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Abstract: Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive
diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have
suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation
of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available
genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to
detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers.
The results show a remarkably high number of shared differentially expressed genes between the
transcriptomic and proteomic levels for all conditions, while showing a significant relation between
genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes
being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes
showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration,
such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA
catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered
by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes,
with the closest relation regarding this common gene set seen between AD and HD. GO-Term and
pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding
and humoral immune response. Taken together, we could confirm the existence of many relations
between Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral
sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising
in these intersections. The significance of the connection and the striking relation of the results to
processes leading to neurodegeneration between the transcriptomic and proteomic data for all four
analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including
multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant
insights that do not emerge from analyzing these data separately. Furthermore, the results shed light
on processes like the humoral immune response that have previously been described only for certain
diseases. Our data therefore suggest human patients with neurodegenerative diseases should be
addressed as complex biological systems by integrating multiple underlying data sources.

Keywords: multi-omics; Alzheimer’s disease; Parkinson’s disease; Huntington’s disease; amyotrophic
lateral sclerosis; neurodegeneration
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1. Introduction

Neurodegenerative diseases (NDDs), including Alzheimer’s disease, Parkinson’s disease,
amyotrophic lateral sclerosis, and Huntington’s disease, are heterogeneous, progressive diseases
characterized by a loss of neurons, an accumulation of aggregated and misfolded proteins [1–4],
cognitive decline and locomotive dysfunction [5–7]. Despite decades of research and considerable
progress in identifying risk genes, potent biomarkers, and environmental risk factors, this progression
cannot be impeded. As details regarding the various (patho-)physiological processes associated with
neurodegenerative diseases remain unclear, the diseases are still incurable. At the same time, it has
become generally accepted that the underlying mechanisms are polyfactorial and depend on the
complex interplay of multiple (partly unknown) genetic and non-genetic variables [8–14].

Influences on the development of NDDs can be classified into broader functional groups based on
their primary site or mode of action into intracellular mechanisms, local tissue environment influences,
and systemic influences [15]. These pathways and mechanisms are highly related and can have
overlapping or interacting components that can collectively modulate neurodegenerative processes.
We slightly adapted this categorization based on Ramanan [15], and depict the processes associated
with each of the three categories in Figure 1. Candidate pathways influencing the balance of neuronal
survival and degeneration within the cell are misguided apoptosis and autophagy [16,17], dysfunction
in mitochondria [18–20], various forms of cell stress [15,21,22], defective cytoskeletal proteins and
impaired protein expression regulation [23–26]. Within the local tissue environment, impaired cell
adhesion pathways lead to limited neurotransmission and cell proliferation, a permeable blood–brain
barrier (BBB), and dysfunctional extracellular matrices (ECMs) [27–29]. Excessive immune response
and inflammation [30–33] and a dysregulated lipid and sugar metabolism lead to disturbances in the
whole systemic environment [34–36].
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Figure 1. Classification of candidate pathways contributing to neurodegeneration into three groups
according to their cellular mechanisms or their primary site of action. The categorization is based on
Ramanan’s pathways to neurodegeneration [15] and aims to help in classifying the current knowledge
surrounding neurodegeneration.

By far the most prevalent of NDDs, Alzheimer’s disease (AD) is an inexorably progressive brain
disorder that affects higher cognitive functions [37–39]. The accumulation of abnormally folded
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extracellular β-amyloid (senile plaques) and intracellular phosphorylated tau (neurofibrillary tangles)
proteins are the distinctive pathological hallmarks of the disease that might trigger synaptopathies,
glial inflammation and eventually neuronal death in the cerebral cortex, subcortical regions,
temporal and parietal lobes and cingulate gyrus [40–42] and even effects the gut microbiome [43].

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, mainly affecting
the motor system [44,45]. The aggregation of α-synuclein into Lewy bodies and Lewy neurites,
primarily in the substantia nigra pars compacta, and the resulting loss of dopaminergic neurons leads
to distinctive symptoms including resting tremors, bradykinesia, stooped posture and, in some cases,
dementia [46–48].

Huntington’s disease (HD) is a progressive neurodegenerative disease that can lead to chorea,
cognitive decline, psychiatric disorders and depression [49,50]. It manifests pathologically with the
significant loss of the striatum’s GABAergic medium-sized spiny neurons [51,52] due to the intracellular
accumulation of misfolded Huntingtin protein [53,54]. While both, familial and sporadic forms of AD
and PD exist, HD is an autosomal dominant neurodegenerative disease caused by the expansion of a
CAG repeat in the exon 1 of the huntingtin gene translating into a polyglutamine (polyQ) expansion in
the N-terminus of the Huntingtin protein [54–56].

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting both the upper
and lower motor neurons [57–59], and is characterized by progressive muscular paralysis reflecting
the degeneration of motor neurons in the primary motor cortex, corticospinal tracts, brainstem and
spinal cord [60–62]. Paralysis is progressive and leads to death due to respiratory failure within
2–5 years [57,58]. Most ALS cases are sporadic, but 5–10% of cases are familial with mutations of the
SOD1 and TARDBP (TDP-43) genes [59,63]. Cellular aggregates, including FUS, SOD1, TDP-43, OPTN,
UBQLN2, and the translational product of intronic repeats in the gene C9ORF72 are found both in the
sporadic and the familial form [64].

The described overlap of phenotypic traits of the NDD suggests common pathogenic mechanisms
underlying distinct NDDs. Compared to studying individual diseases separately, identifying and
analyzing the common dysfunctional proteins and dysregulated diseases’ pathways might elucidate
fundamental insights into their pathogenic process [65]. It was previously shown that there is nearly
no overlap between AD, PD, and ALS on genomic data and some shared pathways for AD, PD, ALS,
and HD in transcriptomic data [66], but proteomic data and the latest entries in the databases have
not been considered. Besides looking for overlapping genes between the different NDDs or omics
layers, we also analyzed whether this number is sufficiently high to claim a significant relationship
between NDDs or omics layers. An overview of the methodologic procedure is given in Figure 2.
By investigating 177 studies in total, this meta-study was able to detect stable signals that arise mainly
in late-stage NDDs across tissues, methods and omics layers, which could help unravel patterns
across neurodegenerative diseases. Such findings could contribute to a better understanding of the
underlying neurodegeneration process and might also have pharmacological relevance for various
neurodegenerative diseases.
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Figure 2. Workflow Overview: Data acquisition was performed using the genome-wide association 
studies (GWAS) Catalog for genomic data, the European Bioinformatics Institute (EMBL-EBI) 
Expression Atlas and the Gene Expression Omnibus database for transcriptomic data, and literature 
research in PubMed and Google Scholar for proteomic data. After filtering these raw data tables and 
applying some data transformation, the processed data were used for the data analysis. For every 
omics layer, the intersections of all four analyzed NDDs were visualized as Venn diagrams. Common 
transcriptional patterns were searched with a hierarchical clustering approach and visualized as a 
heatmap showing the mean transcriptional direction of regulation per gene, and a dendrogram 
showing the clustering results. Finally, each set of genes after the intersections was used for the Kyoto 
Encyclopedia for Genes and Genomes (KEGG) pathway and GO-Term analyses. 
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Figure 2. Workflow Overview: Data acquisition was performed using the genome-wide association
studies (GWAS) Catalog for genomic data, the European Bioinformatics Institute (EMBL-EBI) Expression
Atlas and the Gene Expression Omnibus database for transcriptomic data, and literature research in
PubMed and Google Scholar for proteomic data. After filtering these raw data tables and applying
some data transformation, the processed data were used for the data analysis. For every omics layer,
the intersections of all four analyzed NDDs were visualized as Venn diagrams. Common transcriptional
patterns were searched with a hierarchical clustering approach and visualized as a heatmap showing
the mean transcriptional direction of regulation per gene, and a dendrogram showing the clustering
results. Finally, each set of genes after the intersections was used for the Kyoto Encyclopedia for Genes
and Genomes (KEGG) pathway and GO-Term analyses.
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2. Materials and Methods

2.1. Data Acquisition/Literature Research

2.1.1. Genome

The genome-wide association studies (GWAS) Catalog data for Alzheimer’s disease (AD),
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) were
downloaded on 28 April 2020. The GWAS Catalog contains single nucleotide polymorphism (SNP)
data of GWAS studies for SNPs showing a statistical significance of SNP-trait p-value < 1 × 10−5.
in the overall population. For every SNP, data such as p-value, upstream gene(s), mapped gene,
reported gene(s) and many more are stored. We focused on the genes given as “Reported Gene(s)”
in the four examined diseases’ full data tables for our analysis. The experimental factor ontology
(EFO) numbers for the exact search pattern were EFO_0000249 (Alzheimer’s disease), EFO_0002508
(Parkinson’s disease), Orphanet_399 (Huntington’s disease), and EFO_0000253 (Amyotrophic lateral
sclerosis). A table containing all studies’ names and the number of investigated samples for each
disease is appended in the Supplementary Table S1. In total, 116 studies with genomic data were used
for the analyses [67–182], seven of which contained data of more than one of these NDDs.

2.1.2. Transcriptome

We browsed the Gene Expression Omnibus (GEO) [183] and the Expression Atlas [184] databases.
The GEO is a public data repository in which microarray and RNA-seq datasets can be found.
The keywords for the GEO database were <name of disease> AND (“microarray” OR “RNAseq”) AND
“human”. The latest literature research was done in July 2020. The Expression Atlas is a service of the
European Bioinformatics Institute (EMBL-EBI) and provides re-analyzed and manually curated data of
more than 3000 experiments. It was used in release 35 (May 2020, https://www.ebi.ac.uk/gxa/home)
and scanned for Alzheimer, Parkinson, Huntington and amyotrophic lateral sclerosis, using the filter
“Homo sapiens” in the section Differential Experiments.

An overview of all of the studies used to gather the transcriptomic data is provided in Table 1.
In the Supplementary materials (Table S2), a table is provided showing each study’s information and
a table of the proportion of all used tissues and severity states per disease (Supplementary File S4).
Of the studies used, 55% utilized microarray experiments, 40% used RNA sequencing and 5% were
based on single cell RNA sequencing experiments. In total, transcriptomic data of 39 studies was
acquired [185–223].

Table 1. Overview of the number of cases and controls and the total number of studies per disease
throughout all analyzed transcriptome studies. In total, data of 2181. Samples were gathered from 39
studies analyzing transcriptomic data. * One study conducted experiments for AD and HD. Thus, in
total proteomic data of 22 studies was used.

Transcriptome Case Control Sum of Samples Studies

AD 187 194 381 11
PD 252 215 467 11
HD 73 99 173 10
ALS 470 691 1161 8∑

982 1199 2181 40 (39 *)

2.1.3. Proteome

We browsed publications from the last 10 years in PubMed and Google Scholar with the keywords:
(“neurodegenerative diseases” OR “Alzheimer* disease” OR “Parkinson* disease” OR “Huntington*
disease” OR “Amyotrophic Lateral Sclerosis”) AND (proteomics OR “quantitative proteomics” OR
“differentially expressed proteins” OR biomarkers) AND human NOT mice. An overview statistic

https://www.ebi.ac.uk/gxa/home
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regarding the number of samples and studies for the proteomic data is given in Table 2. A table showing
each study’s information is provided in the Supplementary materials (Table S3), as well as a table of the
proportion of all used tissues and severity states per disease (Supplementary File S4). In total, 22 studies
were used for proteomic data acquisition [36,50,190,193,224–240].

Table 2. Overview of the number of cases, controls and the total number of studies per disease
throughout all analyzed proteome studies. In total, data of 1969 samples were gathered from 22
studies analyzing proteomic data. * Two studies conducted experiments for AD and PD. Thus, in total
proteomic data of 22 studies was used.

Proteome Case Control Sum of samples Studies

AD 853 444 1297 9
PD 146 167 313 7
HD 39 29 68 5
ALS 162 129 291 3∑

1200 769 1969 24 (22 *)

More than 90% of the non-control patients in the proteomic data and 84% in the transcriptomic
data were classified with a moderate or severe disease state. Furthermore, 63% of the transcriptomic
data experiments and 67% of the proteomic data experiments were conducted with brain material.
The remaining experiments were conducted with blood, spinal cord, cerebral spinal fluid or induced
pluripotent stem-cells. A detailed table can be found in the Supplementary materials (Table S3).
Studies that turned out to show no single gene with a false discovery ratio < 0.05 were not considered
for our statistics in Tables 1 and 2 and not counted as one of our 177 studies as none of their results
contributed to our analyses.

2.2. Data Management

The raw genomic, transcriptomic and proteomic data tables from 177 different studies were
transformed into standardized tables for each disease on every omics layer. Different conversions were
applied within this data management process, such as converting fold change to log2-fold change
(log2FC), log10-p-value to p-value, the removal of entries with a missing gene name or separating
rows that contained several gene names (proteomic data). Differences in multiple testing corrections
were accepted, such as differences in the exact calculation of the fold change (log2FC, G-fold change).
Only those genes with a false discovery ratio (FDR)≤ 0.05 were selected after applying those conversions
where necessary. Further, all genes that appeared as differentially expressed in only one experiment on
the transcriptomics or proteomics level were discarded, to further reduce the number of genes that
appeared randomly. Finally, all remaining genes from the genomic, transcriptomic and proteomic data
sources intersected with the latest list of protein-coding gene symbols (04.08.20) from the HUGO Gene
Nomenclature Committee to exclude non-standard gene names.

2.3. Data Analysis

We analyzed the gathered data in three different ways (see also Figure 2).

2.3.1. Intersection

By intersecting the three analyzed omics layers per disease and the four diseases per omics layer, it
is possible to test if the number of shared genes between some omics layers or diseases are significantly
increased. We used a hypergeometric test to test the overlapping sets, with the total amount of
19,324 gene symbols of protein-coding genes (HUGO Gene Nomenclature Committee 04.08.20) [241] as
the total population. Intersections were performed and visualized using the R (version 4.0.2) package
venn (version 1.9) [242].
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2.3.2. Common Regulation between NDDs on a Transcriptomic Level

It was tested for the intersection of all NDDs on the transcriptomic level, if the direction of
regulation for different NDDs was equal. The mean direction of regulation was computed as follows.
Equation (1): Calculation of mean regulation of direction

MeanRegDir(gene) =
1
n

n∑
i=1

(
sig

(
gene f oldChangei

))
(1)

with
n = number of appearences for gene with FDR ≤ 0.05

sig(x) =
{

1, i f x > 0
−1, i f x < 0

In order to test for a correlation between the transcriptomic regulation of the four analyzed NDDs,
a correlation test was performed using R’s cor.test() function. Additionally, the information about the
mean direction of regulation (see. Equation (1)) of these genes was used to cluster the four analyzed
NDDs based on the 139 genes appearing in the intersection of all transcriptomic data. Hierarchical
clustering and creating a heatmap showing the results were performed using the R package pheatmap
(version 1.0.12) [243].

2.3.3. GO-Term- and Pathway Analyses

Independent of the test results, these sets of overlapping genes were also used for Kyoto
Encyclopedia for Genes and Genomes (KEGG)-pathway analyses [244] and GO-Term [245] analyses.
We used the R API WebGestaltR 0.4.4 of the online tool WebGestalt 2020 [246] to perform
overrepresentation analyses (ORA) for all possible intersections per disease and per omics layer.
For performing the ORA, the command WebGestaltR was used with the options:

• enrichDatabase = c(“pathway_KEGG”, “geneontology_Biological_Process”, “geneontology_
Cellular_Component”, “geneontology_Molecular_Function”)

• interestGeneType = “genesymbol”
• referenceSet = “genome”
• topThr = 10000
• reportNum = 10000

The organism was set to “hsapiens” by default.
As the number of significantly overrepresented biological processes was very high in the ORA

of the transcriptomic overlap for AD, PD, ALS and HD, the affinity propagation of the R package
apcluster [247] was used. This method is already built in the WebGestalt tool and utilizes the affinity
propagation method [248] to reduce the set of all biological processes to highly representative ones.

3. Results

3.1. Intersection

To quantify if the number of overlapping genes between AD, PD, HD and ALS was high for one
omics layer, a hypergeometric test was performed. The number of genes found in the GWAS Catalog
was highest for AD, with 434 single nucleotide polymorphisms (SNPs). For PD, 218 SNPs were found;
68 were found for ALS and 34 SNPs for HD. The number of overlapping SNPs between each pair of
diseases ranged from zero to eleven and was significantly high for the pairwise overlaps between AD
and PD as well as AD and ALS in a hypergeometric test (see Figure 3). For the transcriptomic data,
AD again showed the highest number of genes, with a total of 14,737 genes that were differentially
expressed in at least two experiments. PD showed 4713 differentially expressed genes, ALS showed
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897 and HD showed 4249. All pairwise comparisons of diseases on the transcriptomic level showed a
highly significant enrichment in the number of overlapping genes. For AD, 1964 gene names could be
related to differentially expressed proteins. We found 434 gene names for PD, 155 for ALS and 104
for HD. All pairwise overlaps between the four diseases were enriched for the proteome data with
high significance.
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Figure 3. Venn diagrams and hypergeometric test results for the overlap between significant single
nucleotide polymorphism (SNP)-trait associations (genomic level) and significantly differentially
expressed genes on the transcriptomic (middle) and proteomic (bottom) levels for AD, PD, HD and
ALS. All tested intersections show highly significant enriched numbers of overlapping genes for
the transcriptomic and proteomic data. The genomic data show significantly enriched numbers of
overlapping genes for the AD-PD and AD-ALS intersections.
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3.2. Common Regulation of NDDs on the Transcriptomic Level

The intersection of all four diseases’ transcriptomic data contained 139 genes. The hierarchical
clustering result of the four NDDs based on these genes can be found in Figure 4 and shows an inner
cluster formed of HD and AD consecutively extended by ALS and then PD.
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Figure 4. Heatmap with hierarchical clustering results of the mean regulation of all 139 genes that
were maintained in all four NDD transcriptomic data. The clustering led to an inner cluster containing
HD and AD transcriptomic data. This cluster was next clustered to the ALS transcriptomic data and
finally these three NDD were clustered to PD. Colors represent the mean direction of regulation (see.
Equation (1)).
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The results of the correlation analysis are shown in Table 3. The most significant relation in
terms of the mean direction of regulation existed between AD and HD with a p-value < 2.2 × 10−16.
The correlation value of 0.657 showed a strong relation. All other pairwise comparisons showed a
significant relation with correlation values > 0.3, except for the non-significant comparison between
PD and ALS (correlation < 0.047).

Table 3. Results of the one stratum analysis of the linear regression model calculated with the cor.test
function in R. The p-value and correlation values are given for all pairwise comparisons of the analyzed
NDDs. The analyzed values are the mean direction of regulation of all transcriptomic data kept after
intersecting the four NDDs. p-Values < 0.05 are shown in red.

NDD AD-PD AD-ALS AD-HD PD-ALS PD-HD ALS-HD

p-value 0.0001185 0.000131 <2.2 × 10−16 0.5887 2.422 × 10−6 0.0002744
Correlation 0.320714 0.3187755 0.6566416 0.04625543 0.387635 0.3040112

3.3. GO-Term- and Pathway-Analyses

As the number of possible combinations of omics layers and diseases was very high, this study
concentrated on describing the GO-Term and KEGG pathway analyses of the genes appearing in the
intersection of all diseases per omics layer. GO-Terms and the contributing genes were analyzed in
accordance with the conceptual model of candidate pathways contributing to neurodegeneration [15].
Results of the intersection of all four analyzed NDDs were also visualized as directed acyclic graphs
that show the GO-Term hierarchy leading to the significant terms (Figure 5).

3.3.1. Transcriptomic Intersection of AD, PD, ALS and HD

The 28 overrepresented Biological Process (BP)-Terms for the intersection of all four diseases’
transcriptomic data were reduced to the eight most representative ones using affinity propagation
(Figure 5D). All results of the GO-Term and KEGG pathway analyses performed are also given in
the Supplementary File S5. The resulting enriched sets can mainly be related to cellular response to
heat and stress (in our case hypoxia), but also the NOD2 signaling pathway, the negative regulation
of apoptosis, a positive regulation of angiogenesis and cytokines, RNA catabolic processes and
extracellular matrix organization (Figure 6). All of the six detected Cellular Component (CC)-Terms
are related to focal adhesion, plasma membrane, and endoplasmic reticulum (ER) lumen (Figure 5A).
The seven overrepresented Molecular Function (MF)-Terms can be categorized into structural molecule
activity (structural constituent of cytoskeleton, extracellular matrix structural constituent) and protein
binding (platelet-derived growth factor binding, growth factor binding, integrin binding, cell adhesion
molecule binding, NF-κβ binding), as shown in Figure 5B. The KEGG pathway analysis showed
prostate cancer as the only significant result (FDR = 0.025).
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Figure 5. Directed acyclic graph showing the significant results (false discovery ratio (FDR) ≤ 0.05) of
the GO-Term ORA of the Cellular Component and Molecular Function of the transcriptomic overlap of
all four NDDs (A,B), the Biological Process terms of the proteomic data (C) and the Biological Process
terms of the transcriptomic data after affinity propagation (D). Blue shading indicates the value of the
FDR. For better readability, all GO-Terms leading to the significant ones were hidden in (A,D).
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Figure 6. Significant results (FDR < 0.05) of the biological process (BP) GO-Term analysis for the
transcriptomic overlap in the four analyzed NDDs after performing affinity propagation. The names
of the enriched sets are shown in the left column, followed by the contributing genes on their right.
For each significant set, the FDR and enrichment is given. The enriched BP sets are categorized in
the groups Intracellular Mechanisms, Local Tissue Environment and Systemic Environment based on
Ramanan’s conceptual model of candidate pathways contributing to neurodegeneration [15], which is
also depicted in Figure 1.

3.3.2. Proteomic Intersection of AD, PD, ALS and HD

For the intersection of proteomic data for all four analyzed NDDs, three significantly
overrepresented GO-Terms were found for BP (Figure 5C). Two of them are related to maintenance of
protein stability and the third term to the immune system (humoral immune response). No significant
results were discovered through MF, CC or the KEGG pathway analysis.

4. Discussion

4.1. Intersections

The number of shared genes with significant SNP-trait associations between the four NDDs on the
genomic level was significantly enriched only for the AD-PD and AD-ALS comparisons. Interestingly,
there was no single overlapping gene in the aforementioned study from 2018 on the association of
genomic data between AD and PD and zero to two between AD and ALS, depending on the exact
method [66]. For the proteomic and transcriptomic data, all numbers of pairwise overlapping genes
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were significantly enriched. However, the total number of overlapping genes between all four NDDs
on the proteomic layer was rather low, with four genes, and did not exist at all on the genomic level.
On the other hand, the transcriptomic data showed an overlap of 139 genes and thus allowed for a
more distinctive analysis of GO-Terms, pathways and the concordance of regulation between the four
analyzed NDDs. Nevertheless, the significance of all pairwise comparisons on the transcriptomic
and proteomic levels confirms that there is a significant relation between all four analyzed NDDs—at
least on the transcriptomic and proteomic level. The following evaluation of the GO-Term and KEGG
pathway analysis was intended to reveal the nature of this relationship.

4.2. GO-Term and Pathway Analyses

4.2.1. KEGG Pathway Analysis

As the result of the pathway analysis (prostate cancer) seemed unexpected as a common factor
of neurodegeneration, we further researched the gene set leading to this KEGG pathway. Of the six
genes in the prostate cancer pathway we found several genes that were both connected to cancer and
neurodegeneration in general, including NFKBIA, RELA and PDGFRB. NF-κβ and RelA form a dimer
with a transactivating domain that binds to specific DNA sequences as transcription factor controlling
genes that are involved in immune and inflammatory responses and control of cell proliferation and
apoptosis [249]. Misregulation of NF-κβ can lead to cancer [250], neurodegenerative [251], autoimmune
and other inflammatory diseases [252].

Platelet-derived growth factor receptorβ (PDGFRB) is a cell-surface receptor that plays an essential
role in the regulation of cell proliferation, survival, differentiation, chemotaxis and migration, as well
as in blood vessel development, where it can lead to uncontrolled blood vessel formation and cancer
due to mutational activation or upregulation [253].

Consequently, at least half of the genes contributing to the prostate cancer gene set in our analysis
are also associated with the formation of NDDs. Interestingly, a study in 2014 already described
the existence of a significant overlap of genes described for either some types of cancer, such as
prostate cancer, or NDDs such as AD and PD, based on their direction of regulation [254]. Nonetheless,
the KEGG pathway analysis did not provide further insight into common factors of neurodegeneration.

The overrepresented GO-Terms for biological processes in the genes appearing in the intersection
of all four NDDs on the transcriptomic level showed highly concordant results with a meta-study of
AD, PD and ALS from 2019 [255] that analyzed the raw data of 259 individuals. That study found
biological processes associated with heat shock proteins, cellular responses to heat, stress response
and, additionally, GABA synthesis and protein folding, which were overrepresented in the four used
datasets. They stated the importance of heat shock proteins (HSPs) as a general target of NDDs [256],
and the importance of HSP-associated pathways in HD [257]. We, too, found cellular responses to
heat and stress (in our case hypoxia), but also the NOD2 signaling pathway, the negative regulation
of apoptosis, a positive regulation of angiogenesis and cytokines, RNA catabolic processes and
extracellular matrix organization. However, no significant overrepresentation was found for GABA
synthesis in our analysis of the intersection of the AD, PD, HD and ALS transcriptomic data. Protein
stabilization as well as immune response was overrepresented in our comparison of the proteomic
overlap of AD, PD, ALS and HD.

According to the literature, the GO-Term analysis revealed biological processes (reduced by
affinity propagation) that are highly relevant to NDDs.

4.2.2. Response to Heat

The cell’s response to heat is managed by heat shock proteins (HSPs), most of which are, despite
of their names, expressed at average growth temperatures (37 ◦C). They belong to the cellular protein
quality control and act as molecular chaperones to guide proteins from production to degradation.
During aging, reduced amounts of HSPs and the increasing number of proteins requiring additional
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chaperoning can lead to an overstrained quality control system and ultimately to protein aggregation
initiation [256].

4.2.3. RNA Catabolic Process

Dysfunctional RNA catabolic processes have already been described for ALS and the nuclear
RNA-binding protein TDP-43, which is integrally involved in RNA processing pathways, controlling
the life cycle of RNAs from synthesis to degradation. In ALS, a cytoplasmic mislocalization and
accumulation of TDP43 leads to TDP43 aggregates, misregulation of RNA processing and subsequent
neuronal dysfunction [258,259]. Also, in AD aberrant phosphorylation, ubiquitination, cleavage and/or
the nuclear depletion of TDP-43 in neurons and glial cells has been reported [260]. Our data suggest
that the TDP-43 proteinopathy or another mechanism that leads to dysfunctional RNA catabolic
processes plays a role in all four analyzed NDDs.

4.2.4. Positive Regulation of Cytokine Production and Angiogenesis

The positive regulation of cytokine production and the regulation of angiogenesis are tightly
connected because angiogenesis, the formation of new blood vessels from preexisting vessels, is partly
induced by cytokines, as described for AD [261]. Amyloid-β plaques and neurofibrillary tangles induce
activated microglia and elevated levels of pro-inflammatory cytokines [262]. Some of these cytokines,
such as tumor necrosis factor-alpha (TNFα), interleukin (IL)-1β and transforming growth factor-β (TGF
β) induce partly impaired angiogenesis, which builds up functional but also malfunctional vessels [263].
Due to decreased vascularity in the aging brain, hypoxia also stimulates the angiogenic process and
endothelial activation. Activated endothelial cells elaborate several proteases, inflammatory factors and
other products with biologic activity that may promote neuronal death [264,265]. Due to our findings,
it can be assumed that protein aggregation in any of the four analyzed NDDs leads to neuroinflammation,
which is accompanied by upregulated cytokines and impaired subsequent angiogenesis. As pro- and
antiangiogenic factors regulate angiogenesis, both, cytokines and cytokine blockades could serve as
potential pharmaceutical targets modulating angiogenesis in chronic inflammation [263,266].

4.2.5. Response to Hypoxia

Hypoxia is a well-described multifaceted cause of NDDs. As mentioned above, aging and brain
injuries like small infarcts lead to lower oxygen levels in the brain. During hypoxic events, high levels
of free oxygen and nitrogen radicals are produced through mitochondrial complex III, which cannot be
compensated for due to lower levels of antioxidants in aging and diseased brains, thus leading to the
oxidative damage of vital cellular components [267]. Also, the impaired cellular homeostasis of metals
like Ca2+ can be triggered by hypoxic conditions, resulting in changes in excitation and the inhibition
of neuronal and glial cells. Synaptic transmission in the central nervous system (CNS) is susceptible
to hypoxia, as it requires 30–50% of cerebral oxygen. Already very early during age-related hypoxia,
a decrease in synaptic efficacy occurs [268].

4.2.6. Extracellular Matrix Organization

Extracellular matrix (ECM) molecules in the central nervous system form highly organized
structures around cell somata, axon initial segments, and synapses. They play prominent roles in early
development by guiding cell migration, neurite outgrowth and synaptogenesis, and by regulating
synaptic plasticity and stability, cognitive flexibility and axonal regeneration in adults. Upregulation
of ECM molecules—in particular through reactive astrocytes, after brain injuries and during aging,
neuroinflammation and neurodegeneration—results in the formation of a growth-impermissive
environment and impaired synaptic plasticity. Thus, targeting the expression of specific ECM
molecules, associated glycans and degrading enzymes may lead to the development of new therapeutic
strategies promoting regeneration and synaptic plasticity [269].
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4.2.7. Nucleotide-Binding Oligomerization Domain Containing 2 Signaling Pathway

The nucleotide-binding oligomerization domain containing 2 of the NOD2 signaling pathway is
part of the immune response by recognizing bacteria with a muramyl dipeptide (MDP) moiety and
thus activating the transcription factor NF-κβ, which regulates the transcription of a large number
of genes, especially those involved in the immune and inflammatory response, control of apoptosis
and cell proliferation. Misregulation of NF-κβ can lead to cancer, but also to NDDs and other
inflammatory diseases. Studies have showed that the E3 ubiquitin ligase parkin targets NOD2 for
ubiquitinylation and subsequent degradation in order to regulate astrocyte endoplasmic reticulum
stress and inflammation. Mutations in the Parkin gene, which are one reason for familial PD, lead to
an overrepresentation of NOD2 [270]. Also, bacterial and viral infections are a known cause of AD.
In our study, the NOD2 signaling pathway was significantly overrepresented for the intersection of all
four NDDs’ transcriptomic data, leading to the hypothesis that bacterial or viral immune response
might be a crucial factor for PD, HD and ALS as well.

4.2.8. Negative Regulation of Apoptotic Signaling Pathway

Seven of the eight found BP after affinity propagation for all four NDDs’ transcriptomic data,
seemed concordant with the literature. Also, the CC, which are mainly about focal adhesion but also
about the cell-substrate adherens junction, cell-substrate junction, external side of plasma membrane,
endoplasmic reticulum lumen and apical plasma membrane, fit very well to the BP. The significantly
overrepresented MF, which are extracellular matrix structural constituent, cell adhesion molecule
binding, structural constituent of cytoskeleton, integrin binding, platelet-derived growth factor binding,
growth factor binding and NF-κβ binding are in accordance to the BP. Only the negative regulation
of the (extrinsic) apoptotic signaling pathway seems surprising, as enhanced intrinsic or extrinsic
apoptosis is typical of NDDs, leading to the severe loss of neurons that characterizes these diseases.
A lower rate of apoptosis is a typical hallmark of cancer where even damaged cells are not abolished.
However, ORA is based on a set of genes not taking the direction of their regulation into account.
This direction of regulation was to some extent heterogenous between the four analyzed NDDs
(see Figure 4) and, for each of the four NDDs, some of the genes contributing to the gene set was
downregulated for the negative regulation of apoptotic signaling pathways. Consequently, the direction
of regulation stated in the BP terms is not directly linked to the true direction of regulation in the NDDs.

4.2.9. Protein Stabilization and Regulation of Protein Stability

Regulation of protein stability is the top-level term for the maintenance of unfolded protein,
protein destabilization and protein stabilization. Unfolded proteins are a common characteristic
of neurodegenerative diseases, as the accumulation of misfolded proteins causes stress response
mechanisms in the endoplasmic reticulum (ER) [271]. Chronical ER stress caused by protein accumulation
can lead to the initiation of apoptosis and, consequently, neurotoxicity [272]. Protein stabilization of
TDP-43 has been described as one of the underlying factors of neuronal TDP-43-dependent toxicity in
ALS and frontotemporal dementia [273]. It can be concluded that alterations in the general regulation
of protein stability are described in both the general formation of neurodegeneration and the specific
mechanisms for single NDDs, such as ALS. Additionally, the ER was also present as a cellular component
that was significantly overrepresented in the transcriptomic gene set, which further enhances the idea
of ER stress being involved as a common factor of neurodegeneration.

4.2.10. Humoral Immune Response

The central nervous system (CNS) has always been considered to be the sole domain of the innate
immune response rendered by the microglia. However, immune cells are increasingly recognized
as being able to access to the CNS in both health and disease [274]. Lymphocytes can enter the CNS
through the blood–brain barrier (BBB), the blood-meningeal barrier and the blood-cerebrospinal fluid
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(CSF) barrier [275,276]. Under healthy steady-state conditions, B cells are present in very low numbers
in the CNS parenchyma and CSF [277], but in cases of CNS inflammation like multiple sclerosis,
B cell numbers can increase by at least several orders of magnitude in the CNS parenchyma and
perivascular spaces, and by severalfold in the CSF [278,279]. B cell-depleting therapy in patients
with multiple sclerosis with rituximab and ocrelizumab has reduced inflammation significantly [274].
Understanding how the adaptive immune system participates in the pathogenesis of NDDs might
deliver new possibilities for their treatment.

For PD, there is evidence that humoral immune response has been involved in course of the
disease. Although B cells have not been detected in the brains of patients with PD [280], deposits of
immunoglobulin G (IgG) have been found on the dopaminergic neurons in these patients, and Lewy
bodies themselves are coated with IgG [281], which suggests that dopaminergic neurons might be
targeted by these immunoglobulins.

In AD, the adaptive immune system could, apart from a possible involvement of plaque removal,
be responsible for the immune response of infections with herpesviruses and other pathogens, which are
acknowledged to be a possible source of AD. Our data suggest that the humoral immune response
could be a target for further investigations in HD and ALS as well.

Interestingly, the GO-Term analysis showed an overall differing result between the proteomic
and transcriptomic data. The BP terms for protein folding and the immune system are also highly
consistent with the knowledge about the origin of neurodegeneration, as well as the findings that
emerged from the transcriptomic analyses, but it is noteworthy that the analysis of the proteome
contains characteristic findings that extend the transcriptomic insights.

4.2.11. Common Regulation on the Transcriptomic Level

The hierarchical clustering of these 139 genes formed an inner cluster consisting of AD and HD
(Figure 4). The correlation analysis showed a highly significant relation between these 139 genes for
AD and HD with a high correlation value (p-value < 2.2 × 10−16 correlation: 0.66). This result shows
that the set representing the least common denominator of the four NDDs is regulated in a very similar
manner in HD and AD. Although this does not necessarily say anything about the significance of these
genes in the course of the development of individual diseases, the high degree of concordance between
the biological processes we have just described (Figure 6) for the 139 genes appearing to be significantly
differentially regulated in all four analyzed NDDs and the actual development of neurodegeneration
is striking.

5. Conclusions

GWA studies significantly contributed to understanding NDDs over the last 15 years, with
several-hundred disease-associated risk loci. However, no targeted therapies have emerged from these
GWA studies for most NDDs [282]. As NDDs are causing profound transcriptomic changes in the
aging brain, it is crucial to take transcriptomic data analysis into account when analyzing NDDs [283].
Further translation from transcriptomic changes to proteomic occurs only indirectly and shows only a
limited correlation between mRNA and protein expression [284]. Consequently, even the combination
of genetic and transcriptomic data is not adequate to give a complete picture of the changes taking
place due to NDDs. Each additional level of information can contribute to a better understanding of
the complex interrelationships of these interacting omics layers.

To address the challenges of such complicated diseases, the whole field of biomedicine is changing
towards creating and facilitating a variety of databases and analysis pipelines for separate omics layers
and multi-omics integration [285]. Many of these pipelines are mainly data-driven and enable clustering
and supervised machine learning techniques to find essential patterns of features contributing to the
identification of, for example, proteins that are associated with NDDs [286], or to reveal cross-talk
patterns in multi-omics data [287].



Cells 2020, 9, 2642 18 of 35

According to the necessity of approaching complex diseases with the use of multiple omics-layers,
data-driven methods and large amounts of data, we combined the data of three omics layers from
databases and literature mining of more than 1 million subjects and 177 studies to show the shared
genes between the four analyzed NDDs and extract the pathways and processes in which they
are overrepresented.

To classify the gained information in this study, it is crucial to keep in mind that the transcriptomic
and proteomic data were gathered from various tissues, partly different severities of diseases and
using different methods. Ninety percent of the non-control patients in the proteomic data and 84% in
the transcriptomic data were classified with a moderate or severe disease state. Of the experiments,
63% in the transcriptomic data and 67% in the proteomic data were conducted with brain material,
while the remaining were conducted with blood, spinal cord, cerebral spinal fluid or induced pluripotent
stem-cells. A detailed table can be found in the Supplementary materials (S4). Consequently, the signals
in this meta-study represent stable signals found mainly across brain tissues emerging in the late
stage of NDDs, rather than subtle effects that might only be present in just one specific brain region
or in earlier disease states. In accordance with the law of large numbers, meta-studies like ours are
particularly well-suited to finding the results that represent real effects in partly noisy data. Such real
effects occur repeatedly and were therefore able to exceed our own defined threshold of occurrences in
two different experiments, thus contributing to further analyses. Even in the ORA, subtle effects of
noisy data (e.g., from early stage disease studies) that were still present would probably be canceled
out by the number of other strong signals and the fact that the majority of the used data are based on
late stage NDDs.

The highly significant overrepresentation of genes in the intersection of proteomic and
transcriptomic data in all investigated NDDs shows the importance of simultaneously analyzing
multiple omics layers. Additionally, this analysis showed the relevance of questioning old results using
updated databases. While no single overlapping gene was found in 2018 between the genomic data of
AD and ALS, and only two were found between AD and PD [66], the same analysis led to significant
overlaps between AD and PD and AD and ALS. The common factor relating to neurodegeneration
from a 2019 study [255] that used the data of 259 samples could partly be confirmed. We also found
biological processes for response to heat and stress (hypoxia) as well as protein folding to be significantly
overrepresented. However, we could not reproduce the finding of an overrepresentation of the GABA
synthesis pathway or any related terms. Additionally, the NOD2 signaling pathway, the negative
regulation of apoptosis, positive regulation of cytokines and angiogenesis, RNA catabolic processes,
extracellular matrix organization and humoral immune response emerged from our analysis. All of
these results emerging from the GO-Term analysis of the transcriptomic and proteomic data seem
highly plausible as common factors of neurodegeneration, and shed light on processes like humoral
immune response that have previously been described only for certain diseases.

Accordingly, this meta-study reveals highly significant processes common to all analyzed
NDDs and might therefor contribute to the development of pharmaceutical measures against
neurodegeneration in general. Regarding future research on this topic, it might be helpful to
expand the repertoire of omics layers by epigenomics and concentrate further on the differences
between these separate NDDs according to the regulation of these common genes. Additional analysis
of the overlap between different omics layers at the level of individual diseases, as well as differences
in the intersection of AD, PD and ALS in contrast with the autosomal dominant disorder HD could
also provide new insight in light of knowledge of the processes common to all NDDs.
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200. Świtońska, K.; Szlachcic, W.J.; Handschuh, L.; Wojciechowski, P.; Marczak, Ł.; Stelmaszczuk, M.;
Figlerowicz, M.; Figiel, M. Identification of Altered Developmental Pathways in Human Juvenile HD
iPSC With 71Q and 109Q Using Transcriptome Profiling. Front. Cell. Neurosci. 2019, 12. [CrossRef]

201. Al-Dalahmah, O.; Sosunov, A.A.; Shaik, A.; Ofori, K.; Liu, Y.; Vonsattel, J.P.; Adorjan, I.;
Menon, V.; Goldman, J.E. Single-nucleus RNA-seq identifies Huntington disease astrocyte states.
Acta Neuropathol. Commun. 2020, 8, 1–21. [CrossRef]

http://dx.doi.org/10.1186/s12987-018-0102-9
http://dx.doi.org/10.1093/brain/awn323
http://dx.doi.org/10.1007/s00401-011-0828-9
http://dx.doi.org/10.1371/journal.pone.0102909
http://dx.doi.org/10.1371/journal.pone.0128651
http://dx.doi.org/10.1371/journal.pgen.1002794
http://www.ncbi.nlm.nih.gov/pubmed/22761592
http://dx.doi.org/10.1186/s12920-016-0164-y
http://www.ncbi.nlm.nih.gov/pubmed/26793951
http://dx.doi.org/10.1073/pnas.0610204104
http://www.ncbi.nlm.nih.gov/pubmed/17215369
http://dx.doi.org/10.1371/journal.pgen.0030098
http://dx.doi.org/10.1002/ajmg.b.30195
http://www.ncbi.nlm.nih.gov/pubmed/15965975
http://dx.doi.org/10.1073/pnas.0308512100
http://dx.doi.org/10.1186/s12864-015-2058-3
http://dx.doi.org/10.1016/j.stemcr.2015.11.005
http://dx.doi.org/10.3389/fncel.2018.00528
http://dx.doi.org/10.1186/s40478-020-0880-6


Cells 2020, 9, 2642 31 of 35

202. Labadorf, A.; Hoss, A.G.; Lagomarsino, V.N.; Latourelle, J.C.; Hadzi, T.C.; Bregu, J.; Macdonald, M.E.;
Gusella, J.F.; Chen, J.-F.; Akbarian, S.; et al. RNA Sequence Analysis of Human Huntington Disease Brain
Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression. PLoS ONE 2015,
10, e0143563. [CrossRef] [PubMed]

203. Lin, L.; Park, J.W.; Ramachandran, S.; Zhang, Y.; Tseng, Y.-T.; Shen, S.; Waldvogel, H.J.; Curtis, M.A.;
Faull, R.L.M.; Troncoso, J.C.; et al. Transcriptome sequencing reveals aberrant alternative splicing in
Huntington’s disease. Hum. Mol. Genet. 2016, 25, 3454–3466. [CrossRef] [PubMed]

204. Feyeux, M.; Bourgois-Rocha, F.; Redfern, A.; Giles, P.; Lefort, N.; Aubert, S.; Bonnefond, C.; Bugi, A.; Ruiz, M.;
Deglon, N.; et al. Early transcriptional changes linked to naturally occurring Huntington’s disease mutations
in neural derivatives of human embryonic stem cells. Hum. Mol. Genet. 2012, 21, 3883–3895. [CrossRef]
[PubMed]

205. The HD iPSC Consortium. Developmental alterations in Huntington’s disease neural cells and
pharmacological rescue in cells and mice. Nat. Neurosci. 2017, 20, 648–660. [CrossRef]

206. Lim, R.G.; Quan, C.; Reyes-Ortiz, A.M.; Lutz, S.E.; Kedaigle, A.J.; Gipson, T.A.; Wu, J.; Vatine, G.D.;
Stocksdale, J.; Casale, M.S.; et al. Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial
Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Rep. 2017, 19, 1365–1377.
[CrossRef]

207. Mehta, S.R.; Tom, C.M.; Wang, Y.; Bresee, C.; Rushton, D.; Mathkar, P.P.; Tang, J.; Mattis, V.B. Human
Huntington’s Disease iPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and
Maturation. Cell Rep. 2018, 25, 1081–1096.e6. [CrossRef]

208. Blalock, E.M.; Buechel, H.M.; Popovic, J.; Geddes, J.W.; Landfield, P.W. Microarray analyses of laser-captured
hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease.
J. Chem. Neuroanat. 2011, 42, 118–126. [CrossRef]

209. Cox, L.E.; Ferraiuolo, L.; Goodall, E.F.; Heath, P.R.; Higginbottom, A.; Mortiboys, H.; Hollinger, H.C.;
Hartley, J.A.; Brockington, A.; Burness, C.E.; et al. Mutations in CHMP2B in Lower Motor Neuron
Predominant Amyotrophic Lateral Sclerosis (ALS). PLoS ONE 2010, 5, e9872. [CrossRef]

210. Otake, K.; Kamiguchi, H.; Hirozane, Y. Identification of biomarkers for amyotrophic lateral sclerosis by
comprehensive analysis of exosomal mRNAs in human cerebrospinal fluid. Bmc Med. Genom. 2019, 12, 1–11.
[CrossRef]

211. Gagliardi, S.; Zucca, S.; Pandini, C.; Diamanti, L.; Bordoni, M.; Sproviero, D.; Arigoni, M.; Olivero, M.;
Pansarasa, O.; Ceroni, M.; et al. Long non-coding and coding RNAs characterization in Peripheral Blood
Mononuclear Cells and Spinal Cord from Amyotrophic Lateral Sclerosis patients. Sci. Rep. 2018, 8, 1–11.
[CrossRef]

212. Swindell, W.R.; Kruse, C.; List, E.O.; Berryman, D.E.; Kopchick, J.J. ALS blood expression profiling identifies
new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J. Transl. Med. 2019, 17, 170.
[CrossRef]

213. Prudencio, M.; Belzil, V.V.; Batra, R.; Ross, C.A.; Gendron, T.F.; Pregent, L.J.; Murray, M.E.; Overstreet, K.K.;
Piazza-Johnston, A.E.; Desaro, P.; et al. Distinct brain transcriptome profiles in C9orf72-associated and
sporadic ALS. Nat. Neurosci. 2015, 18, 1175–1182. [CrossRef] [PubMed]

214. Raman, R.; Allen, S.P.; Goodall, E.F.; Kramer, S.; Ponger, L.-L.; Heath, P.R.; Milo, M.; Hollinger, H.C.; Walsh, T.;
Highley, J.R.; et al. Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation
of metabolism, hypoxia-response and RNA processing functions. Neuropathol. Appl. Neurobiol. 2015,
41, 201–226. [CrossRef] [PubMed]

215. Kapeli, K.; Pratt, G.A.; Vu, A.Q.; Hutt, K.R.; Martinez, F.J.; Sundararaman, B.; Batra, R.; Freese, P.D.;
Lambert, N.J.; Huelga, S.C.; et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and
TAF15 revealed by multisystem analyses. Nat. Commun. 2016, 7, 12143. [CrossRef] [PubMed]

216. Dols-Icardo, O.; Montal, V.; Sirisi, S.S.; López-Pernas, G.; Cervera-Carles, L.; Querol-Vilaseca, M.; Munoz, L.;
Belbin, O.; Alcolea, D.; Molina-Porcel, L.; et al. Characterization of the motor cortex transcriptome supports
microgial-related key events in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2020,
7, e829. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0143563
http://www.ncbi.nlm.nih.gov/pubmed/26636579
http://dx.doi.org/10.1093/hmg/ddw187
http://www.ncbi.nlm.nih.gov/pubmed/27378699
http://dx.doi.org/10.1093/hmg/dds216
http://www.ncbi.nlm.nih.gov/pubmed/22678061
http://dx.doi.org/10.1038/nn.4532
http://dx.doi.org/10.1016/j.celrep.2017.04.021
http://dx.doi.org/10.1016/j.celrep.2018.09.076
http://dx.doi.org/10.1016/j.jchemneu.2011.06.007
http://dx.doi.org/10.1371/journal.pone.0009872
http://dx.doi.org/10.1186/s12920-019-0473-z
http://dx.doi.org/10.1038/s41598-018-20679-5
http://dx.doi.org/10.1186/s12967-019-1909-0
http://dx.doi.org/10.1038/nn.4065
http://www.ncbi.nlm.nih.gov/pubmed/26192745
http://dx.doi.org/10.1111/nan.12147
http://www.ncbi.nlm.nih.gov/pubmed/24750211
http://dx.doi.org/10.1038/ncomms12143
http://www.ncbi.nlm.nih.gov/pubmed/27378374
http://dx.doi.org/10.1212/NXI.0000000000000829
http://www.ncbi.nlm.nih.gov/pubmed/32669313


Cells 2020, 9, 2642 32 of 35

217. Higginbotham, L.; Ping, L.; Dammer, E.B.; Duong, D.M.; Zhou, M.; Gearing, M.; Hurst, C.; Glass, J.D.;
Factor, S.A.; Johnson, E.C.B.; et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers
in asymptomatic and symptomatic Alzheimer’s disease. Sci. Adv. 2020, 6, eaaz9360. [CrossRef]

218. Liang, W.S.; Dunckley, T.; Beach, T.G.; Grover, A.; Mastroeni, D.; Walker, D.G.; Caselli, R.J.; Kukull, W.A.;
McKeel, D.; Morris, J.C.; et al. Gene expression profiles in anatomically and functionally distinct regions of
the normal aged human brain. Physiol. Genom. 2007, 28, 311–322. [CrossRef]

219. Magistri, M.; Velmeshev, D.; Makhmutova, M.; Faghihi, M.A. Transcriptomics Profiling of Alzheimer’s
Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of
Long Noncoding RNAs. J. Alzheimer’s Dis. 2015, 48, 647–665. [CrossRef]

220. Dunckley, T.; Beach, T.G.; Ramsey, K.E.; Grover, A.; Mastroeni, D.; Walker, D.G.; LaFleur, B.J.; Coon, K.D.;
Brown, K.M.; Caselli, R.; et al. Gene expression correlates of neurofibrillary tangles in Alzheimer’s disease.
Neurobiol. Aging 2006, 27, 1359–1371. [CrossRef]

221. Scheckel, C.; Drapeau, E.; A Frias, M.; Park, C.Y.; Fak, J.; Zucker-Scharff, I.; Kou, Y.; Haroutunian, V.;
Ma’Ayan, A.; Buxbaum, J.; et al. Regulatory consequences of neuronal ELAV-like protein binding to coding
and non-coding RNAs in human brain. eLife 2016, 5, e10421. [CrossRef]

222. Meyer, K.; Feldman, H.M.; Lu, T.; Drake, D.; Lim, E.T.; Ling, K.-H.; Bishop, N.A.; Pan, Y.; Seo, J.; Lin, Y.-T.;
et al. REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer’s Disease. Cell Rep. 2019,
26, 1112–1127.e9. [CrossRef] [PubMed]

223. Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F.; Mohammadi, S.; Young, J.Z.; Menon, M.; He, L.;
Abdurrob, F.; Jiang, X.; et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nat. Cell Biol. 2019,
570, 332–337. [CrossRef] [PubMed]

224. Hondius, D.C.; Van Nierop, P.; Li, K.W.; Hoozemans, J.J.; Van Der Schors, R.C.; Van Haastert, E.S.; Van Der
Vies, S.M.; Rozemuller, A.J.; Smit, A.B. Profiling the human hippocampal proteome at all pathologic stages of
Alzheimer’s disease. Alzheimer’s Dement. 2016, 12, 654–668. [CrossRef] [PubMed]

225. Rotunno, M.S.; Lane, M.; Zhang, W.; Wolf, P.; Oliva, P.; Viel, C.; Wills, A.-M.; Alcalay, R.N.; Scherzer, C.R.;
Shihabuddin, L.S.; et al. Cerebrospinal fluid proteomics implicates the granin family in Parkinson’s disease.
Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]

226. Lachén-Montes, M.; González-Morales, A.; Iloro, I.; Elortza, F.; Ferrer, I.; Gveric, D.; Fernández-Irigoyen, J.;
Santamaría, E. Unveiling the olfactory proteostatic disarrangement in Parkinson’s disease by proteome-wide
profiling. Neurobiol. Aging 2019, 73, 123–134. [CrossRef] [PubMed]

227. Van Dijk, K.D.; Berendse, H.W.; Drukarch, B.; Fratantoni, S.A.; Pham, T.V.; Piersma, S.R.; Huisman, E.;
Brevé, J.J.P.; Groenewegen, H.J.; Jimenez, C.R.; et al. The Proteome of the Locus Ceruleus in Parkinson’s
Disease: Relevance to Pathogenesis. Brain Pathol. 2012, 22, 485–498. [CrossRef]

228. Umoh, M.E.; Dammer, E.B.; Dai, J.; Duong, D.M.; Lah, J.J.; I Levey, A.; Gearing, M.; Glass, J.D.; Seyfried, N.T.
A proteomic network approach across the ALS—FTD disease spectrum resolves clinical phenotypes and
genetic vulnerability in human brain. Embo Mol. Med. 2018, 10, 48–62. [CrossRef]

229. Oeckl, P.; Weydt, P.; Thal, D.R.; Weishaupt, J.H.; Ludolph, A.C.; Otto, M. Proteomics in cerebrospinal fluid and
spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional
pathways in amyotrophic lateral sclerosis. Acta Neuropathol. 2019, 139, 119–134. [CrossRef]

230. Iridoy, M.O.; Zubiri, I.; Zelaya, M.V.; Martinez, L.; Ausin, K.; Lachén-Montes, M.; Santamaría, E.;
Fernández-Irigoyen, J.; Pascual, I.J. Neuroanatomical Quantitative Proteomics Reveals Common Pathogenic
Biological Routes between Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int. J.
Mol. Sci. 2018, 20, 4. [CrossRef]

231. Collins, M.A.; An, J.; Hood, B.L.; Conrads, T.P.; Bowser, R.P. Label-Free LC–MS/MS Proteomic Analysis of
Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic
Lateral Sclerosis. J. Proteome Res. 2015, 14, 4486–4501. [CrossRef]

232. Varghese, A.M.; Sharma, A.; Mishra, P.-S.; Vijayalakshmi, K.; Gowda, H.; Sathyaprabha, T.N.; Bharath, M.M.S.;
Nalini, A.; Alladi, P.A.; Raju, T.R. Chitotriosidase—A putative biomarker for sporadic amyotrophic lateral
sclerosis. Clin. Proteom. 2013, 10, 19. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/sciadv.aaz9360
http://dx.doi.org/10.1152/physiolgenomics.00208.2006
http://dx.doi.org/10.3233/JAD-150398
http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.013
http://dx.doi.org/10.7554/eLife.10421
http://dx.doi.org/10.1016/j.celrep.2019.01.023
http://www.ncbi.nlm.nih.gov/pubmed/30699343
http://dx.doi.org/10.1038/s41586-019-1195-2
http://www.ncbi.nlm.nih.gov/pubmed/31042697
http://dx.doi.org/10.1016/j.jalz.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26772638
http://dx.doi.org/10.1038/s41598-020-59414-4
http://www.ncbi.nlm.nih.gov/pubmed/32051502
http://dx.doi.org/10.1016/j.neurobiolaging.2018.09.018
http://www.ncbi.nlm.nih.gov/pubmed/30342273
http://dx.doi.org/10.1111/j.1750-3639.2011.00540.x
http://dx.doi.org/10.15252/emmm.201708202
http://dx.doi.org/10.1007/s00401-019-02093-x
http://dx.doi.org/10.3390/ijms20010004
http://dx.doi.org/10.1021/acs.jproteome.5b00804
http://dx.doi.org/10.1186/1559-0275-10-19
http://www.ncbi.nlm.nih.gov/pubmed/24295388


Cells 2020, 9, 2642 33 of 35

233. Ratovitski, T.; Chaerkady, R.; Kammers, K.; Stewart, J.C.; Zavala, A.; Pletnikova, O.; Troncoso, J.C.;
Rudnicki, D.D.; Margolis, R.L.; Cole, R.N.; et al. Quantitative Proteomic Analysis Reveals Similarities
between Huntington’s Disease (HD) and Huntington’s Disease-Like 2 (HDL2) Human Brains. J. Proteome Res.
2016, 15, 3266–3283. [CrossRef] [PubMed]

234. Fang, Q.; Strand, A.; Law, W.; Faca, V.M.; FitzGibbon, M.P.; Hamel, N.; Houle, B.; Liu, X.; May, D.H.;
Poschmann, G.; et al. Brain-specific Proteins Decline in the Cerebrospinal Fluid of Humans with Huntington
Disease. Mol. Cell. Proteom. 2009, 8, 451–466. [CrossRef] [PubMed]

235. Bader, J.M.; Geyer, P.; Müller, J.B.; Strauss, M.T.; Koch, M.; Leypoldt, F.; Koertvelyessy, P.; Bittner, D.;
Schipke, C.G.; Incesoy, E.I.; et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of
Alzheimer’s disease. Mol. Syst. Biol. 2020, 16, e9356. [CrossRef] [PubMed]

236. Zhang, Q.; Ma, C.; Gearing, M.; Wang, P.G.; Chin, L.-S.; Li, L. Integrated proteomics and network analysis
identifies protein hubs and network alterations in Alzheimer’s disease. Acta Neuropathol. Commun. 2018,
6, 1–19. [CrossRef] [PubMed]

237. Seyfried, N.T.; Dammer, E.B.; Swarup, V.; Nandakumar, D.; Duong, D.M.; Yin, L.; Deng, Q.; Nguyen, T.;
Hales, C.M.; Wingo, T.; et al. A Multi-network Approach Identifies Protein-Specific Co-expression in
Asymptomatic and Symptomatic Alzheimer’s Disease. Cell Syst. 2017, 4, 60–72.e4. [CrossRef] [PubMed]

238. Higginbotham, L.; Dammer, E.B.; Duong, D.M.; Modeste, E.; Montine, T.J.; Lah, J.J.; Levey, A.I.; Seyfried, N.T.
Network Analysis of a Membrane-Enriched Brain Proteome across Stages of Alzheimer’s Disease. Proteomes
2019, 7, 30. [CrossRef]

239. Wingo, A.P.; Fan, W.; Duong, D.M.; Gerasimov, E.S.; Dammer, E.B.; Liu, Y.; Harerimana, N.V.; White, B.;
Thambisetty, M.; Troncoso, J.C.; et al. Shared proteomic effects of cerebral atherosclerosis and Alzheimer’s
disease on the human brain. Nat. Neurosci. 2020, 23, 696–700. [CrossRef]

240. Lachén-Montes, M.; González-Morales, A.; Zelaya, M.V.; Pérez-Valderrama, E.; Ausín, K.; Ferrer, I.;
Fernández-Irigoyen, J.; Santamaría, E. Olfactory bulb neuroproteomics reveals a chronological perturbation
of survival routes and a disruption of prohibitin complex during Alzheimer’s disease progression. Sci. Rep.
2017, 7, 1–15. [CrossRef]

241. Braschi, B.; Denny, P.; Gray, K.A.; Jones, T.; Seal, R.L.; Tweedie, S.; Yates, B.; Bruford, E. Genenames.org:
The HGNC and VGNC resources in 2019. Nucleic Acids Res. 2019, 47, D786–D792. [CrossRef]

242. Dusa, A. Package “venn”. 2016. Available online: https://stat.ethz.ch/pipermail/r-packages/2016/001461.html
(accessed on 16 July 2020).

243. Kolde, R.; Package, M.K. Package “pheatmap”. 2015. Available online: https://mran.microsoft.com/snapsho
t/2017-09-01/web/packages/pheatmap/pheatmap.pdf (accessed on 2 August 2020).

244. Kanehisa, M. Novartis Foundation Symposium. The KEGG database. Wiley Online Library. 2002.
Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/0470857897.ch8 (accessed on 24 August
2020).

245. The Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res. 2015,
43, D1049–D1056. [CrossRef] [PubMed]

246. Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped
UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [CrossRef] [PubMed]

247. Bodenhofer, U.; Kothmeier, A.; Hochreiter, S. APCluster: An R package for affinity propagation clustering.
Bioinform. 2011, 27, 2463–2464. [CrossRef] [PubMed]

248. Frey, B.J.; Dueck, D. Clustering by Passing Messages between Data Points. Science 2007, 315, 972–976.
[CrossRef]

249. Ghosh, S.; May, M.J.; Kopp, E.B. NF-κB and rel proteins: Evolutionarily conserved mediators of immune
responses. Annu. Rev. Immunol. 1998, 16, 225–260. [CrossRef]

250. Luque, I.; Gélinas, C. Rel/NF-κB and IκB factors in oncogenesis. Semin. Cancer Biol. 1997, 8, 103–111.
[CrossRef]

251. Grilli, M.; Memo, M. Nuclear factor-κB/Rel proteins. Biochem. Pharmacol. 1999, 57, 1–7. [CrossRef]

http://dx.doi.org/10.1021/acs.jproteome.6b00448
http://www.ncbi.nlm.nih.gov/pubmed/27486686
http://dx.doi.org/10.1074/mcp.M800231-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/18984577
http://dx.doi.org/10.15252/msb.20199356
http://www.ncbi.nlm.nih.gov/pubmed/32485097
http://dx.doi.org/10.1186/s40478-018-0524-2
http://www.ncbi.nlm.nih.gov/pubmed/29490708
http://dx.doi.org/10.1016/j.cels.2016.11.006
http://www.ncbi.nlm.nih.gov/pubmed/27989508
http://dx.doi.org/10.3390/proteomes7030030
http://dx.doi.org/10.1038/s41593-020-0635-5
http://dx.doi.org/10.1038/s41598-017-09481-x
http://dx.doi.org/10.1093/nar/gky930
https://stat.ethz.ch/pipermail/r-packages/2016/001461.html
https://mran.microsoft.com/snapshot/2017-09-01/web/packages/pheatmap/pheatmap.pdf
https://mran.microsoft.com/snapshot/2017-09-01/web/packages/pheatmap/pheatmap.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470857897.ch8
http://dx.doi.org/10.1093/nar/gku1179
http://www.ncbi.nlm.nih.gov/pubmed/25428369
http://dx.doi.org/10.1093/nar/gkz401
http://www.ncbi.nlm.nih.gov/pubmed/31114916
http://dx.doi.org/10.1093/bioinformatics/btr406
http://www.ncbi.nlm.nih.gov/pubmed/21737437
http://dx.doi.org/10.1126/science.1136800
http://dx.doi.org/10.1146/annurev.immunol.16.1.225
http://dx.doi.org/10.1006/scbi.1997.0061
http://dx.doi.org/10.1016/S0006-2952(98)00214-7


Cells 2020, 9, 2642 34 of 35

252. Foxwell, B.; Browne, K.; Bondeson, J.; Clarke, C.; De Martin, R.; Brennan, F.; Feldmann, M. Efficient adenoviral
infection with I B reveals that macrophage tumor necrosis factor production in rheumatoid arthritis is NF- B
dependent. Proc. Natl. Acad. Sci. USA 1998, 95, 8211–8215. [CrossRef]

253. Nordby, Y.; Richardsen, E.; Rakaee, M.; Ness, N.; Donnem, T.; Patel, H.R.H.; Busund, L.-T.; Bremnes, R.M.;
Andersen, S. High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical
and biochemical prostate cancer recurrence. Sci. Rep. 2017, 7, 43378. [CrossRef]

254. Ibáñez, K.; Boullosa, C.; Tabarés-Seisdedos, R.; Baudot, A.; Valencia, A. Molecular Evidence for the
Inverse Comorbidity between Central Nervous System Disorders and Cancers Detected by Transcriptomic
Meta-analyses. Plos Genet. 2014, 10, e1004173. [CrossRef]

255. Bayraktar, A.; Onal-Suzek, T.; Suzek, B.E.; Baysal, O. Meta-analysis of Gene Expression in Neurodegenerative
Diseases Reveals Patterns in GABA Synthesis and Heat Stress Pathways. arXiv 2019, arXiv:1909.07469.

256. Kampinga, H.H.; Bergink, S. Heat shock proteins as potential targets for protective strategies in
neurodegeneration. Lancet Neurol. 2016, 15, 748–759. [CrossRef]

257. Kaltenbach, L.S.; Romero, E.; Becklin, R.R.; Chettier, R.; Bell, R.; Phansalkar, A.; Strand, A.; Torcassi, C.;
Savage, J.; Hurlburt, A.; et al. Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration.
Plos Genet. 2007, 3, e82. [CrossRef] [PubMed]

258. Weskamp, K.; Barmada, S.J. TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res. 2018,
1693, 67–74. [CrossRef] [PubMed]

259. Kapeli, K.; Martinez, F.J.; Yeo, G.W. Genetic mutations in RNA-binding proteins and their roles in ALS. Qual.
Life Res. 2017, 136, 1193–1214. [CrossRef] [PubMed]

260. Gao, J.; Wang, L.; Huntley, M.L.; Perry, G.; Wang, X. Pathomechanisms of TDP-43 in neurodegeneration.
J. Neurochem. 2018, 146, 7–20. [CrossRef] [PubMed]

261. Desai, B.S.; Schneider, J.A.; Li, J.-L.; Carvey, P.M.; Hendey, B. Evidence of angiogenic vessels in Alzheimer’s
disease. J. Neural Transm. 2009, 116, 587–597. [CrossRef]

262. Streit, W.J.; Mrak, R.E.; Griffin, W.S.T. Microglia and neuroinflammation: A pathological perspective.
J. Neuroinflamm. 2004, 1, 14. [CrossRef]

263. Naldini, A. Role of Inflammatory Mediators in Angiogenesis. Curr. Drug Target -Inflamm. Allergy 2005, 4, 3–8.
[CrossRef]

264. Grammas, P.; Sanchez, A.; Tripathy, D.; Luo, E.; Martinez, J. Vascular signaling abnormalities in Alzheimer
disease. Clevel. Clin. J. Med. 2011, 78, S50–S53. [CrossRef]

265. Vallon, M.; Chang, J.; Zhang, H.; Kuo, C.J. Developmental and pathological angiogenesis in the central
nervous system. Cell. Mol. Life Sci. 2014, 71, 3489–3506. [CrossRef] [PubMed]

266. Schultheiss, C.; Blechert, B.; Gaertner, F.C.; Drecoll, E.; Mueller, J.; Weber, G.F.; Drzezga, A.; Essler, M.
In vivo characterization of endothelial cell activation in a transgenic mouse model of Alzheimer’s disease.
Angiogenesis 2006, 9, 59–65. [CrossRef] [PubMed]

267. Sagi, S.S.; Himadri, P.; Ruma, D.; Sharma, S.; Pauline, T. Mrinalini Selenium protects the hypoxia induced
apoptosis in neuroblastoma cells through upregulation of Bcl-2. Brain Res. 2008, 1209, 29–39. [CrossRef]

268. Bhatia, D.; Ardekani, M.S.; Shi, Q.; Movafagh, S. Hypoxia and its Emerging Therapeutics in
Neurodegenerative, Inflammatory and Renal Diseases. In Hypoxia and Human Diseases; IntechOpen:
London, UK, 2017.

269. Song, I.; Dityatev, A. Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 2018,
136, 101–108. [CrossRef]

270. Singh, K.; Han, K.; Tilve, S.; Wu, K.; Geller, H.M.; Sack, M.N. Parkin targets NOD2 to regulate astrocyte
endoplasmic reticulum stress and inflammation. Glia 2018, 66, 2427–2437. [CrossRef]

271. Kurtishi, A.; Rosen, B.; Patil, K.S.; Alves, G.W.; Møller, S.G. Cellular Proteostasis in Neurodegeneration.
Mol. Neurobiol. 2019, 56, 3676–3689. [CrossRef]

272. Iurlaro, R.; Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. Febs J. 2016, 283, 2640–2652.
[CrossRef]

273. Flores, B.N.; Li, X.; Malik, A.M.; Martinez, J.; Beg, A.A.; Barmada, S.J. An Intramolecular Salt Bridge
Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Rep. 2019,
27, 1133–1150.e8. [CrossRef]

274. Sabatino, J.J., Jr.; Pröbstel, A.-K.; Zamvil, S. B cells in autoimmune and neurodegenerative central nervous
system diseases. Nat. Rev. Neurosci. 2019, 20, 728–745. [CrossRef]

http://dx.doi.org/10.1073/pnas.95.14.8211
http://dx.doi.org/10.1038/srep43378
http://dx.doi.org/10.1371/journal.pgen.1004173
http://dx.doi.org/10.1016/S1474-4422(16)00099-5
http://dx.doi.org/10.1371/journal.pgen.0030082
http://www.ncbi.nlm.nih.gov/pubmed/17500595
http://dx.doi.org/10.1016/j.brainres.2018.01.015
http://www.ncbi.nlm.nih.gov/pubmed/29395044
http://dx.doi.org/10.1007/s00439-017-1830-7
http://www.ncbi.nlm.nih.gov/pubmed/28762175
http://dx.doi.org/10.1111/jnc.14327
http://www.ncbi.nlm.nih.gov/pubmed/29486049
http://dx.doi.org/10.1007/s00702-009-0226-9
http://dx.doi.org/10.1186/1742-2094-1-14
http://dx.doi.org/10.2174/1568010053622830
http://dx.doi.org/10.3949/ccjm.78.s1.09
http://dx.doi.org/10.1007/s00018-014-1625-0
http://www.ncbi.nlm.nih.gov/pubmed/24760128
http://dx.doi.org/10.1007/s10456-006-9030-4
http://www.ncbi.nlm.nih.gov/pubmed/16821113
http://dx.doi.org/10.1016/j.brainres.2008.02.041
http://dx.doi.org/10.1016/j.brainresbull.2017.03.003
http://dx.doi.org/10.1002/glia.23482
http://dx.doi.org/10.1007/s12035-018-1334-z
http://dx.doi.org/10.1111/febs.13598
http://dx.doi.org/10.1016/j.celrep.2019.03.093
http://dx.doi.org/10.1038/s41583-019-0233-2


Cells 2020, 9, 2642 35 of 35

275. Engelhardt, B.; Vajkoczy, P.; Weller, R.O. The movers and shapers in immune privilege of the CNS.
Nat. Immunol. 2017, 18, 123–131. [CrossRef]

276. Louveau, A.; Plog, B.A.; Antila, S.; Alitalo, K.; Smith, N.A.; Kipnis, J. Understanding the functions and
relationships of the glymphatic system and meningeal lymphatics. J. Clin. Investig. 2017, 127, 3210–3219.
[CrossRef] [PubMed]

277. Anthony, I.C.; Crawford, D.H.; Bell, J.E. B lymphocytes in the normal brain: Contrasts with HIV-associated
lymphoid infiltrates and lymphomas. Brain 2003, 126, 1058–1067. [CrossRef] [PubMed]

278. Machado-Santos, J.; Saji, E.; Tröscher, A.R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C.G.; Bauer, J.;
Lassmann, H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of
tissue-resident CD8+ T lymphocytes and B cells. Brain 2018, 141, 2066–2082. [CrossRef] [PubMed]

279. Kowarik, M.C.; Grummel, V.; Wemlinger, S.; Buck, D.; Weber, M.S.; Berthele, A.; Hemmer, B. Immune cell
subtyping in the cerebrospinal fluid of patients with neurological diseases. J. Neurol. 2014, 261, 130–143.
[CrossRef]

280. Brochard, V.; Combadière, B.; Prigent, A.; Laouar, Y.; Perrin, A.; Beray-Berthat, V.; Bonduelle, O.;
Alvarez-Fischer, D.; Callebert, J.; Launay, J.-M.; et al. Infiltration of CD4+ lymphocytes into the brain
contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Investig. 2008, 119, 182–192.
[CrossRef] [PubMed]

281. Orr, C.F.; Rowe, D.B.; Mizuno, Y.; Mori, H.; Halliday, G.M. A possible role for humoral immunity in the
pathogenesis of Parkinson’s disease. Brain 2005, 128, 2665–2674. [CrossRef]

282. Diaz-Ortiz, M.E.; Chen-Plotkin, A.S. Omics in Neurodegenerative Disease: Hope or Hype? Trends Genet.
2020, 36, 152–159. [CrossRef]

283. De Jager, P.L.; Yang, H.-S.; Bennett, D.A. Deconstructing and targeting the genomic architecture of human
neurodegeneration. Nat. Neurosci. 2018, 21, 1310–1317. [CrossRef]

284. Becker, K.; Bluhm, A.; Casas-Vila, N.; Dinges, N.; DeJung, M.; Sayols, S.; Kreutz, C.; Roignant, J.-Y.; Butter, F.;
Legewie, S. Quantifying post-transcriptional regulation in the development of Drosophila melanogaster.
Nat. Commun. 2018, 9, 1–14. [CrossRef]

285. Manzoni, C.; Lewis, P.A.; Ferrari, R. Network Analysis for Complex Neurodegenerative Diseases. Curr. Genet.
Med. Rep. 2020, 8, 17–25. [CrossRef]

286. Yu, X.; Lai, S.; Chen, H.; Chen, M. Protein–protein interaction network with machine learning models
and multiomics data reveal potential neurodegenerative disease-related proteins. Hum. Mol. Genet. 2020,
29, 1378–1387. [CrossRef] [PubMed]

287. Nguyen, N.D.; Wang, D. Multiview learning for understanding functional multiomics. Plos Comput. Biol.
2020, 16, e1007677. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/ni.3666
http://dx.doi.org/10.1172/JCI90603
http://www.ncbi.nlm.nih.gov/pubmed/28862640
http://dx.doi.org/10.1093/brain/awg118
http://www.ncbi.nlm.nih.gov/pubmed/12690046
http://dx.doi.org/10.1093/brain/awy151
http://www.ncbi.nlm.nih.gov/pubmed/29873694
http://dx.doi.org/10.1007/s00415-013-7145-2
http://dx.doi.org/10.1172/JCI36470
http://www.ncbi.nlm.nih.gov/pubmed/19104149
http://dx.doi.org/10.1093/brain/awh625
http://dx.doi.org/10.1016/j.tig.2019.12.002
http://dx.doi.org/10.1038/s41593-018-0240-z
http://dx.doi.org/10.1038/s41467-018-07455-9
http://dx.doi.org/10.1007/s40142-020-00181-z
http://dx.doi.org/10.1093/hmg/ddaa065
http://www.ncbi.nlm.nih.gov/pubmed/32277755
http://dx.doi.org/10.1371/journal.pcbi.1007677
http://www.ncbi.nlm.nih.gov/pubmed/32240163
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Acquisition/Literature Research 
	Genome 
	Transcriptome 
	Proteome 

	Data Management 
	Data Analysis 
	Intersection 
	Common Regulation between NDDs on a Transcriptomic Level 
	GO-Term- and Pathway Analyses 


	Results 
	Intersection 
	Common Regulation of NDDs on the Transcriptomic Level 
	GO-Term- and Pathway-Analyses 
	Transcriptomic Intersection of AD, PD, ALS and HD 
	Proteomic Intersection of AD, PD, ALS and HD 


	Discussion 
	Intersections 
	GO-Term and Pathway Analyses 
	KEGG Pathway Analysis 
	Response to Heat 
	RNA Catabolic Process 
	Positive Regulation of Cytokine Production and Angiogenesis 
	Response to Hypoxia 
	Extracellular Matrix Organization 
	Nucleotide-Binding Oligomerization Domain Containing 2 Signaling Pathway 
	Negative Regulation of Apoptotic Signaling Pathway 
	Protein Stabilization and Regulation of Protein Stability 
	Humoral Immune Response 
	Common Regulation on the Transcriptomic Level 


	Conclusions 
	References

