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Abstract: Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tu-
mors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration.
Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical
and radiological prognostic factors only partially change the progression-free survival but they do not
improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radio-
therapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens
were found to significantly improve the prognosis. In the new era of a deeper integration between
histological and molecular findings, potential new approaches are currently under investigation. The
entire international scientific community is trying to target DMG on different aspects. The therapeutic
strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as
well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy
approaches too are an interesting point of research in the oncology field, and the possibility of driving
the immune system against tumor cells has currently been evaluated in several clinical trials, with
promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development
of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost
intact blood–brain barrier could potentially change tumor responses to different treatments. In this
review, we provide a comprehensive overview of available and potential new treatments that are
worldwide under investigation, with the intent that patient- and tumor-specific treatment could
change the biological inauspicious history of this disease.

Keywords: pediatric diffuse midline glioma (DMG); diffuse intrinsic pontine glioma (DIPG); immuno-
oncology; target therapy; immunotherapy

1. Introduction

Diffuse midline gliomas (DMGs) are one of the most devastating pediatric cancers,
representing about 20% of all pediatric central nervous system (CNS) tumors, with approx-
imately 200 to 300 new cases diagnosed each year in the United States [1,2].

Most DMGs occur between the ages of 5 and 10 years, with a peak at 7 years and
no gender predilection [3]. The intrinsic localization of this tumor into midline structures
contributes to the poor outcome of those patients; the widespread infiltrative nature as well
as the critical anatomical location precludes surgical resection, while the presence of an
intact blood–brain barrier (BBB) [4] hinders drug penetration into the tumor.

The term “DMG” replaced the previous nomenclature “diffuse intrinsic pontine glioma
(DIPG)”, usually used for the primitive pontine midline gliomas, with the aim of emphasiz-
ing that these lesions are not solely centered in the pons/brainstem, but may also originate

Diagnostics 2022, 12, 2064. https://doi.org/10.3390/diagnostics12092064 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12092064
https://doi.org/10.3390/diagnostics12092064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-9581-2751
https://orcid.org/0000-0003-3540-4331
https://orcid.org/0000-0002-3906-4410
https://orcid.org/0000-0002-7952-6771
https://orcid.org/0000-0003-4901-9952
https://orcid.org/0000-0002-5203-7855
https://orcid.org/0000-0002-4408-2373
https://doi.org/10.3390/diagnostics12092064
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12092064?type=check_update&version=1


Diagnostics 2022, 12, 2064 2 of 25

in the other midline structures, such as the thalami, the ganglio-capsular region, the cere-
bellum, cerebellar peduncles, the third ventricle, the hypothalamus, the pineal region, as
well as the spinal cord [5], as postulated by the latest World Health Organization (WHO)
classification of CNS tumors (WHO CNS 5) [6].

The discovery of recurrent somatic mutations lead to lysine 27 to methionine (p.Lys27Met)
substitution in histone 3 (H3) gene variants H3F3A and HIST1H3B, encoding histone H3
variants H3.3 and H3.1, respectively, collectively referred to as H3K27M- in approximately
70% of DMG samples [4,7], which has completely revolutionized the knowledge of this
disease and highlighted the analyses of the tumor tissue, especially for research purposes.
It represents the major oncogenic event initiating tumorigenesis, disrupting cell physiology
by altering the epigenetic regulation of their genes expression [8,9].

Despite current therapies involving radiotherapy and multiple chemotherapies, the
prognosis is still poor, with a 2-year survival rate of <10% [10].

In this review, we discuss the main clinical, biological, and radiological characteristics.
In addition, we provide a comprehensive overview of available and under investiga-

tion treatments.

2. Diagnosis
2.1. Clinical Features

All structures on the midline could be involved, with different signs and symptoms,
including headaches, cranial nerve palsies, as well as motor or sensitive focal deficits.

In a lesion involving the thalamus, the most frequent symptoms are weakness on one
or both sides of the body or focal motor deficits.

For typical DIPGs, clinical symptoms and signs have a frequently short latency (a me-
dian time of 3–6 months) with a triad of cerebellar signs (ataxia, dysmetria, and dysarthria),
long tract signs (hypertonia, hyperreflexia, and motor deficits), and cranial nerve palsies
(especially VI and VII cranial nerves, isolated or multiples).

Spinal localizations could be difficult to detect, until they manifest with focal or
generalized motor deficits.

Metastatic disease (MD) is reported in about 13% of cases with a median time from
diagnosis of 7.2 months (range 4.6 months–2.2 years); intraparenchymal metastasis usually
involves supratentorial, infratentorial, or spinal regions, but it could also concern ventricu-
lar or leptomeningeal dissemination (LMM) [11,12]. Of note, patients with supratentorial
metastasis experienced a better overall survival (OS) when compared with patients with
intraventricular disease. However, MD did not reduce OS, probably because the local
progression and rapid involvement of vital structures remain the main causes of death [13].

2.2. Biological Landscape

The fundamental step in understanding DMG biology came in 2012, when mutations
in H3.3 histone were detected in almost 70% of DMG samples, and in 12–19% of cases
with similar variants (namely H3.2 and H3.1 variants) [7]. H3K27M alteration lead to a
global epigenetic dysregulation, due to the inactivation of the polycomb repressive complex
2 (PRC2), through an interaction between the enhancer of zest homologue-2 (EZH2) and
the mutant histone [14]. This phenomenon resulted in a global DNA hypomethylation,
with consequent transcriptional depression at these specific loci and the dysregulation of
multiple cellular processes [15].

Castel and Coll in 2015 described ninety-seven DIPG, and all but one were found
to harbor either a somatic H3K27M alteration or loss of H3K27 trimethylation. They
reported firstly a new mutation in HIST2H3C, thus impacting on prognosis. Tumors
harboring a mutation in H3.3 exhibit radioresistance, with an higher tendency to relapse
and to metastatic progression than those reported in H3.1 variants. H3.3K27M-altered
DIPG showed a pro-neural/oligodendroglial phenotype and a pro-metastatic phenotype,
while H3.1-K27M-mutated tumors exhibited a mesenchymal/astrocytic phenotype and
a pro-angiogenic/hypoxic signature [16].
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These results have been confirmed in the pivotal study published in 2017, showing
that more than one thousand pediatric high-grade gliomas (HGG) and DIPG. In this study,
H3.3K27M was detected in almost 60–70% of DIPG, and it was associated with a worse OS
(median 11 months), while H3.1 and H3.2 variants showed a relatively longer OS (median
15 months) and a lower risk of metastasis spread [17]. In addition to the K27M status, other
changes, such as the overexpression of EZHIP and alterations in the epidermal growth
factor receptor (EGFR), have been reported, which were recently included in the latest
2021 WHO classification of CNS tumors as “H3K27-altered tumors” [6].

Beyond H3K27M alteration, other concomitant changes in the expression of several
genes that strongly regulate embryonic morphogenesis, the activity of transcription fac-
tors, and cellular growth have been detected, including MHC class I polypeptide-related
sequence A (MICA), platelet-derived growth factor receptor-α (PDGFRA), and cyclin-
dependent kinase inhibitor 2A (CDKN2A) [18], as well as mutations in ACVR1, TP53, or
components of the PI3K/mTOR/MAPK pathways [18,19].

TP53 mutations occur in about 40% of DIPG and represent the second most frequent
mutation, correlated with a worsening OS [20]. This mutation allows tumor cells to evade
death signaling, leading to unruled proliferation. However, even in TP53 wild-type tumors,
about 80% of cases report a mutation in the protein phosphatase, Mg2+/Mn2+-dependent
1D (PPM1D), which seems to determine an overexpression of TP53 and of other proteins
involved in DNA damage response.

TP53 mutation usually occurs with the amplification of PDGFRA, which is the most
common one (about 30% of cases), and it is strictly implicated in the RTK-RAS-PI3K-AKT
signaling pathway. PDGFRA determines the activation of PI3K and MAPK pathways, and
it is usually coupled with H3.3 mutations [21], thus explaining its association with major
clinical aggressiveness [22].

Poly ADP-ribose polymerase (PARP1), a protein essential for the repair of single strand
DNA breaks induced by alkylating agents and radiation, is overexpressed in about 54% of
DIPG [23].

Activin A receptor type 1 (ACVR1), a member of the bone morphogenic protein
signaling pathway, has been detected exclusively in approximately 30% of DIPG [24] and it
was significantly associated with younger age, longer survival, and the presence of H3.1
variant (about 80% of cases) or PIK3CA/PIK3R1 mutations [25]. Its role in tumorigenesis still
remains unclear. This mutation has been previously reported only as a germline mutation
in a congenital autosomal dominant disease of the connective tissue called fibrodysplasia
ossificans progressive (FOP), but the typical ACVR1 alteration found in DIPG (p.Gly328Val)
has not been reported in FOP patients. Therefore, the real connection between DIPG and
FOP patients is still under investigation.

Deletions of cell cycle regulatory genes CDKN2A/CDKN2B are not frequent in DIPG,
but the dysregulation of the cell cycle checkpoint has been reported in about 25–30% of
DIPG, with the amplification of CCND2 and deletions of CDKN2C predominating ones [21].

Mutations of chromatin remodeling genes in telomeric regions (ATRX) are less com-
mon in DIPG than supratentorial HGG, showing ATRX mutations, commonly mutated in
almost all H3.3 G34-mutant gliomas, and only in a slow percentage of H3.1 mutated DIPG
(about 9%).

The MAPK pathway is a well-known pathway transducing growth and differentiation
signals, mostly found altered in pediatric low-grade gliomas [26]. Recent molecular discov-
eries reported BRAFV600E mutation in about 30% of DMG or hemispheric HGG, but rarely
in DIPG, correlating with a moderately improved prognosis [17,23].
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Different studies investigated molecular subgrouping among DIPG, taking into con-
sideration histological, epigenetic, and genomic features, with the intent to stratify patients
and identify higher-risk subgroups.

In 2011, Paugh et al. subclassified DIPG into three subgroups, based on the most
recurrent genetic alteration, a PDGFRA alteration found in 47% of DIPGs, a RB amplification
in another 31% of samples, and the third part with both pathways involved [21].

Puget defined two DIPG subgroups, the mesenchymal and the proliferative one,
according to the predominant histological features [19].

Other subsequent classification proposals concern microRNA investigations, methyla-
tion, and protein profiling, identifying two subgroups with N-Myc or PTCH1 upregula-
tion [27].

Buczkowicz et al. stressed the importance of the tumor mutation rate by identifying
three different classes, namely Myc-N-amplified, H3K27-altered, and the silent group, with
few copy number alterations and low mutation rates, but there was no evidence of the
survival impact of tumor mutational rate [24].

However, the most significant subclassification with a real impact on prognosis re-
mains the one postulated in 2012 by Koxang, distinguishing two subgroups, harboring or
not harboring H3K27 mutation, with worse or better prognosis, respectively [7].

Therefore, even if H3.3 alteration confirms its negative prognostic role, there remains
much to be discovered about a profoundly heterogeneous pathology, with the intent
to fulfill the current knowledge gap of the past 50 years, when biopsy approach was
not routinely performed, resulting in few tissue samples available for molecular and
epigenetic investigations.

2.3. Radiological Findings

MRI remains the gold standard for the diagnosis of DMG. In particular, for DIPG,
typical findings include a T1-hypointense and T2-hyperintense lesion involving >50% of
the pons [28] with high perfusion and restricted diffusion sequences [29,30]. A retrospec-
tive analysis with a radiological and pathological central review of 22 cases enrolled in
institutional trials, with associated immune histochemical analyses, demonstrating the
high-frequency detection of H3K27M alterations when MRI features are carefully assessed,
confirming the consistency of integration imaging features with biological markers [31].
Moreover, it seems that specific MRI features could be used to discriminate the H3K27M
mutational status of lesions not involving the pons, demonstrating a greater contrast en-
hancement with thicker enhancing margins and a lower degree of edema is more frequent
in DMG and H3K27M-altered, compared to the wild-type (WT) group [5].

More informations are provided by an interesting recent report on the preliminary
examination of HERBY trial patients. They detected that the larger part of midline tumors
was radiologically well-defined with absent or minor perilesional edema. Thalamo-pulvinar
tumors showed the greatest proportion of moderate or strong enhancement, with the
greater part of intratumoral necrosis being reported. Different patterns of diffusion were
highlighted, as well as LMM, which resulted in an expected worse outcome. There were no
differences in survival according to location, tumor enhancement, or diffusion restriction.
The results from the HERBY trial have recently been incorporated into the Response
Assessment of Pediatric Neuro-Oncology (RAPNO) guidelines for pediatric HGG [32].

Similar studies encourage the need for a deeper integration of radiological and histo-
logical findings in order to correctly stratify all patients.
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Positron emission tomography (PET) imaging with aminoacid tracers, such as
18-F-dihydroxy-phenylalanine (F-DOPA), is a new diagnostic method that has been largely
used in the oncology field in the last few decades. Preliminary studies seem to correlate
with a higher uptake of tracer with more aggressiveness and, as we recently learned, with
H3K27M mutational status. Prior results were first reported by Morana and colleagues,
demonstrating that a higher uptake of F-DOPA is associated with a worse prognosis [33].
These data are still under debate, and further investigations are needed for the routine use
of this methodic [34].

3. Current Treatments

The dismal prognosis makes DMG treatment one of the major challenges in pediatric
neuro-oncology. Most established prognostic factors are summarized in Table 1.

Table 1. Prognostic factors impacting survival in patients with DMG.

Favorable Prognostic Factors Unfavorable Prognostic Factors

Age < 3 years [35–37] Age > 10 years

Duration of symptoms ≥ 3 months [38,39] Duration of symptoms ≤ 3 months [32]

Absence of cranial nerve palsies or long tract
involvement at diagnosis [40]

Improved perfusion [41,42]
Presence of a ring enhancement [22]

Significant reduction in steroids needing Restricted diffusion areas [43]

Rapid amelioration of neurological signs [44] Higher choline: N-acetylaspartate ratio than the median of 2.1 [45]

H3.1 alteration H3.3 alteration
p53 mutation

Tumor volume reduction after therapy [46] LMM [47] or metastatic disease [48]

Detection of lactate and N-acetyl aspartate in MRI spectroscopy (MRS) [49,50]

There have been several studies worldwide, but none of them significantly changed
the median OS, which is invariably stable at 9–12 months from initial diagnosis. Time to
progression (TTP) ranged from 5 to 9 months, and the outcome remains poor for more than
90% of children, who died within 2 years from initial diagnosis.

Currently, radiotherapy (RT) remains the mainstay of treatment at diagnosis, and
even at first or second relapse. The standard of care for newly diagnosed patients is focal
intensity-modulated radiation therapy (IMRT) to the primitive tumor (54–60 Gy, divided in
1.8–2 Gy fractions, given once daily for 5 days per week over 6 weeks) [40]. This treatment
results in temporary symptom relief, as well as moderate delaying tumor progression, in
about 70–80% of patients. Unfortunately, this effect shrinks after a few months with the
restart of tumor growth and potentially distant dissemination, with a median TTIP after
RT often shorter than 6 months [51]. A large review of aggregate data from more than
2000 patients in about 70 studies has revealed a median OS of approximately 11 months for
patients treated with RT, not excluding the use of a hypofractionated regimen, considering
the possibility of multiple courses of radiation [52]. The results of a matched cohort analysis
demonstrate a similar OS rate with a hypofractionated regimen (13 or 16 fractions in
3 to 4 weeks) compared with a conventional radiation therapy regimen (30 fractions in
6 weeks) for patients with newly diagnosed DIPG [53], but without any survival benefits.
The transient response to RT enforced researchers to attempt to increase radiation dose
using higher doses of radiation (up to 7000 cGy), resulting in increased toxicity without any
improvement in OS [54], as well as a hypofractionated regimen, which was demonstrated
to be feasible but with no advantages on survival [55].
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Re-irradiation represents the only salvage treatment for recurrent disease and a pal-
liative therapeutic option. The largest series of re-irradiated cases were published by
Janssens et al. on behalf of the SIOPE HGG/DIPG working group [56]. Thirty-one patients
who underwent re-irradiation were compared with 39 patients who were not selected for
re-irradiation, with a moderate OS benefit with re-irradiation (13.7 versus 10.3 months).
Patients with a greater time interval from the initial diagnosis to first radiation therapy
benefited more with re-irradiation, probably for a more indolent disease.

Several other studies confirmed a statistically significant median survival benefit
after re-irradiation for recurrent DIPG, ranging from 3 to 4 months. The maximum doses
reported in the literature ranged from 30 to 36 Gy (1.8 Gy/day), according to the time passed
since their first radiation therapy to permit some recovery of brainstem tolerance [57].

Different types of adjuvant and neoadjuvant therapies have been tested, and many
other trials are still ongoing, with the intent to change the natural history of the disease.

Radiation sensitization with different agents such as topotecan, cisplatin, carboplatin,
temozolomide, or motexafin gadolinium is already described [58], but none of these drugs
demonstrated to be effective [59–61].

Additional chemotherapy before, during, or after radiotherapy, including temozolo-
mide, carboplatin, cisplatin, tamoxifen, and high-dose myeloablative chemotherapy (such
as those used in high-risk medulloblastoma) demonstrated moderate responsiveness to
treatment, but it unquestionably failed to determine the advantages of OS or PFS, resulting
in increased toxicities and hospitalizations [51].

Doz et al. obtained a median OS of almost 11 months using carboplatin during RT [62]
and multiple chemotherapeutic agents (tamoxifen, cisplatin, or high-dose methotrexate),
with the intent to delay radiotherapy to clinical or radiological progression. Therefore, their
approach requires a long recovery, a high risk of infections, and the development of severe
toxicities [63].

The German HIT–GBM protocols assessed a variety of chemotherapeutic strategies in
the HIT–GBM protocols, but none of them showed a superior OS [64].

In a single national institution study, Massimino et al. evaluated four different regi-
mens in DIPG treatment, including high-dose chemotherapy followed by myeloablative
treatment; cisplatin/etoposide followed by isotretinoin before, during, and after local RT;
or a combination of chemo-radiotherapy and single vinorelbine before, during, and after
radiotherapy. The results have not been encouraging [65].

Temozolomide has long been investigated in DMG, but it failed to obtain the expected
benefit on survival rates [60,66]. Therapeutic failures could be related to the presence of
an unmethylated methyl-guanine methyltransferase (MGMT) promoter, which rapidly
removes methyl and alkyl groups from the O6 position of guanine, directly contrasting the
mechanism of action of temozolomide. The MGMT promoter has been found hypermethy-
lated mostly in the H3.3/G34 group and less in tumors with K27 mutation [67], thus proba-
bly leading to DMG resistance to alkylating agents reported in several trials [60,68–70].

Wagner et al. reported a moderately better median PFS in patients with DIPG treated
with adjuvant chemotherapy after RT compared with patients treated with RT alone
(11.3 months versus 9.5 months) [71], but no significant improvements in OS. Similar
results were reported in other randomized trials [72,73].
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The role of tumor resection for midline pediatric DMG remains uncertain, while, im-
pressively, the HERBY trial showed no evidence of a different event-free survival (EFS) rate
according to the surgical approach; meanwhile, patients who experience a (rare) near total
resection (NTR) or debulking survived longer [74], as stated in other investigations [75].

For the future, we can hypothesize that only combinations of traditional therapy with
epigenetic therapy, immunotherapy, or nanotechnologies for drug delivery may lead to the
development of curative approaches [76].

4. Target Therapies for DMG

Due to the advanced understanding of DMG molecular pathology, several studies
have tried to investigate new potential therapeutic approaches with molecular drugs
targeted against a specific pathway. These findings support and motivate the need for a
biopsy assessment of the tumor to correctly define the potential therapeutic targets, as
recently stated in two global multi-institutional trials (NCT01182350 and NCT02233049).

A linear comparison of the many different studies available is quite difficult due to
the high variability of eligibility criteria, primary and secondary outcomes, the assess-
ment of response and progression, statistical design, and endpoints, which are still far
from an international standardization [70].

Critical research was conducted in order to capture all available clinical trials with
registration in the ClinicalTrials.gov portal, investigating DMG and DIPG.

We included all clinical trials based on the investigation: (1) DMG/DIPG and
(2) DMG/DIPG and other CNS tumors.

Currently, 115 trials followed the appropriate inclusion criteria. Ninety-nine percent
of them were interventional, and 3.6% were observational. A phase category was
reported for 109 (94%) of the registered trials. Phase I is the most common phase
design (n = 68, 60%). Thirty-eight trials (33%) were phase II, and a total of four (3.4%)
were phase III.

As of June 2022, only 14 (12%) trials have published their results: 3 are specific to
DIPG/DMG, while the others, including DMG, are amongst other pediatric CNS tumors.

None of them demonstrated a significant change in progression-free survival (PFS)
and OS. Study characteristics are reported in Table 2.

To date, 57 interventional studies are recruiting for newly diagnosed and/or recur-
rent DMG/DIPG, with the larger part being coordinated by a medical institute in the
USA. The major part of them is reported in Table 3.

ClinicalTrials.gov
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Table 2. DIPG/DMG trials completed.

Number of Trial Study Name Phase Countries Start-End Date Enrollment Size Primary Outcome Secondary Outcome Results

NCT03566199

MTX110
by CED in Treating Participants with
Newly Diagnosed Diffuse Intrinsic

Pontine Glioma (PNOC015)

I USA 2019–2021 7 patients

Safety and
tolerability of

repeated MTX110
infusions

Clinical efficacy

1 AE; 7/7 patients died for PD
phase II expansion cohort was not

activated at behest of
pharmaceutical supplier

NCT01182350
Molecularly Determined Treatment of

Diffuse Intrinsic Pontine Gliomas
(DIPG-BATS)

II USA 2011–2016 53 patients OS after biopsy AE biopsy-related No AE biopsy-related

NCT02607124
A Phase I/II Study of Ribociclib, a

CDK4/6 Inhibitor, Following
Radiation Therapy

II USA 2015–2020 11 patients AE; 1-year OS / 4/11 patients developed SAE;
11/11 patients died for PD

NCT01189266

Vorinostat and Radiation Therapy
Followed by Maintenance Therapy
with Vorinostat in Treating Younger

Patients With Newly Diagnosed
Diffuse Intrinsic Pontine Glioma

I/II USA 2010–2021 79 patients MTD, 2-year OS 2 patients completed the trial;
50 patients left for lack of efficacy

NCT00036569

A Phase II Study of Pegylated
Interferon Alfa 2b

(PEG-Intron(Trademark)) in Children
With Diffuse Pontine Gliomas

II USA 2002–2012 32 patients 2-year OS Median TTP No improvement in OS, probably
delaying TTP

NCT00879437

Valproic Acid, Radiation, and
Bevacizumab in Children with
High-Grade Gliomas or Diffuse

Intrinsic Pontine Glioma

II USA 2009–2021 38 patients
1-year EFS,

percentage of SAE
grade ≥ 2

Median EFS, median OS No benefit on EFS and OS

NCT01514201

Veliparib, Radiation Therapy, and
Temozolomide in Treating Younger

Patients with Newly Diagnosed
Diffuse Pontine Gliomas

I/II USA 2012–2019 66 patients MTD; OS; DLTs No SAE, but no benefits on
EFS and OS

NCT01836549
Imetelstat Sodium in Treating

Younger Patients with Recurrent or
Refractory Brain Tumors

I/II USA 2013–2018 43 patients Objective response
(at least 50%) PFS

Terminated (due to several
intracranial hemorrhages and

recommendation by the
PBTC DSMB)

NCT01774253
Erivedge (Vismodegib) in the

Treatment of Pediatric Patients with
Refractory Pontine Glioma

II USA 2013–2015 9 patients PFS SAE; OS, QoL Terminated (lack of enrollment and
commercial availability of drug)

NCT03387020
Ribociclib and Everolimus in Treating

Children with Recurrent or
Refractory Malignant Brain Tumors

I USA 2018–2020 22 patients MTD Objective responses MTD identified
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Table 2. Cont.

Number of Trial Study Name Phase Countries Start-End Date Enrollment Size Primary Outcome Secondary Outcome Results

NCT03257631

A Study of Pomalidomide
Monotherapy for Children and Young
Adults with Recurrent or Progressive

Primary Brain Tumors

II USA/Europe 2017–2022 52 patients Objective responses Long-term SD, PFS, OS No patient in DIPG group achieved
objective responses or SD

NCT01502917

Convection-Enhanced Delivery of
124I-Omburtamab for Patients with

Non-Progressive Diffuse Pontine
Gliomas Previously Treated with
External Beam Radiation Therapy

I USA 2012–February
2022

50 patients
(expected) MTD; toxicity OS

Terminated (stopping rule was met
per protocol as a result of the last
two subjects experiencing dose

limiting toxicities)

NCT00880061

An Open-Label Dose Escalation
Safety Study of CED of

IL13-PE38QQR in Patients with
Progressive Pediatric Diffuse

Infiltrating Brainstem Glioma and
Supratentorial High-Grade Glioma

I USA 2009–2015 7 patients Feasibility and safety
Objective response on

MRI, clinical and
patient-specific

Terminated; preliminary results on
4 patients

NCT03178032 Brain Infusion of the DNX-2401 Virus
Through the Cerebellar Peduncle I Spain 2017–2021 12 patients Safety, tolerability,

and toxicity

OS at 12 months;
complete/partial
response in MRI

Terminated; results published

AE: adverse event; CED: convection-enhanced delivery; PD: progression disease; MTD: maximum tolerated dose; TTP: time to progress.

Table 3. DMG/DIPG trials still recruiting.

Number of Trial Study Name Phase Countries Start Date Enrollment Size Primary Outcome Secondary Outcome

DIPG/DMG

NCT04250064
A Study of Low-Dose Bevacizumab with Conventional Radiotherapy

Alone in Diffuse Intrinsic Pontine Glioma II India February 2020 40 patients OS
PFS, AE, steroid use, pattern of

relapse, QoL(LoBULarDIPG)

NCT04532229
Nimotuzumab in Combined with Concurrent Radiochemotherapy in
the Treatment of Newly Diagnosed Diffuse Intrinsic Pontine Glioma

(DIPG) in Children
III China April 2021 48 patients OR 1-year OS, PFS

NCT04771897
A Study of BXQ-350 in Children With Newly Diagnosed Diffuse

Intrinsic Pontine Glioma (DIPG) or Diffuse Midline Glioma
(DMG) (KONQUER)

I USA May 2021 22 patients AE, MTD OS, QoL
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Table 3. Cont.

Number of Trial Study Name Phase Countries Start Date Enrollment Size Primary Outcome Secondary Outcome

NCT04943848 rHSC-DIPGVax Plus Checkpoint Blockade for the Treatment of
Newly Diagnosed DIPG and DMG I USA January 2022 36 patients MTD, DLT 1-year OS, TTP

NCT02992015 Gemcitabine in Newly Diagnosed DIPG Early I USA September 2016 10 patients PK testing level -

NCT05077735 Stereotactic Biopsy Split-Course Radiation Therapy in DMG
(SPORT-DMG Study) II USA October 2021 18 patients TTP QoL; PFS; OS; SAE

NCT04749641 Neoantigen Vaccine Therapy Against H3.3-K27M Diffuse Intrinsic
Pontine Glioma (ENACTING) I China March 2021 30 patients Safety, 1 year-OS MTD, median PFS and OS

NCT04771897
A Study of BXQ-350 in Children with Newly Diagnosed Diffuse

Intrinsic Pontine Glioma (DIPG) or Diffuse Midline Glioma (DMG)
(KONQUER)

I/II USA February 2021 22 patients MTD; SAE, PK OR; OS; QoL

NCT03126266 Re-Irradiation of Progressive or Recurrent DIPG NA Canada April 2017 27 patients Second PFS OS

NCT03396575
Brain Stem Gliomas Treated with Adoptive Cellular Therapy During

Focal Radiotherapy Recovery Alone or With Dose-Intensified
Temozolomide (Phase I-BRAVO)

I USA May 2018 21 patients Safety and feasibility, DLT PFS, OS

NCT03620032 Study of Re-irradiation at Relapse Versus RT and Multiple Elective rt
Courses (DIPG) II Italy November 2015 54 patients PFS PFS, OS, RT toxicity, QoL

NCT05009992 Combination Therapy for DMG II USA October 2021 216 patients PFS, OS

NCT04264143 CED of MTX110 Newly Diagnosed Diffuse Midline Gliomas I USA March 2020 9 patients AE, MTD PFS, OS

NCT05063357 131I-omburtamab Delivered by CED in DIPG Patients I USA October 2021 36 patients Safety PFS

NCT04804709 Non-Invasive FUS With Oral Panobinostat in Children with
Progressive DMG I USA March 2021 3 patients SAE 6-month PFS; 6-month OS;

NCT04196413 GD2 CAR T Cells in Diffuse Intrinsic Pontine Gliomas (DIPG) and
Spinal Diffuse Midline Glioma (DMG) I USA September 2020 54 patients Safety, feasibility, DLT OS; PFS

NCT05478837
Genetically Modified Cells (KIND T Cells) for the Treatment of

HLA-A*0201-Positive Patients With H3.3K27M-Mutated
Glioma (PNOC018)

I USA July 2022 12 patients MTD; safety Manufacturing feasibility

NCT05476939 Biological Medicine for DIPG Eradication 2.0 (BIOMEDE 2) I France, USA July 2022 368 patients MTD, safety of infusions Manufacturing feasibility
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Table 3. Cont.

Number of Trial Study Name Phase Countries Start Date Enrollment Size Primary Outcome Secondary Outcome

DMG and other tumors

NCT02960230 H3.3K27M Peptide Vaccine with Nivolumab for Children With
Newly Diagnosed DIPG and Other Gliomas I/II USA, Switzerland November 2016 50 patients AE; OS -

NCT03696355 Study of GDC-0084 in Pediatric Patients with Newly Diagnosed
Diffuse Intrinsic Pontine Glioma or Diffuse Midline Gliomas I USA October 2018 27 patients MTD; SAE; RR; DoR; OS; PFS

NCT01922076 Adavosertib and Local Radiation Therapy in Treating Children with
Newly Diagnosed DIPG I USA April 2013 46 patients MTD; SAE PK; RR; PFS; OS;

NCT04758533
Clinical Trial to Assess the Safety and Efficacy of AloCELYVIR with

Newly DIPG in Combination With Radiotherapy or
Medulloblastoma in Monotherapy (AloCELYVIR)

I/II Spain April 2021 12 patients DLT OS, AE

NCT03605550 A Phase 1B Study of PTC596 in Children with Newly Diagnosed
Diffuse Intrinsic Pontine Glioma and High-Grade Glioma I USA August 2018 54 patients MTD, AE, PK PFS, OS

NCT03652545 Multi-antigen T Cell Infusion Against Neuro-Oncologic
Disease (REMIND) I USA December 2018 32 patients Aes OR

NCT04049669
Pediatric Trial of Indoximod with Chemotherapy and Radiation for

Relapsed Brain Tumors or Newly Diagnosed DIPG II USA October 2019 140 patients 8 months PFS, OS, PFS TTP12 months OS

NCT04911621 Adjuvant Dendritic Cell Immunotherapy for Pediatric Patients with
HGG or DIPG (ADDICT-pedGLIO) I/II Belgium September 2021 10 patients Safety and feasibility OS, PFS, TTP

NCT04837547 PEACH TRIAL Precision Medicine and Adoptive Cellular Therapy
(PEACH) for Neuroblastoma and DIPG I USA September 2021 24 patients DLT AE, safety, feasibility; OS, PFS, ORR

NCT02644460 Abemaciclib in Children with DIPG or Recurrent/Refractory Solid
Tumors (AflacST1501) I USA February 2016 60 patients DLT, MTD, PK AE, hematological toxicities

NCT03416530 ONC201 in Pediatric H3 K27M Gliomas I USA January 2018 130 patients RP2D -

NCT02525692 Oral ONC201 in Recurrent GBM, H3 K27M Glioma,
and Midline Glioma II USA August 2015 89 patients PFS -

NCT04541082 Phase I Study of Oral ONC206 in Recurrent and Rare Primary
Central Nervous System Neoplasms I USA September 2020 102 patients MTD -

NCT04732065 ONC206 for the Treatment of Newly Diagnosed or Recurrent DMG
and Other Recurrent Malignant CNS Tumors (PNOC 023) I USA, Switzerland August 2021 250 patients DLT, MTD PK parameters

NCT04185038
Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy

for DIPG/DMG and Recurrent or Refractory Pediatric Central
Nervous System Tumors

I USA December 2019 90 patients Safety and feasibility Distribution of CNS-CART cells, RR

NCT02359565
Pembrolizumab in Treating Younger Patients with Recurrent,
Progressive, Refractory HGG, DIPG, Hyper-Mutated tumors,

Ependymoma, or Medulloblastoma
I USA May 2015 110 patients AE, OR PFS, EFS, OS, radiological response
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Table 3. Cont.

Number of Trial Study Name Phase Countries Start Date Enrollment Size Primary Outcome Secondary Outcome

NCT05009992 Combination Therapy for the Treatment of DMG II USA August 2021 216 patients 6-months PFS;
7-months OS

NCT03893487 Fimepinostat in Treating Brain Tumors in Children and Young Adults
(PNOC016) I USA August 2019 30 patients BBB penetration -

NCT03243461 International Cooperative Phase III Trial of the HIT-HGG Study
Group (HIT-HGG-2013) III Germany July 2018 167 patients EFS -

NCT03598244 Volitinib in Treating Patients with Recurrent or Refractory Primary
CNS Tumors I USA October 2018 50 patients MTD, RP2D CR, PR, PK

NCT03690869

REGN2810 in Pediatric Patients With Relapsed, Refractory Solid, or
Central Nervous System (CNS) Tumors and Safety and Efficacy of

REGN2810 in Combination With Radiotherapy in Pediatric Patients
With Newly Diagnosed or Recurrent Glioma

I/II USA October 2018 130 patients AE, SAE, DLT, PK,
OR, PFS OR

NCT04099797 C7R-GD2.CAR T Cells for Patients with GD2-Expressing Brain
Tumors (GAIL-B) I USA February 2020 34 patients DLT RR

NCT01837862 A Phase I Study of Mebendazole for the Treatment of
Pediatric Gliomas I USA October 2013 36 patients MTD EFS, OS, PR o CRR

NCT04239092 9-ING-41 in Pediatric Patients with Refractory Malignancies I USA June 2020 68 patients AE -

NCT03478462

Dose Escalation Study of CLR 131 in Children, Adolescents, and
Young Adults with Relapsed or Refractory Malignant Tumors

Including, But Not Limited to, Neuroblastoma, Rhabdomyosarcoma,
Ewing Sarcoma, and Osteosarcoma (CLOVER-2)

I USA April 2019 30 patients DLT EFS, OS, dosimetry

NCT03389802 Phase I Study of APX005M in Pediatric CNS Tumors I USA February 2018 45 patients AE, MTD, DLT, PK ORR, PFS, OS

NCT04295759 INCB7839 in Treating Children with Recurrent/Progressive HGG I USA May 2020 28 patients AE, MTD, CMAX PFS, OS, TTP

NCT01884740 Intraarterial Infusion of Erbitux and Bevacizumab for
Relapsed/Refractory Intracranial Glioma In Patients Under 22 I/II USA June 2013 30 patients ORR AE, PFS, OS

NCT03709680 Study Of Palbociclib Combined with Chemotherapy in
Recurrent/Refractory Solid Tumors I/II USA May 2019 167 patients EFS, DLT, AE AE, CR or PR, DoR, PFS,

OS, PK, Tmax

NCT04870944 CBL0137 for the Treatment of Relapsed or Refractory Solid Tumors,
Including CNS Tumors and Lymphoma I/II USA January 2022 38 patients DLT, anti-tumor effect AE, min-max SC, clearance,

IR, OS, PFS
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Table 3. Cont.

Number of Trial Study Name Phase Countries Start Date Enrollment Size Primary Outcome Secondary Outcome

NCT05135975 A Study of Cabozantinib as a Maintenance Agent to Prevent
Progression or Recurrence in High-Risk Pediatric Solid Tumors II USA October 2021 100 patients 1-year PFS 1–2–5 year OS, 2–5 year PFS, DoR, AE

NCT04730349
A Study of Bempegaldesleukin (BEMPEG: NKTR-214) in

Combination with Nivolumab in Children, Adolescents, and Young
Adults with Recurrent or Treatment-Resistant Cancer (PIVOT IO 020)

I/II USA June 2021 234 patients DLT, AE, SAE, PK,
ORR PFS, OS

NCT04238819

A Study of Abemaciclib (LY2835219) in Combination with
Temozolomide, Irinotecan, and Abemaciclib in Combination with

Temozolomide in Children and Young Adult Participants
with Solid Tumors

I USA, Europe,
Asia November 2020 60 patients DLT, PK ORR, DoR, CBR, DCR

NCT05298995 GD2-CAR T Cells for Pediatric Brain Tumors I Italy May 2022 54 patients Safety and MTD Expansion infiltration, TTP, EFS, OS

NCT05099003
A Study of the Drug Selinexor with Radiation Therapy in Patients

with Newly Diagnosed DIPG H3K27M-Mutant HGG I/II USA October 2021 36 patients
MTD,

-EFS
OS, OR

NCT05123534
A Phase 1/2 Study of Sonodynamic Therapy Using SONALA-001

and Exablate 4000 Type 2 in DIPG Patients II USA November 2021 18 patients Safety; OR, TTP, OSMTD

NCT05169944
Magrolimab in Children and Adults with Recurrent or Progressive

Malignant Brain Tumors (PNOC025) I USA December 2021 24 patients
Definition of phase

II-MTD; -
SAE

NCT05096481 PEP-CMV Vaccine Targeting CMV Antigen to Treat Newly
Diagnosed Pediatric HGG and DIPG and Recurrent Medulloblastoma II USA October 2021 120 patients

4-months PFS;
1-year PFS, 1

year-OS

1-year PFS in rMB, 1-year OS in
rHHG

NCT05278208
Lutathera for Treatment of Recurrent or Progressive High-Grade

CNS Tumors or Meningiomas Expressing SST2A I/II USA March 2022 65 patients MTD, SAE
ORPFS

SAE: severe adverse event; OR: objective response; SC: serum concentration; CED: convection-enhanced delivery; FUS: focus ultrasound; EFS: event-free survival; PK: pharmacocynethic;
RR: response rate; DoR: duration of response; CBR: clinical benefit rate; DCR: disease control rate; RP2D: recommended phase II dose.
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Mechanisms of Targeting DMG: Where We Are

Molecularly-guided therapies that have been investigated and continue to be devel-
oped are summarized in Table 4.

Table 4. Molecularly targeted agents in clinical development for the treatment of DMG. Details are
provided in the main text.

Target Therapeutic Agents Study (Reference or Clinical Trial)

HDAC panobinostat [77] (NCT02717455)
HDAC/LSD1 corin [78]

H3K27M demethylase GSKJ4 [79]
FACT complex curaxin (CBL0137) NCT04870944

EZH2 tazemetostat [80]
HDAC vorinostat [81]
PRC1 PTC028 NCT03605550
EGFR nimotuzumab [82,83], NCT03620032
EGFR erlotinib [84,85]
EGFR gefitinib [86]

PDGFRA dasatanib NCT00996723
PDGFRA crenolanib NCT01393912

VEGFR-2, EGFR vandetanib [87]
PI3K/AKT/mTOR everolimus NCT03696355, NCT05009992, NCT02420613

ACVR1 LDN-193189 or LDN-214117 [88,89]
BCL2 venetoclax [90]

proteasome marizomib NCT03345095
CDK 4/6 palbociclib, ribociclib [91,92], NCT03434262

PARP1 niraparib [93]
XPO1 selinexor [94] (NCT05099003)

blood–brain barrier BXQ-350 NCT04771897
blood–brain barrier CED [95]; NCT00880061; NCT04264143; NCT03086616
blood–brain barrier Focused ultrasound NCT05123534

B7-H3 omburtamab NCT05063357; NCT01502917
DRD2/3 ONC201 [96–99], NCT03416530
STAT3 AG490 [100]

AURKA phthalazinone pyrazole [101]
PLK1 volasertib [101,102]

Cancer vaccines H3.3-K27M targeted neoantigen peptide [103]
Cancer vaccines rHSC-DIPGVax NCT0494384

Oncolytic adenovirus AloCELYVIR [103], NCT04758533
Oncolytic adenovirus DNX-2401 [104], NCT03178032

GD2 CAR T cells NCT04196413; NCT04099797; NCT0418503; NCT 05298995 [105]
HER2 and EGFRvIII CAR T cells [106]

Below, we discuss in detail the therapies on which clinical data have been published.
Several studies aim to target one of the epigenetic mechanisms found in DMG, alone

or in different combinations, as DMG single therapies have been documented as less
effective [51].

It has been postulated that acetylation can inhibit an interaction between H3K27M
tumors and the PCR2 complex, resulting in a normalized epigenetic status. Mainly driven
by this hypothesis, previous studies have investigated the use of inhibitors of histone
deacetylases (HDAC), which were strongly demonstrated to be effective in several DMG
models in preclinical trials [107–109]. Among them, prior data on panobinostat were
confirmed in a phase I trial with encouraging results, and others are in progress to overcome
the main challenges of developing drug resistance and the limited BBB penetration of
panobinostat [77] (NCT02717455). However, when pre-treated DMG cells are re-challenged
with panobinostat, they developed resistance, thus indicating that probably combinational
therapies are needed. Among HDAC inhibitors, vorinostat failed to improve outcome [81]
in a phase I/II study conducted by the children oncology group (COG).
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A novel DNA intercalating anticancer drug that has been demonstrated to significantly
inhibit DNA methylation and subsequent cancer initiation targeting the FACT complex
in DMG cells is uraxin [110]. Recently, a phase I/II trial has been opened concerning the
FACT complex-targeting Curaxin (CBL0137), and phase I has opened for several types
of neoplasms, including DIPG and DMG, with OS and MTD determination as primary
aims (NCT04870944).

EGFR overexpression is found in approximately 80–85% of HGG biopsies, and it
opened up the possibility of immunotherapy among these incurable tumors, and its poten-
tial curative effect has been demonstrated [111].

Anti-EGFR drug trials, such as those concerning nimotuzumab [82], gefitinib [86], or
erlotinib [84], demonstrated limited benefits in a small subset of patients.

However, nimotuzumab, a humanized IgG1 monoclonal anti-ERBB1/EGFR antibody,
with specific activity against EGFRvIII, has shown similar outcomes to more intensive
chemotherapy regimens, with fewer side effects, low toxicities, and no need for prolonged
hospitalization, thus leading to the continued investigation of nimotuzumab as an adjuvant
therapy in pediatric glioma [112]. This administration, in combination with vinorelbine, is
the standard of care in the new national phase III open-label randomized study, coordinated
by Foundation IRCCS National Institute of Tumors of Milan (NCT03620032) [83].

El-Khoululi and Coll reported the results of a phase I/II open-label single-arm study
of multi-targeted therapy, with bi-weekly anti-vascular-endothelial growth factor (VEGF)
bevacizumab and standard chemotherapic agent irinotecan combined with daily erlotinib.
They demonstrated that this approach is safe and mostly well tolerated, but unfortunately
has little impact on prognosis (13.8 months versus 10 months) [85].

A phase II study on valproic acid associated with radiation, followed by maintenance
of valproic acid and bevacizumab in children with DIPG, showed no significant impact on
PFS and OS, respectively, after 7.8 and 10.3 months, with a one-year EFS of 12% [113]. A
phase II study of gefitinib, in combination with RT, showed a 2-year OS of 19.6% and PFS
longer than 36 months in three patients [86].

A phase I trial of vandetanib, a selective VEGFR-2 and EGFR inhibitor conducted by
Broniscer et al., reported a 2-year OS of 21.4% [87].

A DIPG-BATS study, a phase I clinical trial coordinated by Saint Jude, stressed the new
paradigmatic approach, evaluating the rational combination therapies of novel therapeutic
agents, based on the tumor type and molecular characteristics of recurrent brain tumors,
including DIPG.

The PI3K/AKT/mTOR pathway has been identified as a promising target for thera-
peutics for DMGs due to its frequent dysregulation in more than 50% of DMGs harboring
a dysregulation on this downstream. The rapamycin analog everolimus, largely used for
different types of CNS tumors, has been investigated in DMG as well, especially in combi-
nation therapy. Among the several combinations, ribociclib and everolimus, investigated
in a phase I clinical trial, were demonstrated to be well-tolerated, with pharmacokinetic
properties similar to those in adults. Potential therapeutic ribociclib concentrations could
be achieved in CSF and tumor tissue, although interpatient variability was observed
(NCT02813135). Recently, we published a single-center report, confronting two DIPG
cohorts: one treated with radiotherapy and nimotuzumab/vinorelbine, and the other one
receiving a patient-specific second-line treatment at progression. We reported a signifi-
cant increased median OS in the personalized treatment and control cohort (20.26 and
14.18 months, respectively), with everolimus, in particular, achieving the best OS [114].

The CDK4/6 pathway directly regulates the cell cycle and, in human cancers, it is
usually overexpressed, leading to its constitutional activation and oncogenic aberrant
proliferation [115]. CDK alterations are described in about 30–40% of DMG. Three CDK
inhibitors, namely palbociclib, ribociclib, and abemaciclib, have been tested in DMG pa-
tients. Palbociclib and ribociclib showed good results in preclinical settings, but failed
to improve survival in preliminary phase I trials [91,92], probably due to the fording
of synergic therapies. Different combinations are under investigation, including temo-
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zolomide (with or without irinotecan) (NCT04238819), everolimus, and erlotinib (with
concomitant radiotherapy).

Probably all of these treatment failures may be caused by multifactorial causes, such
as the presence of drug efflux transporters, the immunosuppressive tumoral microenvi-
ronment, and the low ability of the tested drugs to cross an almost intact BBB, and other
resistance mechanisms are still under investigation [116].

These speculations have paved the way for further reflections and investigations, in-
cluding testing new potential therapeutical molecules, such as selinexor, a selective inhibitor
of karyopherin exportin-1 (XPO1)-mediated nuclear export (SINE) [94] (NCT05099003), or
BXQ-350, a drug with two main components (saposin c (SapC), expressed as human lysoso-
mal protein, and the phospholipid dioleoyl phosphatidylserine (DOPS), a cell membrane
phospholipid (clinical formulation BXQ-350) [117] (NCT04771897)).

To overcome the tumor microenvironment and reach an adequate concentration of
therapeutic agent inside the tumor mass, four studies using a convection-enhanced delivery
(CED) are still ongoing (NCT04264143; NCT03086616; NCT05063357; NCT01502917). In
short, CED is a neurosurgical approach involving the stereotactic insertion of a catheter
through the brain to directly deliver therapeutic agents to the region of interest. This
approach involves the generation of a pressure gradient through slow infusion via intra-
parenchymal microcatheters to create fluid convection within the brain, increasing the pen-
etration and distribution of the therapeutic agent. Interstitial infusion to the brainstem via
CED has been proven to be safe and feasible in multiple animal models, and a recent phase
I clinical trial in children with DIPG validated this as safe in human patients [118]. In vivo
studies have demonstrated that CED can achieve excellent biodistribution, affected by the
physical properties of the drugs, such as its inverse relationship with molecular weight,
which allows a direct infusion of drugs under controlled pressure into the tumor mass
(specifically with an irinotecan liposoluble particle or a water-soluble panobinostat nanopar-
ticle formulation named MTX110, whose investigations are ongoing (NCT04264143)).

Two other studies aim to investigate the role of omburtamab, a murine IgG1 mono-
clonal antibody, in recognizing CD276 (also known as B7-H3) and actively introducing it
into the tumor by CED. This antibody is selectively marked with a radioactive substance,
124 or 131-Iodine omburtamab, which can determine tumor death, binding the target
antigen and enhancing radio-induced tumor death [119]. Unfortunately, the study testing
with 124-iodine has recently been interrupted for toxicities (NCT01502917), while the study
with 131-iodine radionuclide is currently recruiting (NCT05063357).

Another extremely innovative CED application combined an experimental agent,
named IL-13 pseudomonas exotoxin (IL13-PE), with a usual MRI contrast agent (gadolin-
ium DTPA) to monitor drug delivery. The initial results published from the first four
enrolled patients demonstrate that this approach is safe and guarantees an adequate drug
distribution into tumor cells [95] (NCT00880061).

Another emerging drug delivery technique is the use of focused ultrasound (FUS)
to destroy the integrity of the BBB during therapy administration and to improve drug
delivery of chemotherapeutic agents or novel nanoparticle therapies. FUS, previously
tested only on animal models, uses low-frequency ultrasound waves in combination with
intravenously administered microbubbles to transiently open the BBB, without tissue
injury by rearranging the endothelial tight junctions. Further investigations are needed in
tumor models before the application to pediatric patients becomes feasible [120]. A trial
exploring an MR-guided focused ultrasound energy in combination with SONATA-001
administrations is in progress (NCT05123534).

Furthermore, the identification of several intrinsic mechanisms underlying tumori-
genesis has led to promising innovations, certainly including the discovery of the role of
dopamine receptor D2 (DRD2) G protein-coupled receptor, which stimulates tumor growth
and differentiation in tumor lines overexpressing this receptor [121], particularly expressed
in the midline structures [122]. ONC201 is a selective oral antagonist of dopamine receptor
D2/3 (DRD2/3) and also a potent agonist of the mitochondrial caseinolytic protease P
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(ClpP). Once activated by ONC201, ClpP drives the degradation of mitochondrial respira-
tory chain enzymes and triggers apoptosis and cancer-selective cell death [123]. Preclinical
models exhibit brilliant anti-cancer activity, inducing tumor necrosis factor-related apop-
tosis, with selective tumor cell death [124]. The first responses to single-agent ONC201
were reported in an adult patient with recurrent H3 K27M-altered thalamic glioma, who
obtained a near-complete objective response (96%), with the complete regression of the
primary thalamic lesion for more than 3 years during ONC201 treatment [96]. In the wake
of these promising finding, early results of phase II clinical trial of 18 patients (7 adults
and 11 children) demonstrated a median progression-free duration of 53.14 (range 41–81.9)
weeks. Thirteen patients discontinued ONC201 due to clinical and/or radiographic disease
progression and died due to their disease. The median time from ONC201 discontinuation
to death was 3.9 (range 0.4–25) weeks. Among the 14 patients with recurrent disease, the me-
dian PFS is 14 weeks: 15 weeks for the 7 adults and 13 weeks for the 7 pediatric patients [97].
The first DIPG patient treated with adjuvant ONC201 obtained a radiological response and
clinical improvement, with a reduction in facial palsy. He continued ONC201 monotherapy
for 12 months before the progressive disease developed. A second patient achieved an
18-month PFS, and she is still on treatment. Moreover, the synergy of ONC201 in combi-
nation with epigenetic modulators targeting H3K27M (such as vorinostat), or ONC206, a
more recent analog, was demonstrated to be effective in several preclinical data [98,99].
Nowadays, four-phase I/II clinical trials with ONC201 are recruiting for patients with
H3K27-altered gliomas, one of them specific to the pediatric population (NCT03416530).

The role of cancer vaccines is well known in oncologic immunotherapy settings, but
they have never been tested on DMG patients. Several clinical trials are ongoing to investi-
gate the possible role of a vaccine containing an H3.3-K27M-targeted neoantigen peptide,
presented by antigen-presenting cells (APCs), activating specific T-cells and triggering
corresponding cytotoxic T-cell immune responses; thence, the final objective is to eliminate
H3.3-K27M-expressing DIPG cells. The results of a phase I trial demonstrated a good profile
of feasibility and tolerability, with a valid DIPG immune response detected in peripheral
blood and cerebrospinal fluid, and phase II is ongoing [125].

A recent phase I trial aims to investigate the potential therapeutic role of a vaccine
monotherapy (rHSC-DIPGVax), starting with an in-human study, combined with an anti-
PD1 therapy (balstilimab), with the intent to induce both a more profound intra-tumoral
response with the inhibition of negative co-regulatory pathways and the overcoming of
the immunosuppressive microenvironment [126]. A subsequent part of this study will
provide a combination of anti-CLTA4 therapy (zalifrelimab), taking advantage of its ability
to induce T-cell proliferation, and memory formation (NCT0494384).

Moreover, another strategy promotes the use of oncolytic adenovirus to exert an anti-
tumor ability. As shown in a phase I-II trial with AloCELYVIR, bone-marrow-derived
allogeneic mesenchymal stem cells infected with an oncolytic adenovirus (ICOVIR-5)
are currently under investigation (NCT04758533) [103]. Recently, a single-center trial
(NCT03178032) was conducted by Gállego Pérez-Larraya and coll. DNX-2401, an oncolytic
adenovirus that selectively replicates in tumor cells, was utilized in treating newly diag-
nosed DIPG. The patients received a single virus infusion through a catheter placed in the
cerebellar peduncle, followed by radiotherapy. Over a median follow-up of 17.8 months
(range 5.9 to 33.5), the median survival was 17.8 months, with one patient free of tumor
progression at 38 months; however, its tumor was H3K27M wild-type, further confirming
the worse prognosis of this mutation [104].

Adoptive T cell therapies have emerged as a promising approach for hematological
diseases, but also solid tumors, such as neuroblastoma and other tumors expressing a target
antigen on their surfaces.

Concerning CNS tumors, published data are available for 10 adult patients treated with
CAR-T cells manipulated and redirected against antigens HER2 and EGFR variant III [106],
with encouraging results concerning safety and feasibility, but dismal regarding survival
benefits. In pre-clinical experiences, anti-GD2 CART cells strongly eradicated brainstem
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tumors in orthotopic xenograft mouse models, but, at the same time, a significant number of
mice died after CAR-T cell infusion, probably for local inflammatory infiltration and acute
edema in the pontine region [127], demonstrating that further preclinical investigations are
needed before its use in a clinical setting. Several obstacles need to be overcome to obtain
therapeutic success: the heterogeneous distribution of target antigen, the antigen loss after
CAR-T cells infusion, the possible development of neuro-inflammatory toxicity, and the
inhibitory tumor microenvironment, which can reduce the infiltration of CART cells.

Different approaches are under investigation to improve CAR T-cell-based efficacy
in solid neoplasms, including intrinsic costimulatory domains, genetic implementations,
secreted cytokines, monoclonal antibodies, or chemical molecules [128].

Three clinical trials are currently recruiting applicants for DIPG, which typically express
GD2 on their surface due to their neuroectodermal origin (NCT04196413; NCT04099797;
NCT0418503). The results of the first four patients treated with CAR T cells were recently
published by Majzner and colleagues [105]. The cells were administered intravenously,
and the three patients who exhibited clinical benefit were given subsequent anti-GD2CAR
T cell infusions administered intracerebro-ventricularly via the Ommaya reservoir. All
these exhibited clinical and radiographic improvement. Of note, all four patients experi-
enced tumor inflammation-associated neurotoxicity, reversible with intensive supportive
care [105].

Moreover, the first national phase I clinical trial, involving GD2 CART cells in pediatric
brain tumors, is going to be coordinated by an Italian institution (Bambino Gesù Children’s
Hospital) and it will include three different cohorts of CNS tumors (NCT 05298995).

5. Conclusions and Future Directions

DMG is one of the major critical challenges in pediatric oncology, due to intrinsic
molecular and epigenetic dysregulation, an intact BBB that hinders drug delivery, and a
limited immune response to tumor antigens. Presently, no curative therapy has been found.

The scientific efforts accomplished during the last 20 years have led to a deeper
knowledge of DMG and DIPG biology, and therefore to a better understanding of the
different vulnerabilities and how to attack them.

The availability of target therapies, immunotherapy, and new advanced delivery
systems with nanotechnologies has completely changed the paradigmatic approach of
oncologic treatment and opened worldwide scientific researches in several clinical trials,
with promising preliminary results.

However, especially concerning DIPG, it is quite difficult to immediately research a
curative therapy, considering the almost lethality of this disease and the little progress
made on OS in recent decades. In the same way, even clinical trial failures provide key
insights for the continuation of care, driving further investigations and scientific interests.

With this critical reinterpretation of the obtained results, releasing negative results
have an impact on learning and examining new potential therapies. Retrospective studies
can therefore provide important information that may help incoming trials to point out
what to investigate, and they strongly need to be encouraged, such as in the retrospective
and prospective SIOPE DIPG Registry [129,130].

The goal would be to create an international research network to share clinical, radio-
logical, and biological information worldwide, and thus identify the best therapeutic ap-
proach for every single patient and potentially change the inauspicious fate of this disease.
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