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Abstract: We have experimentally studied the influence of pulsed laser deposition parameters
on the morphological and electrophysical parameters of vanadium oxide films. It is shown that
an increase in the number of laser pulses from 10,000 to 60,000 and an oxygen pressure from
3 × 10−4 Torr to 3 × 10−2 Torr makes it possible to form vanadium oxide films with a thickness
from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm, a surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm,
electron concentration from (0.32 ± 0.07) × 1017 cm−3 to (42.64 ± 4.46) × 1017 cm−3, electron mo-
bility from 0.25 ± 0.03 cm2/(V·s) to 7.12 ± 1.32 cm2/(V·s), and resistivity from 6.32 ± 2.21 Ω·cm to
723.74 ± 89.21 Ω·cm. The regimes at which vanadium oxide films with a thickness of 22.3 ± 4.4 nm,
a roughness of 7.8 ± 1.1 nm, and a resistivity of 6.32 ± 2.21 Ω·cm are obtained for their potential
use in the fabrication of ReRAM neuromorphic systems. It is shown that a 22.3 ± 4.4 nm thick
vanadium oxide film has the bipolar effect of resistive switching. The resistance in the high state was
(89.42 ± 32.37) × 106 Ω, the resistance in the low state was equal to (6.34 ± 2.34) × 103 Ω, and the
ratio RHRS/RLRS was about 14,104. The results can be used in the manufacture of a new generation of
micro- and nanoelectronics elements to create ReRAM of neuromorphic systems based on vanadium
oxide thin films.

Keywords: memristor; ReRAM; resistive switching; pulsed laser deposition; vanadium oxide thin
films; neuromorphic systems

1. Introduction

The biological brain has several advantages over traditional computing systems, the
most important of which are learning, generalization, abstraction, and applicability [1–3].
Most computers are based on von Neumann architecture [4,5]. However, the architecture
faces a limitation called “von Neumann bottleneck”—physical limitation of the informa-
tion transfer between the central processor and memory block [6,7]. Finally, this led to
a slowdown in the development of computing systems in terms of speed and power
consumption. Therefore, the attention of scientists was directed to the creation of com-
puting systems with a fundamentally different architecture, allowing to overcome the
limitations of “von Neumann bottleneck” to increase the efficiency of solving intellectual
problems [8–11]. Neuromorphic systems are inspired by biology and are composed of
many elements, the functionality of which is similar to some of the basic functions of
the human brain. Computations and information storage are carried out throughout the
neuromorphic system, and not in individual nodes of the system, as is the case with the
von Neumann architecture [12]. At the same time, many parallel computing elements
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of neurons (about 1011) provide high performance in solving problems in real time [13].
The principle of the neuromorphic system also turns out to be different in comparison
with traditional computing systems, programming is replaced by learning, i.e., the neu-
romorphic system learns to solve problems [14,15]. The learning process itself consists in
adjusting the weighting coefficients of neurons, which ensures high noise immunity and
fault tolerance in solving a number of problems related to pattern recognition, adaptive
control, forecasting, and diagnostics, the solution of which takes an order of magnitude
longer on traditional computing systems [16–18]. Moreover, the result of the neuromorphic
system’s work is weakly dependent on the malfunction of an individual neuron. This
makes them attractive for use in onboard intelligent systems.

The neuromorphic system can be partially implemented at the software level, but its
hardware implementation would open significantly more possibilities in creating systems
that imitate the work of the human brain [19–21]. To implement the operation of a neuron
at the hardware level, a number of requirements are imposed on the element base in terms
of energy efficiency, as well as the presence of non-volatility and multibit properties (the
ability of an element to take three or more stable states). One of the ways to implement
a neuromorphic system at the hardware level is to manufacture an array of memristors
using cross-bar technology [22–24]. In this case, each memristor will act as a biological
neuron, and the connecting contact will act as a synapse. Today there are several types
of memristors, the main of which are ferroelectric nonvolatile memory FeRAM [25,26],
magnetoresistive nonvolatile memory MRAM [27,28], memory with a change in the phase
composition PRAM [29], and nonvolatile resistive memory ReRAM [30–34]. For the
manufacture of neuromorphic systems, the latter is the most promising in terms of energy
efficiency and multibit rate. The principle of operation of ReRAM is based on the resistive
switching effect, i.e., a change in resistance between the states of high resistance (RHRS)
and low resistance (RLRS) due to the formation and destruction of a nanoscale conduction
channel in the bulk of the oxide film under an external electric field [35–38]. Nanoscale
conduction channel consists of many oxygen vacancies, the generation or recombination of
each of which leads to the emergence of a new resistive state, which makes it possible to
create a neuromophilic system with a potentially high degree of multibitness. The effect of
resistive switching is demonstrated by many metal oxides (TiOx, ZnO, NiO, HfOx, VOx),
of which vanadium oxide is especially distinguished to create neuromorphic systems,
primarily due to low switching values and high values of the HRS/LRS ratio [39–42].

However, there are no systematic studies of the influence of geometric and electro-
physical parameters on the effect of resistive switching for the creation of neuromorphic
systems based on vanadium oxide ReRAM elements. There are many methods for produc-
ing thin films, such as magnetron sputtering [43], atomic layer deposition [44], thermal
evaporation [45], chemical vapor deposition [46], and pulsed laser deposition (PLD) [47,48].
Since PLD has a number of advantages over other methods of obtaining thin films of metal
oxides [49–51] it was used to prepare thin films of vanadium oxide. Moreover, the PLD
method is promising for the manufacture of prototyping elements of ReRAM neuromorphic
systems, since it allows the formation of films of metal oxides in a wide range of parameters.
In PLD, the composition and properties of the deposited layers are largely determined by
the pressure in the growth chamber, the composition of the background pressure [52], and
the deposition duration [53]. Thus, the purpose of this work is to study the influence of
geometric and electrophysical parameters on the effect of resistive switching in vanadium
oxide films obtained by pulsed laser deposition.

2. Materials and Methods

Oxide vanadium thin films were fabricated using a Pioneer 180 pulsed laser deposition
system (Neocera Co., Beltsville, MD, USA) equipped with a KrF excimer laser with a
wavelength of 248 nm and an energy of 200 mJ (Figure 1). Si wafers with crystallographic
orientation (100) were used as substrates. TiN 70 ± 14 nm thick bottom electrode was
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formed by PLD method under the following conditions: substrate temperature 700 ◦C,
number of pulses 15,000, frequency 10 Hz, argon pressure 1 Torr.

Figure 1. Vanadium oxide film surface formed at 10,000 pulse number (a,c,e) and at 60,000 pulse number (b,d,f):
(a,b)—AFM-images; (c,d)—AFM cross-section; (e,f)—SEM-image.

To experimentally study the effect of the pulse number on the morphological and
electrophysical parameters of vanadium oxide films, 6 samples were fabricated on TiN/Si
structure under the following conditions: substrate temperature 800 ◦C, laser frequency
10 Hz, oxygen pressure 3 × 10−4 Torr. The samples were made with a different number of
pulses in the range from 10,000 to 60,000 with a step of 10,000 pulses. Based on the obtained
experimental results, the dependences of geometric (film thickness, surface roughness)
parameters on the pulse number (Figure 2) and electrophysical (electron concentration,
electron mobility, resistivity) on film thickness (Figure 3) were established.
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Figure 2. Experimental study of vanadium oxide film geometrical parameters dependence on pulse number: (a)—thickness;
(b)—surface roughness.

Figure 3. Experimental study electrophysical parameters dependence on vanadium oxide film thickness: (a)—electron
concentration; (b)—electron mobility; (c)—resistivity.

To experimentally study the effect of oxygen pressure on the morphological and
electrophysical parameters of vanadium oxide films, five samples were prepared on
TiN/Si structure under the following modes: substrate temperature 800 ◦C, laser fre-
quency 10 Hz, number of pulses: 10,000. The samples were made at different oxygen
pressures: 3 × 10−4 Torr, 1 × 10−3 Torr, 2 × 10−3 Torr, 1 × 10−2 Torr, and 3 × 10−2 Torr.
Based on the obtained experimental results, the dependences of geometric (film thickness,
surface roughness) (Figure 4) and electrophysical (electron concentration, electron mobility,
resistivity) parameters on oxygen pressure (Figure 5) were established.
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Figure 4. Experimental study of vanadium oxide film geometrical parameters dependence on oxygen pressure:
(a)—thickness; (b)—surface roughness.

Figure 5. Experimental study of vanadium oxide film electrophysical parameters dependence on oxygen pressure:
(a)—electron concentration; (b)—electron mobility; (c)—resistivity.

Geometric parameters of the vanadium oxide films were studied by atomic force
microscopy (AFM) in the semicontact mode using the Ntegra Probe Nanolaboratory (NT-
MDT, Zelenograd, Russia) and a commercial cantilever NSG11 with 255 kHz resonant
frequency and 11.8 N/m spring constant. Vanadium oxide film thickness was determined
using AFM by scanning of (vanadium oxide)/TiN interface. Processing of the results was
carried out using the «Image Analysis 2.0» software package. Vanadium oxide film struc-
ture was investigated using Nova NanoLab 600 raster electron microscope (FEI Company,
Hillsboro, OR, USA).
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The electrophysical parameters of vanadium oxide films were studied using an Ecopia
HMS-3000 Hall effect system (Ecopia Co., Anyang, Korea).

The resistive switching effect in vanadium oxide films was studied using a Keithley
4200-SCS semiconductor parameter analyzer (Keithley Instruments, Solon, OH, USA) and
an EM-6070A submicron probe system (Planar, Republic of Belarus). TiN bottom electrode
(BE) was grounded, W probe with diameter about 100 nm was used as the top electrode
(TE). The compliance current was set to 0.7 mA to avoid thermal breakdown of vanadium
oxide films. As a result, current-voltage (I-V) curves were obtained in the sweep voltage
range from −3 V to 3 V for samples with a thickness of 22.3 ± 4.4 nm and 131.7 ± 14.4 nm
at different points on the surface of the vanadium oxide film (Figure 6). Based on TE
experimental results, the uniformity test (study of resistance switching at one point on the
surface of a vanadium oxide film) and homogeneity test (study of resistance switching at
different points on the surface of a vanadium oxide film) were carried out (Figure 7).

Figure 6. I-V characteristics of vanadium oxide films with different film thickness: (a)—22.3 ± 4.4 nm; (b)—131.7 ± 14.4 nm.
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3. Results and Discussion

Figure 1 shows the results of experimental studies of the morphology of a vanadium
oxide film with thicknesses 22.3 ± 4.4 nm and 131.7 ± 14.4 nm. It is shown that a film with
a thickness of 22.3 ± 4.4 nm (10,000 pulse number) is granular (Figure 1e), when a film with
a thickness of 131.7 ± 14.4 nm (60,000 pulse number) (Figure 2f) has a nanorod structure
on the surface. This result can be explained by the dominance of different mechanisms of
thin film growth with increasing vanadium oxide film thickness during the pulsed laser
deposition process [54].
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Based on the obtained experimental results, the dependences of the thickness and
surface roughness of vanadium oxide films on the pulse number were established (Figure 2).
It was shown that an increase in the pulse number from 10,000 to 60,000 leads to an increase
in the thickness from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm (Figure 2a), and to an increase in the
surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm (Figure 2b). It should be noted that
an increase in the pulse number may lead to a gradual transition of the vanadium oxide
film from a granular structure to nanorod structure. One can assume that the possible
mechanism for this phenomenon consists of two-stage process [54]. At the first stage,
high-density crystalline nuclei are grown on the substrate surface, forming a granular film;
at the second stage, due to the high surface energy of the substrate plane, the growth of the
vanadium oxide film in one of the directions dominate, as a result nanorods are formed.

Figure 3 shows the results of experimental studies of thickness influence on the elec-
trophysical properties of vanadium oxide films. It was shown that an increase in the
thickness from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm leads to an increase in the electron concen-
tration of vanadium oxide from (1.87 ± 0.32) × 1017 cm−3 to (42.64 ± 4.46) × 1017 cm−3

(Figure 3a) and a decrease in the mobility of electrons from 0.78 ± 0.09 cm2/(V·s) to
0.25 ± 0.03 cm2/(V·s) (Figure 3b). This result can be explained by the fact that an increase
in the pulse number and, therefore, in the thickness of the vanadium oxide film, leads to
a decrease in the grain diameter [55]. This leads to an increase in grain density and the
area of grain boundaries, which are defects with destroyed V-O bonds (oxygen vacancies)
and has an additional number of electrons [56]. Therefore, we observe an increase in the
electron concentration with an increase in the pulse number. A decrease in the mobility
of electrons with an increase in the pulse number can also be explained by an increase in
grain boundaries, which are an additional potential barrier for electrons. In addition, the
analysis of the obtained results showed that an increase in the thickness of the vanadium
oxide film from 22.3 ± 4.4 nm to 35.23 ± 5.26 nm leads to an increase in the resistivity from
6.32 ± 2.21 Ω·cm to 47.32 ± 6.32 Ω·cm. A further increase in the vanadium oxide film
thickness from 35.23 ± 5.26 nm to 131.32 ± 11.64 nm leads to a decrease in the resistivity
from 47.32 ± 6.32 Ω·cm to 8.74 ± 3.43 Ω·cm (Figure 3c).

This result can be explained also by the dominance of different growth mechanisms
with different film thickness. The grain diameter has a complex dependence on the thick-
ness, so with an increase in the thickness of the vanadium oxide film to about 40 nm, a
decrease in the grain diameter of the granular film is observed, and a further increase in
the thickness leads to an increase in the grain diameter with the formation of nanorods [54].
Energies of particles in the laser plume are different, and when hitting the substrate, these
particles can interact with each other in different ways, with the formation of grains of
different sizes. It is important to note that changes in the size of grains are associated
not only with an increase or decrease in their area, but also with a change in their shape
and location relative to each other. It can be assumed that the maximum value of the
resistivity (Figure 3c) corresponds to the maximum area of grain boundaries, with different
content of defects, charge carriers, and, therefore, resistance. It can be assumed that an
increase in the resistivity from 6.32 ± 2.21 Ω·cm to 47.32 ± 6.32 Ω·cm with an increase
in the film thickness from 22.32 ± 4.43 nm to 35.23 ± 5.26 nm is associated with a signifi-
cant contribution of bulk conduction to the total conduction, along with grain-boundary
conduction [57]. In this case, an increase in the volume fraction of a grain and an increase
in the distance of overcoming the charge carriers between the grain boundaries can lead
to an increase in the resistivity of the vanadium oxide film. A decrease in the resistivity
from 47.32 ± 6.32 Ω·cm to 8.74 ± 3.43 Ω·cm with an increase in the film thickness from
35.23 ± 5.26 nm to 131.32 ± 11.64 nm can be associated with a change in the morphology
of the film from granular structure to nanorod structure and dominance of rod boundary
conduction over bulk conduction.

Analysis of the experimental results of studying the influence of oxygen pressure
on geometric parameters showed that an increase in oxygen pressure from 3 × 10−4

Torr to 3 × 10−2 Torr leads to an increase in the film thickness from 22.32 ± 1.43 nm to
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53.32 ± 5.65 nm (Figure 4a) and an increase in surface roughness from 7.8 ± 1.1 nm to
14.3 ± 1.5 nm (Figure 4b). This result can be explained by an increase in the number of
oxygen atoms with increasing pressure, which leads to an increase in the formation of the
number of V-O bonds with the formation of vanadium oxide atoms, and, finally, to an
increase in the film thickness and surface roughness [54]. Detailed description of phase
composition and stoichiometry of vanadium oxide obtained by pulsed laser deposited are
presented in [58].

Figure 5 shows the results of experimental studies of oxygen pressure on the electro-
physical properties of vanadium oxide films. It was shown that an increase in the oxygen
pressure from 3 × 10−4 Torr to 3 × 10−2 Torr leads to a decrease in the electron concentration
of vanadium oxide from (1.87 ± 0.32) × 1017 cm−3 to (0.32 ± 0.07) × 1017 cm−3 (Figure 5a),
an increase in the electron mobility from 0.78 ± 0.09 cm2/(V·s) to 7.12 ± 1.32 cm2/(V·s)
(Figure 5b), and an increase in the resistivity from 6.32 ± 2.21 Ω·cm to 723.74 ± 89.21 Ω·cm
(Figure 5c). This result can be explained by the fact that the concentration of electrons in
the vanadium oxide film is directly proportional to the concentration of vanadium atoms,
which, in turn, is inversely proportional to the oxygen pressure. This assumption is con-
firmed by the value of the resistivity of the films obtained at low (less than 0.003 Torr)
oxygen pressures, which are comparable to the resistivity of metals. In addition, at different
oxygen pressures, the formation of oxide phases with different stoichiometric ratios of
vanadium and oxygen is possible. The combination of these phases also affects the electrical
properties of vanadium oxide films. Therefore, an increase in the oxygen pressure leads to
an increase in phases with a high oxygen content (V2O3, V2O5), which, in turn, leads to a
decrease in the electron mobility and an increase in the resistivity of the vanadium oxide
film with an increase in the oxygen pressure.

The effect of resistive switching was studied on two films with different structures: gran-
ular and nanorod. For the granular structure films, a film with a thickness of 22.3 ± 4.4 nm
was chosen, since it has the lowest roughness and resistivity, which is important for fabricat-
ing ReRAM neuromorphic structures with low energy consumption and a high degree of
element integration. A film with a thickness of 131.7 ± 14.4 nm with the lowest resistivity
was also selected from the nanorod structure films.

An analysis of the results obtained for studying the effect of resistive switching
showed that a film with a thickness of 22.3 ± 4.4 nm exhibits a bipolar effect of resistive
switching and has 4 regions: RHRS at voltages from 0 V to 1.2 ± 0.1 V, R2 at voltages from
1.2 ± 0.1 V to 2.3 ± 0.1 V, R3 at voltages from 2.3 ± 0.1 V to 2.6 ± 0.1 V and RLRS at voltages
above 2.6 ± 0.1 V. The RHRS was (89.42 ± 32.37) × 106 Ω at 0.5 V read voltage, R2 was
(32.53 ± 12.73) × 103 Ω at 1.5 V read voltage, R3 was (8.47 ± 1.34) × 103 Ω at 2.5 V read
voltage V, RLRS was equal to (6.34 ± 2.34) × 103 Ω with a read voltage of 0.5 V. The ratio
RHRS/RLRS was about 14,104. This result can be associated with the phase inhomogeneity
of the vanadium oxide film over the thickness. If we assume that in the process of PLD,
with an increase in the pulse number, an increase in the number of oxygen atoms interacting
with vanadium atoms occurs, this increase in the deposition time leads to the formation of
oxides of higher order. As a result, the vanadium oxide film consists of several phases with
different values of electrophysical parameters. In this case, the resistivity of the vanadium
oxide film increases from the VO phase to the V2O5 phase (from the lower contact (BE) to
the upper contact (TE)). This leads to the fact that the activation energy of oxygen atoms for
the formation of a pair of O−2 (oxygen ions) and VO (oxygen vacancy) also increases when
moving from the film region with the VO phase to the film region with the V2O5 phase.
Thus, to generate an oxygen vacancy in each phase, it is required to apply an external
electric field above a certain value, which will impart energy to oxygen atoms above the
activation energy. Based on this, it can be assumed that the RHRS for the I–V characteristic
in Figure 6a corresponds to the situation when oxygen vacancies are concentrated near
the bottom contact in the VO phase. At a voltage of 1.2 ± 0.1 V, oxygen vacancies are
formed in the VO2 phase and IV curve goes to the R2 region. At a voltage of 2.3 ± 0.1 V, the
oxygen atoms receive sufficient energy to form a pair of O−2 and VO in the V2O3 phase,
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IV curve goes to the R3 region. At a voltage of 2.6 ± 0.1 V, the oxygen vacancies reach
the upper contact and the film transforms into the RLRS state. It can also be seen from the
analysis of the I–V characteristics that at negative voltages, no plateaus are observed on
the curve, as at positive ones. This may be due to the features of resistive switching from
the RHRS state to the RLRS, in particular, with the dominance of the temperature gradient
over the electric field gradient and the concentration gradient of oxygen vacancies, which
leads to the excessive release of Joule heat in the film volume and destruction of the entire
nanoscale conduction channel, rather than its separate section [58].

In addition, an analysis of the obtained results of studying the resistive switching
showed that a film with a thickness of 131.7 ± 14.4 nm exhibits a bipolar effect of resistive
switching and has 2 resistive states: at a voltage of 2.3 ± 0.2 V, the film switched from the
RHRS state to RLRS, and at a voltage of −2.8 ± 0.1 the film was switched back to the RHRS
state (Figure 6b). The resistances of the RHRS and RLRS were (50.72 ± 13.42) × 103 Ω and
(12.34 ± 3.75) × 103 Ω at a reading voltage of 1.0 V, respectively. The ratio RHRS/RLRS was
about 4. Analysis of the literature data showed that the main mechanism of conduction
in oxide nanorods is the correlated barrier hopping model, according to which current
transfer occurs due to the hopping of charge carriers between defects over a potential
barrier separating them [59–61].

An analysis of the experimental results of studying the uniformity of resistive switch-
ing in a vanadium oxide film with a thickness of 22.3 ± 4.4 nm showed that RLRS varied
in the range from 4.27 × 103 Ω to 9.88 × 103 Ω, and RHRS varied in the range from
5.32 × 107 Ω to 1.23 × 108 Ω. The mean values RLRS = (6.34 ± 2.34) × 103 Ω and
RHRS = (89.42 ± 32.37) × 106 Ω corresponded to the probabilities of 41% and 52%, respec-
tively (Figure 7a). An analysis of the experimental results of studying the homogeneity of
resistive switching in a vanadium oxide film with a thickness of 131.7 ± 14.4 nm showed
that RLRS varied in the range from 2.93 × 103 Ω to 1.37 × 104 Ω, and RHRS varied in the
range from 3.64 × 107 Ω to 1.51 × 108 Ω. The mean values RLRS = (6.34 ± 2.34) × 103 Ω
and RHRS = (89.42 ± 32.37) × 106 Ω corresponded to the probabilities of 37% and 61%,
respectively (Figure 7b).

The different range of RHRS and RLRS values for uniformity and homogeneity can be
explained by different values of the vanadium oxide film thickness, as well as different
concentrations and distribution profiles of oxygen vacancies in the volume at different
points on the vanadium oxide surface.

4. Conclusions

The paper presents the results of experimental studies of the influence of the PLD
control parameters on the morphological and electrophysical parameters of vanadium
oxide films. It is shown that an increase in the pulse number from 10,000 to 60,000 leads to an
increase in the thickness of the vanadium oxide film from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm,
surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm, and electron concentration from
(1.87 ± 0.32) × 1017 cm−3 to (42.64 ± 4.46) × 1017 cm−3, and a decrease in the electron
mobility from 0.78 ± 0.09 cm2/(V·s) to 0.25 ± 0.03 cm2/(V·s). It is shown that an increase
in the film thickness from 22.3 ± 4.4 nm to 35.23 ± 5.26 nm leads to an increase in the
resistivity from 6.32 ± 2.21 Ω·cm to 47.32 ± 6.32 Ω·cm, and an increase in the film thickness
from 35.23 ± 5.26 nm to 131.32 ± 11.64 nm leads to a decrease in the specific resistance from
47.32 ± 6.32 Ω·cm to 8.74 ± 3.43 Ω·cm. This result can be explained by the predominance
of different growth mechanisms on samples with different film thicknesses of vanadium
oxide, which leads to the formation of films with different structures.

An analysis of the obtained experimental results showed that an increase in the oxygen
pressure from 3 × 10−4 Torr to 3 × 10−2 Torr leads to an increase in the thickness of the
vanadium oxide film from 22.32 ± 1.43 nm to 53.32 ± 5.65 nm, and the surface rough-
ness from 7.8 ± 1.1 nm to 14.3 ± 1.5 nm, electron mobility from 0.78 ± 0.09 cm2/(V·s) to
7.12 ± 1.32 cm2/(V·s), resistivity from 6.32 ± 2.21 Ω·cm to 723.74 ± 89.21 Ω·cm, and a de-
crease in concentration electrons from (1.87 ± 0.32) × 1017 cm−3 to (0.32 ± 0.07) × 1017 cm−3.
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This result can be explained by the formation of oxide phases with different stoichiometric
ratios of vanadium and oxygen at different oxygen pressures.

An analysis of the obtained experimental results of studying the effect of resistive
switching showed that a vanadium oxide film 22.3 ± 4.4 nm thick exhibits a bipolar effect of
resistive switching and has 4 different resistive states. The RHRS was (89.42 ± 32.37) × 106 Ω
at 0.5 V read voltage, R2 was (32.53 ± 12.73) × 103 Ω at 1.5 V read voltage, R3 was
(8.47 ± 1.34) × 103 Ω at 2.5 V read voltage V, RLRS was equal to (6.34 ± 2.34) × 103 Ω
with a read voltage of 0.5 V. The ratio RHRS/RLRS was about 14,104. This result can also be
associated with the phase inhomogeneity of the vanadium oxide film over the thickness. As
a result, in different parts of the oxide film volume, the activation energy of oxygen atoms
for the formation of a pair O−2 and VO has different values. Therefore, imparting additional
energy to atoms by increasing the sweep voltage amplitude leads to a sharp generation of
oxygen vacancies in a particular phase and a sharp change in the resistance of the oxide
film. At a voltage of 1.2 ± 0.1 V, oxygen vacancies are formed in the VO2 phase and the
vanadium oxide film transforms into the R2 state. At a voltage of 2.3 ± 0.1 V, the oxygen
atoms receive sufficient energy to form a pair of O−2 and VO in the V2O3 phase, and the
vanadium oxide film transforms into the R3 state. At a voltage of 2.6 ± 0.1 V, the oxygen
vacancies reach the upper contact and the film transforms into the RLRS state.

Moreover, an analysis of the obtained results of studying the resistive switching
showed that a film with a thickness of 131.7 ± 14.4 nm exhibits a bipolar effect of re-
sistive switching and has two resistive states: RHRS = (50.72 ± 13.42) × 103 Ω and
RLRS = (12.34 ± 3.75) × 103 Ω at a reading voltage of 1.0 V. The probable mechanism of
resistive switching in the film with a nanorod structure can be described by the correlated
barrier hopping model.

An analysis of the experimental results of studying the resistive switching in a vana-
dium oxide film with a thickness of 22.3 ± 4.4 nm showed that RLRS varied in the range
from 4.27 × 103 Ω to 9.88 × 103 Ω, and RHRS varied in the range from 5.32 × 107 Ω to
1.23 × 108 Ω for uniformity test; RLRS varied in the range from 2.93 × 103 Ω to 1.37 × 104 Ω,
and RHRS varied in the range from 3.64 × 107 Ω to 1.51 × 108 Ω for homogeneity test.

The results can be used in the manufacture of new-generation micro- and nanoelec-
tronics elements to create ReRAM elements of neuromorphic systems based on vanadium
oxide thin films.
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