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Efficient‑CapsNet: capsule network 
with self‑attention routing
Vittorio Mazzia1,2,3*, Francesco Salvetti1,2,3 & Marcello Chiaberge1,2

Deep convolutional neural networks, assisted by architectural design strategies, make extensive use 
of data augmentation techniques and layers with a high number of feature maps to embed object 
transformations. That is highly inefficient and for large datasets implies a massive redundancy 
of features detectors. Even though capsules networks are still in their infancy, they constitute a 
promising solution to extend current convolutional networks and endow artificial visual perception 
with a process to encode more efficiently all feature affine transformations. Indeed, a properly 
working capsule network should theoretically achieve higher results with a considerably lower number 
of parameters count due to intrinsic capability to generalize to novel viewpoints. Nevertheless, 
little attention has been given to this relevant aspect. In this paper, we investigate the efficiency of 
capsule networks and, pushing their capacity to the limits with an extreme architecture with barely 
160 K parameters, we prove that the proposed architecture is still able to achieve state-of-the-art 
results on three different datasets with only 2% of the original CapsNet parameters. Moreover, we 
replace dynamic routing with a novel non-iterative, highly parallelizable routing algorithm that 
can easily cope with a reduced number of capsules. Extensive experimentation with other capsule 
implementations has proved the effectiveness of our methodology and the capability of capsule 
networks to efficiently embed visual representations more prone to generalization.

In the last decade, convolutional neural networks (CNN) drastically changed artificial visual perception, achiev-
ing remarkable results in all core fields of computer vision, from image classification1–3 to object detection4–6 and 
instance segmentation7. In contrast to other deep neural architectures, the main characteristic of a CNN is its 
capability to efficiently replicate the same knowledge at all locations in the spatial dimension of an input image. 
Indeed, using translated replicas of learned feature detectors, features learned at one spatial location are available 
at other locations. Local shared connectivity coupled with spatial reduction layers, such as max-pooling, extract 
local translation-invariant features. So, as shown in Fig. 1, object translations in the input space do not affect 
activations of high-level neurons, because max-pooling layers are able to rout low-level features between the 
layers. Nevertheless, translation invariance achieved by CNN comes at the expense of losing the precise encoding 
of objects location. Moreover, CNNs are not invariant to all other affine transformations.

During the years, different techniques have been developed to counterbalance that problem. Most of the 
adopted common solutions make use of an increased number of feature maps in such a way that the network 
is endowed with enough feature detectors for all additional transformations. Data augmentation techniques 
are used to produce the different pose to be learned, and residual connections and normalization techniques 
allow to enlarge networks filter capacity. However, all those additional mechanisms only partially make up for 
the intrinsic limitations of CNN, preventing the model from recognising different transformations of the same 
objects encountered during training. Indeed, CNNs trained on large datasets have a massive redundancy of 
features detectors and difficulties to scale to thousands of objects with their respective viewpoints.

Hinton et al.8 proposed to make neurons cooperate in a new form of unit, dubbed capsules, where individual 
activations inside them do not represent the presence of a specific feature but different properties of the same 
entity anymore. In their paper they showed that groups of neurons, if properly trained, are able to produce a 
whole vector of numbers, explicitly representing the pose of the detected entity as in classical hand-engineered 
features9. After six years, Sabour et al.10 presented a first architecture, named CapsNet, that introduced capsules 
inside a CNN. The major insight of the paper is that viewpoint changes have complicated effects on the pixel 
space, but simple linear effects on the pose that represents the relationship between an object-part and the whole. 
In a generic fully-connected or convolutional deep neural network, weights are used to encode feature detectors 
and neuron activations to represent the presence of a specific feature. So, fixing weights after training, the model 
is not able to detect simple transformation patterns not encountered during training. On the other hand, they 
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suggested repurposing weights to embed relationships between object features. Indeed, being intrinsic trans-
formation between parts and a whole invariant to the viewpoint, weights are perfectly fitted to represent them 
efficiently, and they should be automatically capable of generalizing to novel viewpoints. Moreover, we do not 
want anymore to achieve activations invariant to transformations, but groups of neurons working in synergy 
to represent different properties of the same entity. Capsules are vector representations of features, and they are 
equivariant to viewpoint transformation. So, each capsule not only represents a specific type of entity but also 
dynamically describes how the entity is instantiated. Finally, the working principle of traditional networks, in 
which a scalar unit is activated based on the matching score with learned feature detectors, is dropped alto-
gether favouring a much more robust mechanism. Indeed, with viewpoint invariant transformations encoded 
in the weights, we can make capsules predict the whole that they should be part of. So, we can consider predic-
tions accordance of low-level capsules to activate high-level capsules. That requires a process to measure their 
agreement and route capsules to their best match parent. Originally, dynamic routing was proposed as the first 
routing-by-agreement mechanism. Exploiting groups of neuron activations to make predictions and assess their 
reciprocal agreement is a much more effective way to capture covariance and should lead to models with a con-
siderably reduced number of parameters and far better generalization capabilities.

Nevertheless, little attention has been given to the efficiency aspect of capsule networks and their intrinsic 
capability to represent knowledge object transformations better. Indeed, all model solutions presented so far 
account for a large number of parameters that inevitably hide the intrinsic generalization capability that cap-
sules should provide. In this paper, we propose Efficient-CapsNet, an extreme architecture with barely 160 K 
parameters and a 85% TOPs improvement upon the original CapsNet model that is perfectly capable of achieving 
state-of-the-art results on three distinct datasets, maintaining all important aspects of capsule networks. With 
extensive experimentation with traditional CNNs and other capsule implementations, we proved the effectiveness 
of our methodology and the important contribution lead by capsules inside a network. Moreover, we propose a 
novel non-iterative, routing algorithm that can easily cope with a reduced number of capsules exploiting a self-
attention mechanism. Indeed, attention, as also max-pooling layers, can be seen as a way to route information 
inside a network. Our proposed solution exploits similarities between low-level capsules to cluster and routs 
them to more promising high-level capsules. Overall, the main contribution of our work lies in:

•	 Deep investigation of the generalization power of networks based on capsules, drastically reducing the num-
ber of trainable parameters compared to previous literature research studies.

•	 The Conceptualization and development of an efficient, highly replicable, deep learning neural network based 
on capsules able to reach state-of-the-art results on three distinct datasets.

•	 The introduction of a novel non-iterative, highly parallelizable routing algorithm that exploits a self-attention 
mechanism to route a reduced number of capsules efficiently.

All of our training and testing code are open source and publicly available (https://​github.​com/​EscVM/​Effic​
ient-​CapsN​et). The remainder of this paper is structured as follows. “Related works” covers the related work on 
capsule networks, their developments in the latest years and practical applications. “Methods” provides a com-
prehensive overview of the methodology, network architecture and its routing algorithm. “Results” discusses 
the experimentation and results with three datasets, MNIST, smallNorb and MultiMNIST. Moreover, it provides 
an introspect analysis of the inner operation of capsules inside a network. Finally, “Conclusion” draws some 
conclusions and future directions.

Figure 1.   Compressed representation of a simple CNN with max-pooling layers for spatial reduction and two 
input objects obtained with a plain spatial translation. Max-pooling operations are schematized in such a way 
that their primitive routing role is highlighted for both digits. Low-level features detected in the earlier stage of 
the network are progressively routed to common high-level features. So, the model is translation invariant but 
gradually loses relevant object localization information.

https://github.com/EscVM/Efficient-CapsNet
https://github.com/EscVM/Efficient-CapsNet
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Related works
As already devised in the introduction to this paper, introducing a vectorial organization of neurons to encap-
sulate both probability and instantiation parameters of a detected feature was first proposed by Hinton et al.8 
introducing the new concept of capsules. Sabour et al.10 proposed the first CNN able to incorporate two layers 
of capsules, called CapsNet, and introduced the routing-by-agreement concept, with their dynamic routing. 
Several researchers have then investigated the routing process, proposing alternative ways to measure accordance 
between low-lever capsules in activating high-level ones.

Xi et al.11 proposed a variant to the squash activation function used in the original CapsNet. Wang et al.12 
gave a formal description of the original dynamic routing as an optimization problem that minimizes clustering 
loss and proposes a slightly modified version. Lenssen et al.13 proposed group capsule networks, claiming they 
preserve equivariance for the output pose and invariance for activations. The same authors of the original Cap-
sNet adapted the Expectation-Maximization algorithm to cluster similar votes, and route predictions14. Spectral 
capsule network15 was based on this last work, and modified routing basing it on Singular Value Decomposition 
of votes from the previous layers. Ribeiro et al.16 proposed a routing derived from Variational Bayes for fitting 
a gaussian mixture model. Gu et al.17 focused on making capsule networks robust to affine transformations by 
sharing transformation matrices between all low-level capsules and each high-level ones. Paik et al.18 put in dis-
cussion the effectiveness of the routing algorithm presented so far, claiming that better results can be obtained 
with no routing at all. On the other hand, Venkataraman et al.19 proved that routing-by-agreement mechanism 
is essential to ensure compositional structures of capsule-based networks. Byerly et al.20, instead, proposed a 
new architecture based on a variation of the original capsule idea, named Homogeneous Filter Capsules, and 
with no routing between layers.

The attention mechanism allows to dynamically give more importance to particular features that are consid-
ered more relevant for the problem under analysis. Such an idea gained great popularity in a number of Deep 
Learning applications and have been implemented in natural language processing21,22 or computer vision3,23–26. 
Choi et al.27 applied the attention mechanism to capsule routing with a feed-forward operation with no itera-
tions. However, they selected low-level capsules by multiplying their activations to a parameter vector learnt with 
backpropagation, and they did not measure agreement. In this way, the original idea of routing-by-agreement is 
drastically modified. Tsai et al.28 slightly changed the original dynamic routing to compute the agreement between 
a pose of a high-level capsule and the votes of the low-level capsules by an inverted dot-product mechanism. 
They proposed a concurrent iterative routing instead of a sequential one, performing the routing procedure 
simultaneously on all the capsule layer. Huang et al.29 proposed a dual attention mechanism by adapting the 
squeeze-and-excitation block3 to both Primary and Digit Caps, together with a change in the squash activation 
function. Peng et al.30 applied capsules in addition with a self-attention based backbone for an entity relation 
task in natural language processing. However, both these last two works used attention mechanisms as part of 
the computational graph of the proposed networks, without modifying the original dynamic routing proposed 
by Sabour et al.10. In this sense, our approach strongly differs from theirs since we first propose self-attention 
as a substitute routing algorithm between capsules. Capsule-based networks have also been recently used for a 
variety of applications. For example, they have been applied for natural language processing30–33, with GANs for 
image generation34, computer vision35–37 or medicine38,39.

Methods
Efficient‑CapsNet.  The overall architecture of Efficient-CapsNet is depicted in Fig.  2. As a high-level 
description, the network can be broadly divided into three different parts in which the first two are the main 
instruments of the primary capsule layer to interact with the input space. Indeed, each capsule exploits the below 
convolutional layer filters to convert pixel intensities into a vectorial representation of the feature it acts for. So, 
the activities of neurons within an active capsule embody the various properties of the entity it learnt to repre-
sent during the training process. As stated in Sabour et al.10, these properties can include many different types of 
instantiation parameter such as pose, texture, deformation, and among those the existence of the feature itself. 
In our implementation, the length of each vector is used to represent the probability that the entity represented 
by a capsule is present. That is compatible with our self-attention routing algorithm that does not require any 
sensible objective function minimization. Moreover, it makes biological sense as it does not use large activities to 
represent absent entities. Finally, the last part of the network operates under the self-attention algorithm to rout 
low-level capsules to the whole they represent.

More formally, in the case of a single instance (i), the model takes as input an image that can be represented as 
a tensor X with a shape H ×W × F where H, W and C are the height, width, and channels/features of the single 
input image. Before entering the primary caps layer, we extract local features from the input image X by means 
of a set of convolutional and Batch Normalization layers40. Each output of a convolution layer l is constituted by 
a convolutional operation with a certain kernel dimension k, number of feature maps f, stride s = 1 and ReLU 
as activation function:

Overall, the first convolutional part of the network can be modelled as a single function HConv that maps the 
input image onto a higher dimensional space that facilitates the capsule creation. On the other hand, the second 
part of the network is the main instrument used by primary capsules to create a vectorial representation of the 
features they represent. As depicted in Fig. 3, it is a depthwise separable convolution with linear activation that 
performs just the first step of a depthwise spatial convolution operation, acting separately on each channel. 
Moreover, imposing a kernel dimension k × k and a number of filters f equal to the output dimensions H ×W 

(1)Fl+1(Xl) = ReLU
(

Convk×k(X
l)

)
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and F of the HConv function, it is possible to obtain the primary capsule layer Sln,d where nl and dl are the number 
of primary capsules and their individual dimension of the l-th layer, respectively.

The depthwise separable convolution is an efficient operation that greatly simplifies and reduces the number 
of parameters required for the capsule creation process. We leave it to discriminative learning to make good use 
of its filters to smartly extract all capsule properties.

Figure 2.   Schematic representation of the overall architecture of Efficient-CapsNet. Primary capsules make 
use of depthwise separable convolution to create a vectorial representation of the features they represent. On 
the other hand, the first stack of convolutional layers maps the input tensor onto a higher-dimensional space, 
facilitating capsules creation.

Figure 3.   The first part of the network can be modelled as single-function HConv that maps the input image 
onto a higher-dimensional space. Then, the primary capsule layer Sl

n,d
 is obtained with a depthwise separable 

convolution that greatly reduces the number of parameters needed for the capsules creation.
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After that operation, location information is not anymore “place-coded” but “rate-coded” in the properties 
of the capsules. So, the base element of the network is not anymore a single neuron but a vector-output capsule. 
Indeed, the first operation applied to the primary capsule layer is a capsule-wise activation function. In order to 
encode the probability that a certain entity exists with the length of vectors and let active capsules make predic-
tions for the instantiation parameters of higher-level capsules, two important properties should be satisfied by 
the activation function; it should preserve a vector orientation and maintain the length between zero and one. 
Efficient-CapsNet makes use of a variant of the original activation function, dubbed squash operation:

where we refer to a single capsule as sln , which are the individual entries nl of Sl(n,:) ( sln0 := {Sln,d |nl = nl0} ) with 
s
l
n ∈ R

dl . The capsule-wise squash function of Eq. (2), satisfies the required two properties and is much more 
sensitive to small changes near zero, providing a boost to the gradient during the training phase11. So, after the 
squash activation we obtain a new matrix U l

n,d with all nl entries uln with the same dimensionality and properties 
of sln , but with a length “squashed” between zero and one. Indeed the non-linearity ensure that short vectors get 
shrunk to almost zero length and long vectors get shrunk to a length slightly below one.

Self‑attention routing.  In order to rout active capsules to the whole they belong, we make use of our 
self-attention routing algorithm. As shown in Fig. 4, despite the additional dimension, the overall architecture 
is very similar to a fully-connected network with an additional branch brought by the self-attention algorithm. 
Indeed, the total input of a capsule in the above layer, sl+1

n  , is a weighted sum over all “prediction vectors” from 
the capsules uln in the layer below. That is produced by a matrix multiplication of each capsule, uln , belonging to 
U

l
n,d , for a weight matrix. Intuitively, the whole tensor Wl

nl ,nl+1,dl ,dl+1 that contains all weight matrices, embeds 
all affine transformation between capsule of two adjacent layers. So, each capsule of the layer l, in order to make 
its projections for the layer above, follows Eq. (3)

where Ûl
nl ,nl+1,dl+1 contains all predictions of l-th capsules. Indeed, each nl capsule, by means of the weight matrix, 

predicts the properties of all nl+1 capsules. Indeed, capsules of the above layer, sl+1
n  , can be computed with Eq. (4)

(2)squash(sln) =
(

1− 1

e||sln||

)

s
l
n

||sln||

(3)Û
l
(nl ,nl+1,:) = u

Tl
n ×W

l
(nl ,nl+1,:,:)

Figure 4.   Capsules of the layer l-th make predictions of the whole they could be part of. All predictions 
obtained with the weight tensor Wl

nl ,nl+1,dl ,dl+1 are collected in Ûl

nl ,nl+1,dl+1 that is subsequently used in 
conjunction with the priors Bl

nl ,nl+1 and coupling coefficients Cl

nl ,nl+1 matrices to obtain all capsules sl+1
n  of layer 

l + 1.
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where Bl
nl ,nl+1 is the log priors matrix containing all weights discriminatively learnt at the same time as all the 

other weights. On the other hand, Cl
nl ,nl+1 is the matrix containing all coupling coefficients produced by the 

self-attention algorithm. So, the priors help to create biases towards more linked capsules and the self-attention 
routing dynamically assigns detected shapes to the whole they represent in the specific (i) instance taken into 
account. The coupling coefficients are computed starting from the self-attention tensor Al

nl ,nl ,nl+1 using Eq. (5)

which contains a symmetric matrix Al
:,:,nl+1 for each capsule nl+1 of the layer above. The term 

√
dl  stabilizes train-

ing and helps maintaining a balance between coupling coefficients and log priors. Each self-attention matrix 
contains the score agreement for each combination of the nl capsules predictions, and so, they can be used to 
compute all coupling coefficients. In particular, Eq. (6) is used to compute the final coefficients that can be used 
in Eq. (4) to obtain all capsules Sl+1

n,d  of the layer l + 1.

So, the coupling coefficients between a capsule of layer l and all the capsules in the layer above, l + 1 , sum 
to one. Successively, initial log prior probabilities are add to the coupling coefficients to obtain the final routing 
weights. The procedure remains unchanged in presence of multiple capsule layers, stacked on top of each other 
in order to create a deeper hierarchy.

Margin loss and reconstruction regularizer.  The output layer is not anymore represented by a scalar, 
but by a vector as well. Indeed, a capsule of the final layer does not only represent the probability that a certain 
object class exists, but also all its properties extracted from its individual parts. The length of the instantiation 
vector is used to represent the probability that a capsule’s entity exists. Its length should be close to one if and 
only if the entity it represents is the only one present in the image. So, to allow multiple-class, we compute Eq. 
(7) for each class represented by a capsule nL of the last layer L:

where TnL is equal to one if the class nL is present and m+ , m− and � are hyperparameters to be tuned. Then, the 
separate margin loss LnL are summed to compute the final score during the training phase.

Finally, we adopt the reconstruction regularizer as in10 to encourage all final capsules to encode robust and 
meaningful properties. So, the output capsules {uLn}n=1,...,N are fed to the reconstruction decoder and the mean 
of L2 loss between an input image and the decoder output is added to the marginal loss scaled by a factor r.

Results
We aim to simply demonstrate that a properly working capsule network should achieve higher results with a 
considerably lower number of parameters due to its intrinsic capability to embed information better and effi-
ciently. In this section, we test the proposed methodology in an experimental context, assessing its generalization 
capabilities and efficiency respect to traditional convolutional neural networks and similar works present in 
literature. On this purpose, we test our proposed methodology with three of the most used dataset for capsule-
based networks assessment: MNIST, smallNORB and MultiMNIST. On all datasets, we demonstrate a remark-
able difference with traditional solutions and comparable accuracy levels with similar methodologies but with 
a fraction of the trainable parameters in most cases. All experimentation clearly shows that a capsule network 
is capable to achieve higher results with a considerably lower number of parameters count. Moreover, we show 
how a simple ensemble of a few instances of Efficient-CapsNet can easily establish state-of-the-art results in all 
the three datasets. Finally, using principal component analysis, we give an introspect to the inner representations 
of the network and its capability to encode visual information.

Experimental settings. 
In all experiments, in order to map input samples onto an higher dimensional space, we adopt four convolutional 
layers with k = 5 for the first convolution and k = 3 for all others. On the other hand, f is equal to 32, 64, 64 and 
128, respectively. ReLU is used in all layers, but leaky-ReLU is a valuable alternative. As previously discussed, 
the number of capsules depend by the number of feature maps, f, of the last convolutional layer. Indeed, the 
depthwise separable operation has a kernel dimension k × k equal to the output dimension H ×W of the HConv 
function and a number of filters f equal to its filter dimension F. The first layer of primary capsules, S1n,d , has 
n1 = 16 capsules with a dimension d1 of 8. Multiple fully-connected capsule layers can be added to increase 
the capacity of the network. However, we adopt only two layers of capsules due to the relative simplicity of the 
dataset investigated. Finally, the output layer of the network has a number of capsules nL equal to the classes of 
the specific dataset taken into account. Since that higher-level capsules represent more complex entities with 
more degrees of freedom, their capsules dimensionality increases.

(4)s
l+1
n = Û

Tl
(:,nl+1,:) ×

(

C
l
(:,nl+1)

+ B
l
(:,nl+1)

)

(5)A
l
(:,:,nl+1)

=
Û
l
(:,nl+1,:) × Û

Tl
(:,nl+1,:)√

dl

(6)C
l
(:,nl+1)

=
exp

(

∑

nl A
l
(:,nl ,nl+1)

)

∑

nl+1 exp
(

∑

nl A
l
(:,nl ,nl+1)

)

(7)LnL = TnLmax
(

0,m+ − ||uLn||
)2 + �

(

1− TnL
)

max
(

0, ||uLn|| −m−)2
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All loss parameters are obtained by CapsNet10 training. So, for all experimentation m+ , m− and � are set to 
0.9, 0.1 and 0.5, respectively. Moreover, the scaling factor r for the reconstruction regularizer is set to 0.392. 
Indeed, since we use the mean of L2 loss, while CapsNet uses the sum of L2 loss, 0.392 = 0.0005 ∗ 784 . All 
experimentations are carried out on a workstation with an Nvidia RTX2080 GPGPU with 8GB of memory and 
64GB of DDR4 SDRAM. We use the TensorFlow 2.x framework with CUDA 11. All result statistics are obtained 
with a mean of 30 trials.

In Table 1 is presented a comparison between the architecture of Efficient-CapsNet and other similar meth-
odologies. Our model has a much lower number of parameters count, and it is much more efficient in terms of 
operations required. So, it can clearly highlight the generalization capability of capsules with respect to traditional 
CNN.

MNIST results.  The MNIST dataset41 is composed of 70,000, 28× 28 , images divided in 60,000 and 10,000 
for training and testing, respectively. We adopt the same data augmentation proposed in Byerly et  al.20. The 
reconstruction network is a simple fully-connected network with two hidden layers with 512 and 1024 neurons.

We test our methodology and compare it with different models and two custom CNN baseline. In par-
ticular, our baseline is identical to Sabour et al.10 with the exception of a reduced number of feature maps and 
layers, in order to keep the number of parameters as close as possible to Efficient-CapsNet. On the other hand, 
“Base-CapsNet” is a CNN but with a vectorial output as in a capsule-based network. So, it is also trained with 
the marginal loss function. That is specifically devised to assess the role of the reconstruction network and its 
impact on the overall accuracy. Our networks are trained for 100 epochs, batch size of 16, Adam42 optimizer 
and an initial learning rate of η = 5e − 4 with exponential decay 0.98. All hyperparameters are selected with a 
small percentage of validation data.

In Table 2 are reported parameters and test errors of the different tested architectures. It is evident the gap 
between all baseline CNNs and all other capsule-based networks. Moreover, even if Efficient-CapsNet has barely 
161 K parameters, it is comparable with all other methodologies present in the literature so far. It achieves a 
mean accuracy of 0.9974 with a min value of 0.9971 and a max one of 0.9978. Finally, a network with a vectorial 
output receives a significant boost in performance using the reconstruction regularizer. In Fig. 5 are presented 
some images generated by the reconstruction networks of the different tested methodologies. It also worth to 

Table 1.   Comparison of the computational cost in terms of necessary operations between Efficient-CapsNet 
and other similar methodologies present in literature. Efficient-CapsNet, besides having a reduced number of 
trainable parameters, is much more efficient.

Method Parameters [K] OPS|1batch [G] Improvement|1batch (%)

CapsNet10 6800 0.401 84.96

AR CapsNet27 5310 0.098 38.66

Matrix-CapsNet with EM routing14 310 0.086 29.56

Efficient-CapsNet 161 0.06 –

Figure 5.   Digit reconstruction with different tested methodologies. Even with different architecture strategies 
and training objectives, all networks are able to embed different properties of the input digits keeping only 
important details.
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notice that, even in the presence of an adaptive gradient descent method, Efficient-CapsNet does not overfit the 
training set but register a similar accuracy with the test set after the training.

As previously stated, we also demonstrate that a simple ensemble of Efficient-CapsNet models can easily 
establish a state-of-the-art result. Indeed, we exploit the 30 trained networks for test score statistics to produce 
an ensemble prediction. In particular, we average all network predictions with an accuracy greater than 0.9973, 
obtaining a final test error of 0.16. In Table 3 are summarized results of top MNIST leaderboard methodologies. 
The considerable gap between the mean single network test score, 0.26, and the ensemble one, 0.16, is due to the 
uncertainty on predictions of all remaining digits. Indeed, Efficient-CapsNet predicts the output class using the 
length of its output vector. So, unlike the exclusive softmax function, most of the ambiguous digits are reflected 
in the uncertainty of the network outputs. The ensemble simply steers predictions on the most probable answer. 
That is a clear sign of the strong knowledge of the dataset encapsulated by the network during the training. 
Indeed, analyzing the misclassified digits and their prediction scores in the case of a single model clarifies the 
correctness of its answers despite the given labels. As shown in Fig. 6, misclassified examples are ambiguous and 
classifying them correctly is only a matter of pure luck. In our opinion, it is for this reason that networks capable 
of achieving Efficient-CapsNet level of accuracy have modelled every important aspect of the MNIST dataset 
and further improvements in the test score have no significant meaning.

smallNORB results.  The dataset smallNORB is a collection of 48,600 stereo, grayscale images ( 96× 96× 2 ), 
representing 50 toys belonging to 5 generic categories: human, airplanes, trucks, cars and four-legged animals. 
Each toy was photographed by two cameras under 6 lighting conditions, 9 elevations, and 18 azimuths. The data-
set is split in half; 5 instances of each category for the training and the remaining ones for the testing.

Efficient-CapsNet has the same structure described in the “MNIST results” section with the only exception 
of Instance Normalization46 in place of Batch Normalization layers. That greatly helps the network to deal with 
different lighting conditions and make the network training as independent as possible of the contrast and 
brightness differences among the input images. On the other hand, we follow the same data augmentation and 
pre-processing proposed in Hinton et al.14 with the only exception of the input dimension: we scale the original 
images to 64× 64 using patches of 48× 48 . We train for 200 epochs, with a batch size of 16, Adam optimizer 
and an initial learning rate of η = 5e − 4 with exponential decay of 0.99.

In Table 4 are summarized the results of the baseline networks, Efficient-CapsNet and some capsule-based 
methodologies present in literature. As for the MNIST dataset, also for smallNORB is evident the gap between 
classical CNN and capsule-based networks. Moreover, again our methodology has comparable results with all 
other similar methodologies but with half of the parameters. It achieves a mean accuracy of 0.974 with a min 
value of 0.97 and a max one of 0.983. Finally, as before we exploit the 30 networks, trained for statistical evidence, 

Table 2.   Test error (%) on the MNIST classification task. All methodologies are reported with their number of 
parameters and the presence of the reconstruction regularizer during the training phase. * indicates the results 
from our experiments.

Method Reconstruction Parameters [K] MNIST [%]

Our Baseline No 173 0.48

Base-CapsNet No 183 0.54

Our Baseline Yes 173 0.4

Base-CapsNet Yes 183 0.39

Efficient-CapsNet Yes 161 0.26±0.0002

Baseline10 No 35400 0.39

CapsNet10 Yes 6800 0.25±0.005 ( 0.36±0.04)*

Matrix-CapsNet with EM routing14 No 310 0.44

DA-CapsNet29 Yes 7000 0.47

AR CapsNet27 Yes 5310 0.54

HFCs20 No 1514 0.25±0.0002

Table 3.   Test error (%) on the MNIST classification task of state-of-the-art methodologies based on ensemble 
over the years.

Method Year Test error (%)

Multi-column deep neural networks for image classification43 2012 0.23

Regularization of neural networks using dropconnect44 2013 0.21

RMDL:random multimodel deep learning for classification45 2018 0.18

Base-branching & Merging CNNw/HFCs20 2020 0.16

Efficient-CapsNet 2021 0.16



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14634  | https://doi.org/10.1038/s41598-021-93977-0

www.nature.com/scientificreports/

to produce an ensemble prediction. We select only the two networks with the lowest test error, and we adopt 
for both a 40 patch prediction14 before averaging their results. We obtain a test accuracy of 1.23, setting a new 
state-of-the-art result for this dataset.

MultiMNIST results.  The MultiMNIST dataset has been proposed by Sabour et al.10 and is based on the 
superposition of couples of shifted digits from the MNIST dataset. Each original image is first padded to a 
36× 36 pixels dimension. A MultiMNIST sample is generated by overlaying two padded digits, which shifts up 
to 4 pixels in both dimensions, resulting in an average 80% overlap. The only condition to be met is that the two 
digits are of different classes. In the labels, both indexes corresponding to the two classes are set to 1. In this way, 
the network aim is to detect both the digits concurrently. During training, the output capsules corresponding to 
the target classes are selected one at a time and used to reconstruct the two input images, while during testing we 
select the two most active capsules, i.e. the longest. Ideally, the network should be able to segment the two digits 
that have generated the MultiMNIST sample and independently reconstruct them. During training, for each 
epoch, we randomly generate 10 MultiMNIST images for each original MNIST example. We train the model 5 
times independently for about 100 epochs, with a batch size of 64, Adam optimizer and an initial learning rate 
of η = 5e − 4 with exponential decay of 0.97. Since we generate two reconstruction images for each input sam-
ple, we divide the reconstruction regularizer by half. During testing, we generate 1000 MultiMNIST images for 
each MNIST digit to have a fair comparison with the work by Sabour et al.10, for a total of 10 million samples. 
We get a mean test error of 5.1%±0.005 with our model of 154 K parameters, in comparison to the original work 
test error of 5.2% with more than 9 M parameters. Moreover, with an ensemble of the three models that get an 
accuracy greater than a threshold of 0.9470, we get a reduction of the test error to 3.8%. These results show how 
our methodology is able to correctly detect and recognize highly overlapping digits encoding information about 
their position and style in the output layer capsules.

Affine transformations embedding.  To understand what kind of information is embedded in the out-
put capsules, we can perturb the prediction and observe how the reconstruction is affected. We select the capsule 
with the longest length and we add small positive and negative contributions to its single elements. Figure 7 
shows some example of perturbed images with different methodologies. We can observe how Efficient-CapsNet 

Figure 6.   Example of Efficient-CapsNet misclassified digits. Green bars represent correct labels and their high 
the corresponding capsule length. The ambiguity of these remaining questionable examples is reflected in the 
uncertainty of the network predictions.

Table 4.   Test error (%) on the smallNORB classification task. All methodologies are reported with their 
number of parameters andthe presence of the reconstruction regularizer during the training phase. * indicates 
the results from our experiments.

Method Reconstruction Parameters (K) smallNORB (%)

Our baseline No 198 5.9

Base-CapsNet No 167 4.58

Our baseline Yes 198 4.59

Base-CapsNet Yes 167 4.33

Efficient-CapsNet Yes 151 2.54±0.003

Baseline14 No 4200 5.2

Matrix-CapsNet with EM routing14 No 310 1.8 ( 4.4±0.004)*

CapsNet10 Yes 6800 3.77

VB-Routig16 Yes 310 1.6±0.06
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is behaving similarly to the original CapsNet10, with the ability to encode combinations of different transforma-
tions of the digit. Retraining CapsNet also obtains similar behaviour with the proposed self-attention routing. 
A Convolutional Neural Network with a fake capsule layer, i.e. a vector instead of a scalar for each output class, 
also demonstrates the ability to encode actual shape, position and orientation information. On the other hand, 
considering the last features of a classical CNN, we are not able to reproduce this behaviour. That suggests that 
a capsule organization of the output, in which each digit has its instantiation parameters and the activation is 
measured by the length of the vector, is fundamental for a meaningful embedding of the information.

To further investigate the ability of the proposed model to capture meaningful information in the components 
of the output capsules, we study the equivariance to transformations with a method similar to the one proposed 
by Choi et al.27. For each test image we generate the images corresponding to the 11 translations between [− 5, 
+ 5] pixels on both the axes and to the 51 rotations between [− 25, + 25] degrees. If the model is behaving as 
expected, we should see that each affine transformation (translation on x, translation on y, rotation) is indepen-
dently linearly encoded in the activations of the correct output capsule. We verify it, by computing the Principal 
Component Analysis on the output vectors for each type of transformation. We denote as K the number of trans-
formed images and with N the number of output classes and we collect the output predictions ui , i = 1, . . . ,K . 
We center the data points and we compute the Singular Value Decomposition on the covariance matrix C:

As a linearity metric, we consider the fraction of the first eigenvalue σ1 of the matrix Σ over the sum of all its 
eigenvalues. Since the eigenvalues represent the variance of the original data points explained by each component 
of the PCA, if the transformations are linearly encoded, we should have a high fraction of the variance captured 
with just a single component, thus a high first eigenvalue ratio.

We perform this analysis on both the original CapsNet10 and our model. The average results on all the test 
images are shown in Table 5, along with a comparison with the PCA performed on randomly generated vectors 
with the same dimension. Efficient-CapsNet shows higher linearity with respect to the original CapsNet in the 
encoding of affine transformations in the output capsule space. Figure 8 presents the average cumulative variance 
explained increasing the number of PCA components on the whole test set. For all the three transformations, 
Effienct-CapsNet is able to capture all the information with just two components, showing an almost perfectly 
linear behaviour with respect to the random example. That shows how our architecture can correctly embed 
position and orientation information of the recognized digit in the output vector components.

(8)z i = ui − u

(9)C = 1

K

K
∑

i=1

z i z
T
i

(10)C = UΣU
T

(11)r = σ1
∑N

j=1 σj

Figure 7.   Effect on the digit reconstruction of the addition of perturbations to the output capsule values with 
different tested methodologies. All networks are able to embed shape, position and orientation information of 
the input digit except for the classical CNN with softmax output. That suggests that the capsule structure of the 
output, in which each class has its feature vector, is fundamental to get interpretable output embeddings.
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Conclusion
In this paper, we proposed Efficient-CapsNet, a novel capsule-based network that strongly highlights the gener-
alization capabilities of capsules over traditional CNN, showing a much stronger knowledge representation after 
training. Indeed, our implementation, even with a very limited number of parameters is still capable of achieving 
state-of-the-art results on three distinct datasets, considerably outperforming previous implementations in terms 
of needed operations. Moreover, we introduced an alternative non-iterative routing algorithm that exploits a 
self-attention mechanism to rout a reduced number of capsules between subsequent layers efficiently. Further 
works will aim at designing a synthetic dataset to scale the network and analyze in-depth viewpoint generaliza-
tion and network inner feature representations.
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