational (N.A.)

Targeting Glutamine
Metabolism to Prevent
Diabetic Cardiovascular
Complications
(GLUTADIAB)

This study has broad
metabolic implications and
serves as the starting point
for several secondary studies.
After glutamine metabolism
is better understood in its
role in the inflammatory
response, several other
factors will be analyzed
including SDH-controlled
intermediates. RNA
modification will also be
utilized to target monocytes.

June 2020-
June 2022
(Not yet recruiting)

NCT04353869
Observational (N.A.)

Temozolomide was tested to observe the effects on SDH-mutant/deficient GISTs (NCT03556384).
Temozolomide is an alkylating agent that has already been approved for use against
glioblastoma multiforme and refractory anaplastic astrocytoma tumors. SDH-mutant/deficient
GISTs show hypermethylation which leads to loss of proteins, specifically O6-methylguanine-DNA
methyltransferase. The inhibition of this protein due to promotor methylation has shown to
lead to effective use of alkylating agents in other cancer types [136]. The rationale was to use
a known chemotherapy drug, temozolomide, against a type of tumor it had not been tested
against. DNA methyltransferase inhibitor, Guadecitabine (SGI-110), was tested on wild type GISTs,
pheochromocytoma, and paraganglioma associated with SDH deficiency in hereditary leiomyomatosis
and renal cell carcinoma (NCT03165721). The rationale behind this studying is the methylation of
SDH contributing to increased ROS and anaerobic environments causing cells to develop mutations.
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By inhibiting methylation, tumor growth and mutation can be slowed. Glutaminase inhibitor
CB-839 was tested on SDH-deficient GISTs, SDH-deficient non-GIST tumors, triple-negative breast
cancer, and others for their interactions with CB-839 and standard chemotherapy (NCT02071862).
Glutamine metabolism has been shown to be upregulated in SDHB mutated cancers. Glutaminase-1
generates glutamate from glutamine which is then metabolized to α-ketoglutarate by glutamate
dehydrogenase [137]. The α-ketoglutarate can then be used by the TCA cycle. This leads to an
accumulation of succinate that stabilizes and activates HIF1 and HIF2 [138]. This reliance on glutamine
metabolism by SDH mutant cancers has created an increased sensitivity to glutaminase inhibitors.
The rationale behind the trial is to introduce the glutaminase inhibitor to regular chemotherapy as a
new way to slow tumor growth.

The synergy between nivolumab and cabozantinib is being tested in SDH and fumarate hydratase
deficient renal cell carcinomas (NCT03635892). Nivolumab is a monoclonal antibody that inhibits
programmed cell death-1 (PD-1). In SDH deficient tumors, PD-1 receptor-ligand signaling is
dysregulated due to hypoxic conditions [139]. This combination therapy with the tyrosine kinase
inhibitor, cabozantinib, will target both programmed cell death signaling and vascular endothelial
growth factors [140].

SDH mutation can lead to several different cancers including paragangliomas. However, there is
little information on environmental and professional factors playing a role in cancer risk. This study is
a cross-section of patients with the same sex, age, and gene affected without tumors. Environmental
and professional conditions will be accessed and compared through an interview (NCT04481152).

Cancer-related SDH clinical trials look to target SDH mutation that leads to tumor progression.
Many current therapies are ineffective against dysfunctional or mutated SDH subtypes of their parent
tumor class. By continuing these trials, cancer is being targeted through a mechanism that affects both
tumor progression and maintenance. By inhibiting the mutant SDH or restoring normal function,
not only can tumor progression halt, but tumor recession can also take place.

Patient resistance to high altitude via their chemoreflex, a reflex associated with hyperventilation,
was tested to find a link between altitude sickness and SDH functionality (NCT00202683). The rationale
is that participants with an altered or pathogenic chemoreflex will be intolerant to high altitude and
exhibit cerebral edema or pulmonary edema. While no results were published, the implications
are that dysfunctional SDH subunits contribute to an inability of the carotid body to respond to
changes in altitude. This now established relationship could inspire treatments with antioxidants or
gene therapies.

The North American Mitochondrial Disease Consortium Patient Registry and Biorespiratory
group aims to identify individuals with mitochondrial disorders and connect them with other current
clinical trials for which they may be eligible. Additionally, patient tissue samples will also be cataloged
and stored in a shared facility where several groups may have access to the samples to further their
research (NCT01694940).

Macrophage mediated pro-inflammatory response is a common issue in diabetic and other related
cardiovascular complications. Recent studies suggest that glutamine catabolism is involved in the
activation of these macrophages through TCA cycle intermediates. The study will look at glutamine
metabolism and levels of α-ketoglutarate, fumarate, and succinate (NCT04353869).

Non-cancer related SDH trials cover a wide variety of diseases. SDH trials related to mitochondrial
disease cover many different subsets related to genetic conditions. The chemoreflex also shows SDH in
the capacity of internal respiration. This wide range of trials shows the dependency of the human
body on SDH.

7. Future Directions

In this study, we systematically summarized how the SDH complex interacts with the RNA
networks to regulate the development of cancer and other diseases. There are several promising
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points that need to be investigated further in the future to better understand the mechanisms of SDH
in pathogenesis.

First, it is of interest to study how SDH pseudogenes such as SDHAP1/2/3 interact with
SDHA/B/C/D subunits and other molecules. Utilizing the cutting-edge cryo-electron spectroscopy [141]
will facilitate our understanding of this interaction and further insight on cancer and disease
development. Unexpectedly, SDHAP1 is classified as a lncRNA in ovarian cancer [11]. It indicates that
SDHAP1/2/3 might play a role independent of SDH-enzyme based metabolic reactions.

The studies of an interplay between SDH complex and non-coding RNAs are still at an early
stage. Among them, only a limited number of miRNAs have been studied. A large-scale screening of
non-coding RNAs using (small) RNA-sequencing should be applied to this study. Additionally, studies
for RNA editors of SDH such as C-to-U editing by APOBEC1 and APOBEC3A have received increasing
notices recently. In addition to this direct APOBEC1/3A−SDH interaction, RNA editors can also
manipulate non-coding RNA levels in cancers and non-cancer diseases [142]. Thus, how RNA editors
regulate SDH indirectly via editing non-coding RNAs needs to be investigated in the future. In turn,
SDH inactivation-induced succinate accumulation can induce the upregulation of miRNAs such as
miR-210. It is of interest to study whether succinate accumulation can also influence the activity of
RNA editors. We need to highlight that the interaction of the SDH−RNA network is dynamic due
to the fact that some RNAs can play roles as messengers because they may be transmitted from one
type of cell to another type of cell. For example, cell-free circulating exosomal miRNAs can transmit
signals when they are delivered from the original site to the target site [143]. Similar to circulating
miRNAs, succinate has been discovered to shuttle from hypoxic retina to oxygen-enriched tissue to
transfer electrons [144]. Thus, this new module provides a possibility that the SDH−RNA interaction
can be applied in different microenvironments when RNA and succinate are transmitted remotely.

Severe fungal infections to humans have caused many deaths in patients [145]. Most of the
fungicides are designed to combat human fungal pathogens through inhibiting cellular mitochondrial
respiration such as SDH activities in fungi [146]. SDH inhibitors targeting fungus infection has
been difficult to incorporate into human application due to the similar SDH structures in human
and fungal cells. Thus, the following two concerns need to be addressed when applying the SDH
inhibitors in antifungal (antipathogen) treatment in humans. The applied SDH inhibitors can be
transmitted to human cells leading to increased risk of tumorigenesis due to inactivating tumor
suppressor SDH in human cells. Additionally, some pathogens such as Gram-negative bacterial
product lipopolysaccharide-induced succinate accumulation activate HIF-1α and enhance the release
of interleukin-1β in human macrophages [55]. Additionally, pathogen-derived succinate might also
influence tumor initiation and progression in humans [116,147].

RNA-based therapeutics have received increasing attention recently due to its advantage of
accuracy and specificity compared to conventional small molecules [148]. However, the delivery
efficiency and off-target effect of RNA therapeutics need to be addressed properly before entering
clinical trials. It is critical to improve the RNA delivery to targeted cells by using cutting-edge
nanoparticles and ligand-conjugated carriers [149]. Simultaneously, exploring the distribution and
functions of RNA-based-therapeutics in non-targeted cells (i.e., non-tumor cells in cancer) can facilitate
the applications of RNA therapeutics entering clinical trials [150]. In the future, it is of importance to test
the possibility of utilizing RNA-based therapeutics such as targeting non-coding RNAs, RNA editors,
and RNA modifiers to conquer SDH mutation- or dysfunction-induced cancer and diseases.

Author Contributions: Conceptualization, C.M., R.M.S., R.B., and W.C.Z.; formal analysis, R.M.S., R.B., and C.M.;
resources, C.M., R.M.S., and R.B.; data curation, C.M., R.M.S., and R.B.; writing—original draft preparation,
R.M.S., C.M., R.B., and W.C.Z.; writing—review and editing, R.M.S., C.M., R.B., and W.C.Z.; visualization, C.M.
(Figure 1), R.M.S. (Figures 2 and 3), R.B. (Figure 4 and Table 1), and R.M.S. (graphical abstract); supervision, W.C.Z.;
project administration, W.C.Z; funding acquisition, W.C.Z. All authors have read and agreed to the published
version of the manuscript.



Cancers 2020, 12, 3237 16 of 24

Funding: This research was funded by the Burnett School of Biomedical Sciences, College of Medicine, University
of Central Florida grant 25400714 awarded to W.C.Z. Zhang’s research is supported in part by a Young Investigator
Award from the International Association for the Study of Lung Cancer and Atomwise Inc. (A19-053).

Acknowledgments: We thank Muthu Periasamy, Nicholas Skiados, and Jihoon Lim for critical reading and
comments. We apologize to all researchers whose work could not be cited due to reference limitations. We thank
the Office of Undergraduate Research and the Summer Undergraduate Research Fellowship at the University of
Central Florida (awarded to Robert Burns). All figures were created with BioRender.com.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ADARs Adenosine deaminases acting on RNA
ALKBH5 Alpha-ketoglutarate-dependent dioxygenase AlkB homolog 5
APOBEC Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like
APOBEC1 Apolipoprotein B mRNA editing enzyme catalytic subunit 1
APOBEC3A Apolipoprotein B mRNA editing enzyme catalytic subunit 3A
A-to-I Adenine to inosine
ATP Adenosine triphosphate
CRISPR Clustered regularly interspaced short palindromic repeats
C-to-U Cytidine to uracil
DCPIP 2,6-dichlorophenolindophenol
DNA Deoxyribonucleic acid
ETC Electron transport chain
FAD Flavin adenine dinucleotide
Fe-S Iron-Sulfur
FTO Fat mass and obesity-associated protein
GBM Glioblastoma multiforme
GISTs Gastrointestinal tumors
GPR91 G-protein coupled receptor 91
HIF-1α Hypoxia-inducible factor 1 alpha
HRLCC Hereditary leiomyomatosis and renal cell carcinoma
IL-1β Interleukin 1 beta
lncRNA Long non-coding ribonucleic acid
mTOR Mammalian target of rapamycin
miRNA Micro-ribonucleic acid
m6A N6-methyladenosine
NAD Nicotinamide adenine dinucleotide
NADP+ Nicotinamide adenine dinucleotide phosphate
NADPH Nicotinamide adenine dinucleotide hydrogen
NBT Nitro blue tetrazolium
NRF1 Nuclear respiratory factor 1
PCC Pheochromocytoma
PGL Paraganglioma
PD-1 Programmed cell death-1
PHD HIF-α prolyl hydroxylase domain
PTEN Protein and tensin homolog
QD Distal binding site in ubiquinone
Qp Proximal binding site in ubiquinone
RNA Ribonucleic acid
ROS Reactive oxygen species
SIRT3 Sirtuin 3
SDH Succinate dehydrogenase
SDHA Succinate dehydrogenase subunit A
SDHAF1 Succinate dehydrogenase complex assembly factor 1
SDHAP1 Succinate dehydrogenase complex flavoprotein subunit a pseudogene 1
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SDHD Succinate dehydrogenase subunit D
SGI-110 Guadecitabine
SKP2 S-phase kinase associated protein 2
sRNA Small non-coding ribonucleic acid
SUCLG1 Succinate-CoA ligase GDP/ADP-forming subunit alpha
SUCLG2 Succinate-CoA ligase GDP-forming subunit beta
SUCLA2 Succinate-CoA ligase ADP-forming subunit beta
SUCNR1 Succinate receptor 1
T2D Type 2 diabetes mellitus
TCA cycle Tricarboxylic acid cycle
TMZ Temozolomide
TRAP1 Tumor necrosis factor receptor associated protein 1
TTFA Thenoyltrifluoroacetone
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