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Abstract

The general linear model (GLM) is a widely popular and convenient tool for estimating the 

functional brain response and identifying areas of significant activation during a task or stimulus. 

However, the classical GLM is based on a massive univariate approach that does not explicitly 

leverage the similarity of activation patterns among neighboring brain locations. As a result, it 

tends to produce noisy estimates and be underpowered to detect significant activations, particularly 

in individual subjects and small groups. A recently proposed alternative, a cortical surface-based 

spatial Bayesian GLM, leverages spatial dependencies among neighboring cortical vertices to 

produce more accurate estimates and areas of functional activation. The spatial Bayesian GLM 

can be applied to individual and group-level analysis. In this study, we assess the reliability and 

power of individual and group-average measures of task activation produced via the surface-based 

spatial Bayesian GLM. We analyze motor task data from 45 subjects in the Human Connectome 

Project (HCP) and HCP Retest datasets. We also extend the model to multi-run analysis and 

employ subject-specific cortical surfaces rather than surfaces inflated to a sphere for more accurate 

distance-based modeling. Results show that the surface-based spatial Bayesian GLM produces 

highly reliable activations in individual subjects and is powerful enough to detect trait-like 

functional topologies. Additionally, spatial Bayesian modeling enhances reliability of group-level 

analysis even in moderately sized samples (n = 45). Notably, the power of the spatial Bayesian 

GLM to detect activations above a scientifically meaningful effect size is nearly invariant to 
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sample size, exhibiting high power even in small samples (n = 10). The spatial Bayesian GLM 

is computationally efficient in individuals and groups and is convenient to implement with the 

open-source BayesfMRI R package.
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1. Introduction

The functional topology of the human brain has been shown to be highly individualized, 

thanks to recent studies collecting large amounts of functional magnetic resonance imaging 

(fMRI) data on individual subjects (Barch et al., 2013; Braga and Buckner, 2017; Choe 

et al., 2015; Gordon et al., 2020; Kong et al., 2019; Laumann et al., 2015). Functional 

boundaries have been shown to be consistent under task and rest conditions (Laumann et 

al., 2015) and to be predictive of behavior (Kong et al., 2019). Unfortunately, uncovering 

individualized functional topology has often relied on collecting vast amounts of data 

on individual subjects, which is infeasible in many settings due to practical constraints 

and participant considerations. Some populations of vital research and clinical interest are 

generally unable to undergo long or frequent scans, including young children, the elderly, or 

those with developmental disorders or suffering from neurodegenerative disease. Recently, 

practical Bayesian techniques have been proposed as a way to extract reliable and predictive 

measures of brain organization in individuals based on much shorter scan duration by 

leveraging information shared across multiple observations to improve estimation (Bzdok 

and Yeo, 2017; Kong et al., 2019; Mejia et al., 2020a).

However, most analyses of task fMRI continue to focus on estimating group-level effects 

using conventional analytical methods, particularly in the absence of large amounts of data 

on individuals. Group-level analyses are favored in part because individual-level measures 

of task activation produced using the classical “massive univarite” general linear model 

(GLM) have been found to be unreliable (Elliott et al., 2020). In the classical GLM, which 

is popular due to its simplicity and computational efficiency, a separate linear model is fit 

at every location of the brain relating observed blood oxygenation level dependent (BOLD) 

activity to the expected hemodynamic response to a series of tasks or stimuli (Friston et 

al., 1995). Task activation amplitude shows strong local spatial dependence, but information 

shared across locations is not leveraged at this stage except through ad-hoc smoothing (Mikl 

et al., 2008). To identify areas of activation due to each task, a t-test is then performed at 

each location, which requires correcting for the massive number of multiple comparisons 

this involves. This correction, combined with failure to fully leverage information shared 

across brain locations, often results in a lack of power to detect many true activations at 

the group level for small sample sizes (e.g., n = 20 to 30), and even more so in individual 

subjects (Cremers et al., 2017; Lindquist and Mejia, 2015).

While group-level discoveries using task fMRI have greatly advanced general understanding 

of brain function and organization, as well as systematic differences related to disease, 
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condition, and normal development and aging, individual-level measures are vital for 

advancing fMRI-based research to new frontiers. Longitudinal modeling, biomarker 

discovery, therapeutic clinical trials, translation of research findings into clinical practice, 

and pre-surgical planning all depend on extracting accurate measures of brain function and 

organization in individual subjects, often without the luxury of long or multiple sessions 

of data. Therefore, it is vital to develop more powerful and accurate methods. A promising 

direction is to incorporate expected patterns of spatial dependence and sparsity in activation 

amplitude (Zhang et al., 2015) through spatial Bayesian models. Several such models 

have been proposed for volumetric (typically slice-wise) analysis (Spencer et al., 2020; 

Zhang et al., 2015; 2016; 2014). Yet there is growing evidence in favor of surface-based 

analyses to improve sensitivity, power and reproducibility (Anticevic et al., 2008; Brodoehl 

et al., 2020; Fischl et al., 1999; Glasser et al., 2013; Tucholka et al., 2012). Importantly, 

surface-based analysis avoids spurious activations induced by mixing signals across distinct 

cortical areas (Brodoehl et al., 2020; Glasser et al., 2013), which can occur in standard 

volumetric smoothing as well as spatial Bayesian models applied to volumetric data, since 

they implicitly smooth activations.

Recently, Mejia et al. (2020b) proposed a novel surface-based spatial Bayesian GLM, 

which combines the benefits of spatial modeling and the advantages of cortical surface 

analysis. In this framework, activation amplitudes are based on the mean of the posterior 

distribution for each task, which incorporates spatial dependence and sparsity from the prior, 

yielding more focal regions of peak activation. Areas of activation are identified using the 

joint posterior distribution through an excursions set approach (Bolin and Lindgren, 2015), 

avoiding the need for multiple comparisons correction and greatly increasing power. Group 

effects can be estimated through a computationally efficient approach based on combining 

the results of each subject-level model in a principled way. The Bayesian computation is 

performed using integrated nested Laplace approximations (INLA) (Rue et al., 2009), which 

is computationally efficient and does not suffer from the inaccuracies common to variational 

Bayesian approaches (Sidén et al., 2017), which have been commonly used in volumetric 

spatial Bayesian analyses.

This approach was validated by Mejia et al. (2020b) through simulation studies and a study 

of twenty individuals from the Human Connectome Project (HCP) (Barch et al., 2013). 

These analyses showed a major improvement to estimation efficiency and power, relative 

to the classical massive univariate GLM. However, this approach has not yet been fully 

validated with real data, and how accurately it estimates brain function and organization 

reflecting individualized functional topology remains to be determined. In this paper, 

we extensively validate the surface-based spatial Bayesian GLM framework in terms of 

reliability and power. We do not perform a simulation studies here, as extensive simulations 

were performed within Mejia et al. (2020b), showing improvements in the accuracy and 

power of the spatial Bayesian GLM for both subject-level and group analysis. We illustrate 

the gain in power and statistical efficiency of the Bayesian approach for both subject-level 

and group-level analyses, particularly for shorter scan durations. To assess the ability of the 

Bayesian approach to extract unique individual-level insights, we examine the reliability of 

the Bayesian estimates and areas of activation.
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We also extend the original model proposed by Mejia et al. (2020b) in two important ways. 

First, in the original model, the spherical surfaces from each subject were used as the 

spatial domain. Inflation to the sphere, while useful for inter-subject registration, distorts 

the distances between neighboring vertices up to 3-fold (Appendix Fig. A.1). This has 

implications for the smoothing of task activations performed implicitly in the Bayesian 

model, because the degree of dependence between neighbors is a function of the distance 

between them. In this work, we use the midthickness surface of each individual subject 

having been registered to the fsaverage32k template, which was created using the FreeSurfer 

software platform (Fischl, 2012) and is freely available in the HCP data release (Barch et al., 

2013). This surface geometry respects the individual anatomical features of each individual 

subject and preserves the geodesic distances between locations along the cortical surface, 

while aligning vertices across subjects for possible group-level analysis.

Second, the original model was proposed for single-subject, single-run analysis (with group-

level analysis possible through a principled post-hoc approach). Here, we generalize the 

model to multi-run analysis. In this framework, separate run-specific estimates and areas of 

activation are produced, along with cross-run averages. A major advantage of the multi-run 

model is that hyperparameters controlling the spatial properties of each task activation field 

are shared across runs, improving estimation efficiency.

The remainder of this paper is organized as follows. The 2 section will outline the surface-

based spatial Bayesian GLM and the classical GLM, and will also include a description 

of the data, the model estimation procedure, and the reliability metrics. Section 3 will 

outline the application and results of analyses of the motor task data from the Human 

Connectome Project (Barch et al., 2013) using the classical and Bayesian GLMs. Section 4 

will summarize the findings.

2. Methods

2.1. Surface-based spatial Bayesian GLM

The subject-level surface-based spatial Bayesian (SBSB) GLM proposed by Mejia et al. 

(2020b) consists of two stages: model estimation and identifying areas of activation. Fig. 

1 illustrates both stages in contrast with the classical GLM. Below, we describe each 

stage briefly, including our novel multi-run extension. The SBSB GLM also allows for 

computationally efficient group-level estimation, described below. For more details on the 

mathematical construction and Bayesian computation of the SBSB model, see Mejia et al. 

(2020b). The Bernstein-von Mises theorem, which gives asymptotic guarantees concerning 

convergence for Bayesian models, holds in the Bayesian implementation of the model as 

long as regularity conditions about the mean are met and the model itself is not misspecified 

(Van der Vaart, 2000). The INLA approach centers the posterior around the maximum 

likelihood estimator with covariance equal to the inverse Fisher information matrix using a 

normal prior distribution as the sample size approaches infinity. This satisfies the regularity 

conditions imposed by the Bernstein-von Mises Theorem because the density function is 

continuous and twice differentiable everywhere. Please see Van der Vaart (2000) for further 

details about the conditions of the Bernstein-von Mises theorem.
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2.1.1. Single-subject modeling

Single-run model.: Let N be the number of vertices on the cortical surface where BOLD 

signal is measured, and let T be the duration of the fMRI timeseries. The classical GLM 

(Friston et al., 1995) adapted to the cortical surface is based on fitting a separate regression 

model at each vertex. In each model, the response is the observed BOLD activity, and the 

predictors are the expected BOLD response due to each of K tasks or stimuli, which is 

constructed by convolving the timeseries of stimulus presentation with a haemodynamic 

response function (HRF). For simplicity, assume that nuisance signals (e.g. head motion 

parameters, drift) have been regressed from both the response and task predictors, and 

assume that the data has been prewhitened to remove temporal autocorrelation in the model 

residuals and to eliminate spatial heterogeneity in the residual variance. Then, the classical 

GLM at vertex v can be represented as

yv = Xvβv + ϵv, (1)

where yv ∈ ℝT  is the observed BOLD timeseries, Xv ∈ ℝT × K contains the expected 

response to each of the K stimuli, βv ∈ ℝK are the coefficient values representing the 

activation amplitude for each stimulus at a single vertex v, and ϵv ∼ind Normal(0, σ2IT ) are 

white-noise residuals. Note that Xv may vary across vertices due to prewhitening, which 

involves pre-multiplying the original design matrix by a vertex-specific whitening matrix. 

If no prewhitening is performed, then X1 = ⋯ = XN. While computationally convenient 

and simple, fitting thousands of separate models is clearly suboptimal, since neighboring 

vertices are known to exhibit similar patterns of task activation. If these similarities are 

not explicitly modeled, the estimates of activation will contain high levels of noise due to 

reduced statistical efficiency.

A spatial Bayesian GLM addresses this by treating the image of activation amplitudes in 

response to task k, βk = (β1k, …, βNk)′ ∈ ℝN, as a latent field across the N data locations, 

and assuming a spatial prior to incorporate prior knowledge of local spatial dependence and 

sparsity (Zhang et al., 2015). The surface-based spatial Bayesian GLM proposed by Mejia 

et al. (2020b) makes use of a particular class of Gaussian Markov Random Field (GMRF) 

priors called stochastic partial differential equation (SPDE) priors, which approximate a 

continuous Matérn random field by a GMRF (Bolin and Lindgren, 2013; Lindgren et al., 

2011). SPDE priors are particularly well-suited to model cs-fMRI data for several reasons: 

they have sparse precision (required for high dimensional contexts), they are built on a 

triangular mesh (the format of cs-fMRI data, see Appendix Fig. A.2), they have two separate 

parameters to control the scale and the smoothness, they are invariant to finite resamplings, 

and the parameters are interpretable given the relationship with the Matérn covariance 

function. The SPDE prior in ℝd uses the Matérn kernel to inform the spatial covariance for 

the latent field of task coefficients. The Matérn covariance for a pair of vertices u and v is a 

function of their distance ∥u − v∥, and is explicitly defined as:

cov(u, v) = σ2(κ‖u − v‖)K1(κ‖u − v‖),
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where σ2 > 0 is the variance and K1(·) is the modified Bessel function of the second 

kind of order 1, which decreases rapidly as the distance between two vertices increases. 

Performing all of the distance calculations for large datasets is computationally infeasible, 

as the covariance matrix is dense and difficult to invert. Lindgren et al. (2011) solved this 

problem by deriving an explicit GMRF representation through solving the SPDE

(κ2 − Δ)α ∕ 2(τβ(u)) = W(u), u ∈ ℝd,

where Δ = ∑i = 1
d ∂2 ∕ ∂ui2 is the Laplacian operator, α affects the smoothness, and τ affects 

the variance. In order to obtain a Markov structure, we approximate using the basis 

expansion β(u) ≈ ∑i = 1
n ψi(u)wi (see Mejia et al. (2020b) for further details). It is important 

to note that ∥u − v∥ represents the geodesic distance between vertices u and v, and not 

the Euclidean distance. The geodesic distances are found using the subject-specific cortical 

surfaces and takes the folded geometry of the cortex into account to find the distance along 

the surface. An SPDE prior for a given Gaussian process β takes the form

β = Ψw, w ∼ Normal(0, Qκ, τ
−1 ), (2)

Qκ, τ = τ2(κ4C + 2κ2G + GC−1G), (3)

where Ψ is an N × n indicator matrix in which element ψi,j = 1 when data location i 
corresponds to vertex j, and 0 for all ψi,j′, where j ≠ j′. Often, Ψ is an identity matrix 

because cortical surface data locations are already on a mesh. However, in some cases, the 

mesh may contain additional locations to satisfy shape and size constraints and boundary 

locations to improve estimation along the data boundary. In our study, the cortical surface 

geometry is stored in the form of a triangular mesh, and so a mesh does not need to 

be constructed. However, in the case when no cortical surface geometry is available, an 

automated procedure to construct a mesh on ℝ, ℝ2, or a sphere is implemented in the 

R-INLA package Martins et al. (2013), which maximizes the minimum interior angle of the 

mesh triangles to make transitions between small and large triangles as smooth as possible. 

Please see Mejia et al. (2020b) for further details on the construction of the mesh and Ψ. 

In the SBSB GLM, additional mesh locations consist of the medial wall, which serves as 

a supplemental layer to improve estimation along the data boundary. The matrix Qκ,τ is a 

sparse precision (inverse covariance) matrix with a fixed set of non-zero elements whose 

value are determined by κ and τ. The smoothness of the latent field is controlled by the κ 
parameter, which controls how much distance dependence there should be in the field. A 

larger value for κ corresponds to a “smoother ” latent field with a larger range of spatial 

dependence. The precision parameter τ determines the level of precision in the latent field 

such that lower values correspond to lower precision values (higher variance) in the prior. 

The matrix G is a sparse, symmetric adjacency matrix in which non-zero entries exist only 

on the diagonal and in cells corresponding to neighboring locations, and C is a diagonal 

matrix (Bolin and Lindgren, 2013).
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The single-run SBSB GLM assumes independent SPDE priors on each of the K latent 

fields. Let y = (y1′ , …, yN′ )′ ∈ ℝNT × 1, let X = block‐diagonal(X1, …, XN) ∈ ℝNT × NK, and let 

β = (β1′ , …, βN′ )′ ∈ ℝN × K. The surface-based spatial Bayesian GLM is given by

y ∣ β = Xβ + e, e ∼ Normal(0, σ2INT)
βk = Ψwk, wk ∣ κk, τk ∼ Normal(0, Qκk, τk

−1 ), k = 1, …, K
θ = (κ1, τ1, …, κK, τK, σ2) ∼ π(θ),

(4)

where θ contains all the model hyperparameters, and π(θ) is their joint prior. We adopt the 

default priors set by the R-INLA framework: In-dependent log-Normal distributions are used 

for all κk and τk, and a Gamma distribution is used for the precision ( 1
σ2 ).

Multi-run model.: If multiple runs of task data are available from a given subject, it 

is beneficial to leverage those repeated measures to more accurately estimate the model 

hyperparameters (e.g. the parameters κk and τk controlling the spatial properties of the 

activation amplitude for each task k, and the residual variance σ2). We therefore propose a 

multi-run spatial Bayesian GLM to jointly model runs j = 1, … , J. Let yj, Xj, βj, βj,k, and ej 

be the run j-specific quantities in Eq. (4). The multi-run SBSB GLM can be represented as

yj ∣ βj = Xjβj + ej, ej ∼ Normal(0, σ2INT), j = 1, …, J
βj, k = Ψwj, k, wj, k ∣ κk, τk ∼ Normal(0, Qκk, τk

−1 ), k = 1, …, K
θ = (κ1, τ1, …, κK, τK, σ2) ∼ π(θ),

(5)

where we again assume for simplicity nuisance signals have been regressed from both the 

response and task predictors, and assume that the data have been prewhitened to remove 

temporal autocorrelation in the model residuals and to eliminate spatial heterogeneity in 

the residual variance. Note that the run-specific activation amplitudes, βj,k, are estimated 

individually, while sharing a common prior determined by the parameters κk and τk. 

Additionally, the between-run average amplitude can be estimated. These provide more 

statistically efficient estimates of activation amplitudes if differences across runs are not of 

interest. These averages are constructed as linear combinations of the run-specific latent 

fields, so their posterior distribution is available and can be used to identify areas of 

activation as described in Section 2.1.3 below.

2.1.2. Group-level modeling—Previously proposed spatial Bayesian GLMs for 

volumetric fMRI data were limited to single-subject analysis, in large part due to the 

computational burden associated with analyzing data from many subjects concurrently. 

Mejia et al. (2020b) proposed a computationally efficient “joint” group-level modeling 

approach based on first estimating each subject-level model separately, and then combining 

the results in a principled way. Here, we generalize this approach to any number of runs, J 
≥ 1. For simplicity of notation, assume that all subjects have the same number of runs J. Let 

βm ∈ ℝKJM represent the activation amplitudes for subject m for all tasks and all runs. The 

joint group-level modeling approach is based on specifying a group-level contrast matrix A, 

so that the quantity of interest can be expressed as a linear combination of the subject-level 
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parameter estimates. A is based on a group contrast vector a ∈ ℝMJK which specifies 

the desired contrast across subjects, runs, and tasks. For example, a can be constructed 

to represent the group average activation amplitude in response to a particular task, the 

difference in average amplitude across two groups of subjects or different conditions, 

or a contrast across tasks. Next, the contrast matrix is created as A = a′ ⊗ IN, where 

⊗ represents the Kronecker product. The group-level effect is defined as βG = Aβ ∈ ℝN, 

where β = (β1′ , …, βM′ )′ ∈ ℝNKJM is the concatenated activation amplitudes across all runs, 

subjects, and tasks. A specific example is given in Section 2.2.3 below. See Mejia et 

al. (2020b) for details on the posterior computation of βG. Having obtained its posterior 

distribution, the estimate of βG is given by its posterior mean or other summary metric, and 

we can identify group-level areas of activation as described in the following section.

Group modeling under the classical GLM was carried out by averaging the estimates of the 

task coefficients from each subject, i.e.

βG, k = 1
M ∑

i = 1

M
βi, k,

where βm,k is the length N vector of coefficient estimates for subject m and task k. Since 

all runs across subjects and sessions were of the same length with the same repetition 

time, this is equivalent to concatenating the data across all runs and performing the group 

classical GLM following the same steps as in the single-subject classical GLM. Activation 

was determined using t-tests, as in the single-subject classical GLM model.

2.1.3. Identifying areas of activation—In the SBSB GLM, areas of activation are 

identified based on the joint posterior distribution of activation across all locations using 

an excursions set approach (Bolin and Lindgren, 2015), implemented in the excursions R 

package (Bolin and Lindgren, 2018). In brief, the excursions method works by determining 

the probability that a set of vertices all have activation amplitude greater than a set threshold 

γ. This probability is based on the joint posterior distribution across vertices, which takes 

into account spatial dependencies. The largest set with probability at least 1 − α is said to be 

the “excursions set”. As the joint posterior distribution is used, this approach avoids massive 

multiple comparisons and the consequent need for multiplicity correction. As a result, power 

is increased compared with previously proposed spatial Bayesian models, which used the 

marginal posterior distribution at each location to identify areas of activation and hence 

required multiplicity correction (Marchini and Presanis, 2004). While this approach does 

rely on setting a probability level via α and a threshold γ, so too do other methods (note that 

γ = 0 is typically implicit in the classical GLM), and researchers need to take proper care 

choosing and reporting these parameters.

In the classical GLM, by contrast, areas of activation in response to each task or stimulus 

are typically identified by performing a t-test at every vertex, followed by correction for 

multiple comparisons. Traditionally the null hypothesis for a one-sided test is that βv,k 

≤ 0, corresponding to γ = 0%. For a general value of γ, the null hypothesis is simply 
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modified as βv,k ≤ γ, with the alternative hypothesis that βv,k > γ. The test statistic is then 

computed as (β − γ) ∕ SEβ ; based on this value, the p-value is computed as usual, namely 

as the upper tail area of the t distribution with T − K − 1 degrees of freedom. (Note 

that since the data has been prewhitened, we assume temporally-independent residuals.) 

Multiplicity correction in the classical GLM typically aims to control the family-wise 

error rate (FWER) or the false discovery rate (FDR) (Benjamini and Hochberg, 1995). 

Many techniques have been proposed to account for spatial dependence and encourage 

spatial contiguity at the correction stage, including permutation tests, random field theory 

(Worsley et al., 1992; 1996), and threshold-free cluster enhancement (Smith and Nichols, 

2009). However, these techniques are all limited by the shortcomings of massive univariate 

modeling at the model estimation stage, and as a result will have reduced power to detect 

activations. The correction itself has the effect of further diminishing power to detect 

activations. Recently, Bowring et al. (2019) proposed a confidence set method for group 

analyses based on thresholded effect size maps, which was expanded upon in Bowring et al. 

(2021) using Cohen’s d. This method is very promising for large datasets, but is only shown 

to be accurate in sample sizes as low as 60. As our validation is focused on single-subject 

and group analyses for a sample size of up to 45 subjects, this method is not used for 

comparison.

Since in the SBSB GLM spatial dependence is accounted for and leveraged at both 

estimation and inference, and because multiplicity correction is not required, its power to 

detect activations tends to be quite high. This can result in large areas of activation with 

small but non-zero effect size being identified. This is consistent with previous work that has 

found that when power is high, such as large group studies, the traditional choice of γ = 

0% can lead to identification of “significant” activations in areas with small effect size that 

are not of scientific interest (Bowring et al., 2021). To avoid this, it is common to specify 

a scientifically relevant activation threshold, γ, above which activations are of interest. For 

example, if the data are scaled to represent percent signal change, an activation threshold of 

γ = 0.1% to 2% may be reasonable, depending on the magnitude of signal change evoked by 

a particular task. This does not mean that using a threshold of γ = 0% is never appropriate. 

However, it is important that researchers are aware of the increase in power using the SBSB 

GLM and the higher likelihood of subtle activations being labelled as significant. Higher 

thresholds will generally result in more localized areas of activation.

For a given value of γ and significance level α, the areas of activation identified can be said 

to have activation greater than or equal to γ with probability at least 1 − α, based on the 

joint posterior distribution across all vertices. That is, there is probability of α or less that 

at least one vertex in the activated region is a false positive. The excursions set approach 

therefore controls the FWER at level α, but with typically much greater power to detect 

true activations than in the classical GLM. Both the excursions set approach in the Bayesian 

GLM and Bonferroni correction in the classical GLM, applied within a single hemisphere, 

control the probability of a single false positive at α. Therefore, by controlling the FWER 

within each hemisphere, we are effectively controlling the probability of a false positive 

across both hemispheres at 1 − (1 − α)2 . If α = 0.01 as in our analysis, this equals 0. 0199 ≈ 
0.02, Therefore, the whole-brain FWER is controlled at approximately 2α.
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2.2. Data and model estimation

2.2.1. Data collection—We perform an extensive reliability study using cortical surface 

task fMRI data from the Human Connectome Project (HCP) (Barch et al., 2013; Van Essen 

et al., 2013). To compare the reliability of estimates and areas of task activation produced 

using the SBSB GLM with the classical GLM, we analyze 180 task fMRI runs from 45 

subjects who participated in the Human Connectome Project (HCP) and the HCP Retest 

Dataset. The sample of 45 subjects included 31 females, with 4 subjects between the ages 

of 22 and 25, 14 subjects between the ages of 26 and 30, and 27 subjects between the ages 

of 31 and 35. Each subject was scanned while performing a motor task (Barch et al., 2013). 

The study used a 3-second visual cue to alert the subject of the type of motor task that 

they were expected to complete. Subjects were instructed to tap their fingers (left or right 

hand), squeeze their toes (left or right foot), or move their tongue for 12 seconds after being 

prompted by the cue. Each of the five motor tasks was repeated twice during each run. Two 

runs (acquired with opposing LR and RL phase-encoding directions) were collected at each 

of two visits, resulting in four runs per subject.

2.2.2. Preprocessing and prewhitening—The task fMRI data was preprocessed 

according to the HCP minimal surface preprocessing pipelines, including projection to the 

cortical surface and registration to a common surface template (Glasser et al., 2013). These 

pipelines also include generation of a subject-specific high-resolution 164k native surface 

mesh based on the high-resolution T1-weighted and T2-weighted structural images for each 

subject, registration to the fsaverage mesh, and resampling to a lower-resolution 32k mesh 

to approximately match the original fMRI voxel resolution. For spatial modeling we utilize 

the midthickness surface, which represents the midpoint of the cortical ribbon between the 

white matter and pial surfaces. As part of the HCP minimal preprocessing pipelines, the 

fMRI timeseries were slightly smoothed along the midthickness surface to regularize the 

mapping process using a 2mm full-width half-maximum (FWHM) Gaussian kernel with the 

GEO_GAUSS_AREA smoothing method implemented within the Connectome Workbench 

software1,2.

Prior to model estimation, several additional processing steps are performed: smoothing 

(for the classical GLM only), resampling, centering and scaling, nuisance regression, 

and prewhitening. Each surface is then resampled from approximately 32,000 vertices 

to approximately 5000 vertices per hemisphere using barycentric interpolation, which 

minimizes blurring (Glasser et al., 2013). This greatly improves computational efficiency 

for the SBSB GLM, as well as for the vertex-wise prewhitening employed in both the SBSB 

and classical GLMs, which we describe below. After resampling, vertex size remains small 

relative to the size of expected activations. See Appendix D for details on the effects of 

resampling and smoothing.

In order to fairly compare methods, the cs-fMRI data used in the classical GLM analyses are 

first smoothed via the Connectome Workbench (Glasser et al., 2013) using a Gaussian kernel 

with a full-width half-maximum (FWHM) of 6mm. We adopt 6mm FWHM for two reasons. 

1 https://www.humanconnectome.org/software/connectome-workbench 
2 https://www.humanconnectome.org/software/workbench-command/-cifti-smoothing 
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First, this is a commonly used smoothing level in practice to increase statistical power. 

Second, we compare a range of smoothing levels and find 6mm FWHM to be around the 

point in which the test-retest correlation begins to decrease for any of the tasks, as illustrated 

in Appendix Fig. D.7. However, it is important to note that traditional data smoothing 

imposes the same degree of smoothing across all tasks, unlike the spatial Bayesian GLM, 

which estimates the inherent smoothness of each task activation field separately via the 

spatial prior. In contexts where some task activation fields are much smoother than others 

(e.g., visual cue versus hand movement), this represents an advantage of spatial Bayesian 

modeling.

The BOLD timeseries at each vertex and each column of the design matrix is centered 

prior to model fitting. This eliminates the need for a baseline field, since the intercept of 

a linear model is zero when both each predictor and the response have mean zero. The 

BOLD timeseries at each vertex is also simultaneously scaled relative to the local average 

BOLD signal, which introduces units of percent signal change. The task design matrix is 

created by convolving the stimulus boxcar function with a canonical double-Gamma HRF 

(Friston et al., 1998; Glover, 1999). The design is then scaled by dividing the task covariates 

by their maximum over time, and then centered again. Twelve motion covariates (six rigid 

body realignment parameters and their first derivatives), along with linear and quadratic 

drift terms, are regressed from the BOLD data and task design matrix. Simultaneously with 

nuisance regression, the temporal derivative of each task design column is also regressed 

from the data and design matrix, in order to account for differences in the onset of the 

hemodynamic response across subjects, runs, tasks and areas of the brain.

Prewhitening is performed to satisfy the GLM assumption of residual independence. 

Prewhitening at vertex v consists of estimating the residual covariance matrix Σv, then 

pre-multiplying the BOLD data and design matrix by Σv
− 1

2 . This induces a residual vector 

that is temporally independent and residual variance that is constant across all vertices. 

To estimate Σv, we first estimate the residuals at vertex v using the classical GLM after 

performing the processing steps described above. We elect to use a high-order, spatially-

varying autoregressive (AR) process to model the residual autocorrelation, since both are 

observed to be necessary based on exploratory analysis of the residuals (see Appendix 

Fig. B.3). Specifically, an AR(6) model is fit to the each residual timeseries using the 

Yule-Walker equations (Brockwell et al., 2016). To regularize the estimates, the estimated 

AR coefficients and white noise variance are averaged over runs in the multi-run model for 

each subject and visit, and surface-smoothed using a Gaussian kernel with a FWHM of 6mm 

(see Appendix Fig. B.3). The resulting AR coefficient and white noise variance estimates 

at each vertex v are used to compute Σv
− 1

2 . This vertex-wise procedure results in a unique 

design matrix at each vertex, as in Eq. (1).

2.2.3. Model estimation—For each subject and visit, estimates and areas of activation 

are produced using the multi-run SBSB GLM described in Section 2.1.1. For comparison, 

the single-run SBSB GLM results are also obtained based on the LR runs. The two visits 

are analyzed independently to assess the test-retest reliability of the estimates and areas 
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of activation. Since the surface meshes representing the left and right hemispheres do not 

intersect, each hemisphere is estimated separately. The preprocessing performed includes 

centering, scaling, and prewhitening at each vertex, which eliminates spatial dependence 

in the noise, both within and across hemispheres. For both the classical and Bayesian 

GLMs, lateralized tasks (e.g. left foot, right hand) are excluded in the model for the 

ipsilateral hemisphere, since minimal ipsilateral activation is expected during lateralized 

motor tasks. Mejia et al. (2020b) found that this approach is computationally advantageous 

for Bayesian modeling, while having negligible impact on model results. Thus, multiple 

testing corrections for the classical GLM are done within hemisphere, as analyses for each 

hemisphere were carried out separately to exclude the ipsilateral tasks, and this provides for 

the closest comparison in activation detection between the two methods.

For each subject- and visit-specific model, we identify areas of activation using a 

significance level of α = 0.01 at three different activation thresholds, γ = (0%, 0.5%, 1%) 

using the excursions set approach described in Section 2.1.3. Using a range of activation 

thresholds allows identification of areas that exhibit even subtle activation separately from 

those that exhibit high levels of activation in response to each task. Subject-level activations 

are identified for each run and for the average across runs for each visit.

For the classical GLM, we identify areas of activation by performing a t-test at each 

vertex, followed by Bonferroni correction to control the FWER at α = 0.01. Correction 

is performed within each hemisphere to provide analogous false positive control to the 

Bayesian GLM. While Bonferroni correction is often considered overly conservative in a 

volumetric or full-resolution surface analysis, note that here the correction is only performed 

across approximately 5000 resampled vertices within each hemisphere, and will therefore be 

much less so. As illustrated in Appendix Figs. C.4, more activations can be identified in the 

classical GLM by controlling the FDR instead of the FWER. However, FWER correction 

provides similar false positive rate guarantees as the excursions set approach adopted in 

the SBSB GLM, as described in Section 2.1.3. For these two reasons, we adopt Bonferroni 

correction for comparison with the classical GLM. See Appendix C for further details 

on multiple comparisons for the classical GLM. Though traditionally the classical GLM 

implicitly assumes an activation threshold of 0%, corresponding to the traditional hypothesis 

testing approach, here we test all three activation thresholds (γ = 0%, 0.5%, 1%) to provide 

an apples-to-apples comparison with the areas of activation produced via the Bayesian 

GLM.

We apply the joint group-level modeling approach described in Section 2.1.2 to obtain 

estimates of group-average activation amplitude across all 45 subjects. Each visit is analyzed 

independently to facilitate reliability analysis. We also assess the impact of sample size on 

reliability of group-level estimates and areas of activation, since smaller sample sizes are 

relatively common in fMRI studies. To this effect, the group-level modeling is repeated 

on random subsets of 10, 20, and 30 subjects; for each sample size, ten different random 

samples of subjects are generated and analyzed. Areas of activation are identified as in the 

single-subject case for both the classical and Bayesian GLMs. Appendix Fig. C.5 compares 

the performance of the FWER and FDR methods, as well as comparing the permutation 

method of multiple testing correction for multiple subjects as outlined in Nichols and 

Spencer et al. Page 12

Neuroimage. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Holmes (2002). While the FWER multiple testing correction is slightly more conservative 

than the FDR or permutation method, we continue to use the FWER method for the same 

reasons as in the single-subject analyses, outlined above. The average estimates across two 

sessions in the group model are found using a contrast matrix. Consider, for example, that 

the tongue task is the fourth task (k = 4) in four tasks (K = 4), and we study the average 

across J = 2 sessions across all M = 45 subjects. Following the construction of the group 

contrasts as specified in Section 2.1.2, the contrast matrix used is written as A = a′ ⊗ In, 

where a = (a1′ , a2′ , …, a45′ )′, and am = (0, 0, 0, 1
2 × 45 , 0, 0, 0, 1

2 × 45 )′. Contrasts for the average of 

other tasks is created following the same pattern, i.e. the contrast matrix for the average 

effect of the visual cue, the first task in the design matrix, is created as A = a′ ⊗ In, where 

a = (a1′ , a2′ , …, a45′ )′, and am = ( 1
2 × 45 , 0, 0, 0, 1

2 × 45 , 0, 0, 0)′. The contrasts to find the averages 

across all subjects and runs for each task are created for by default for group modeling in the 

BayesfMRI software package.

We fit the subject- and group-level Bayesian and classical GLMs using the R package 

BayesfMRI (version 1.8.1) running on 6 parallel threads on a Mac Pro-with a 2.7 GHz 

24-Core Intel Xeon W processor and 512 GB of memory. The BayesfMRI package is openly 

available via Github3 and performs model fitting using the R-INLA package (Lindgren and 

Rue, 2015) with the PARDISO sparse matrix library (Alappat et al., 2020; Bollhöfer et al., 

2019; 2020). In sum, we fit 180 subject-level models (45 subjects, 2 visits, 2 hemispheres) 

and 124 group-level models (N = 10, 20, 30, 45, on 10 different subsamples for N = 10, 

20, 30, for each of 2 visits, on 2 hemispheres). Note that the group analysis requires the 

output from the single-subject analyses, so the time shown to complete a group analysis is 

in addition to the requisite single-subject analyses. Table 1 shows the mean and standard 

deviations of the amount of time in minutes taken to perform model analyses on both 

hemispheres for a given visit.

2.3. Reliability analysis

The SBSB GLM leverages spatial dependence and sparsity to produce estimates and areas 

of activation that should, in theory, more accurately reflect the true underlying patterns 

of activation. Here, we assess the ability of the SBSB GLM to deliver on that promise. 

We assess the extent to which the SBSB GLM produces estimates and areas of activation 

that reflect the unique activation features of individual subjects. To this end, we utilize the 

repeated visits available for each subject, which are analyzed independently as described in 

Section 2.2.3. We use three types of metric to quantify reliability of subject-level measures 

of task activation: (1) intraclass correlation coefficient of estimates of activation amplitude, 

which quantifies the proportion of variability on the estimates attributable to unique and 

reliable subject-level features, (2) similarity of estimates to an unbiased ground truth proxy, 

and (3) test-retest overlap of areas of activation. At the group-level, we also use the 

similarity of estimates to an unbiased ground truth proxy to assess reliability. Finally, we 

assess power based on the size of areas of activation.

3 https://github.com/mandymejia/BayesfMRI/tree/1.8.1 
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2.3.1. Reliability of amplitude estimates—To quantify reliability of subject-level 

amplitude estimates, we compute the intraclass correlation coefficient (ICC) (Bartko, 1966) 

at each vertex v for each task, based on the estimates from all 45 subjects. For each subject, 

the two separate visits serve as repeated measures. The ICC is equal to ICC = σb
2 ∕ σt2, where 

σb
2 is the between-subject (signal) variance and σt2 ≥ σb

2 is the total variance, equal to the 

sum of the between-subject variance and the within-subject (noise) variance σw2 . If a set 

of estimates are structured as B ∈ ℝM × 2, where M is the number of subjects and the two 

columns correspond to repeated measurements, the variance components can be computed 

as

σt2 = 1
2 var(B•, 1) + var(B•, 2) , σw2 = 1

2var(B•, 1) − (B•, 2), σb
2 = σt2 − σw2 , (6)

where B•,j indicates the set of estimates from all subjects for measurement j and 

var(x) = 1
n ∑i = 1

n (xi − x̄)2.

The interpretation of ICC is straightforward: a value of 1 happens when σt2 = σb
2, which 

indicates that there is no noise present in the amplitude estimates for a given subject; a 

value of 0 happens when σb
2 = 0, which indicates that there are no true differences between 

subjects, and all observed differences in a set of estimates are due to random noise. Note that 

negative ICC values are computationally possible given the estimation of σb
2 as a difference, 

especially when the true ICC is close to zero. In activation amplitudes, this occurs most 

commonly outside of the areas of activation for a given task, where all subjects have 

essentially zero activation. Since ICC truly ranges from 0 to 1, we truncate any negative 

values to zero.

To assess the accuracy of group-level amplitude estimates, note that we cannot use the ICC 

to quantify the reliability of the group activation estimates because we only observe a single 

group. Instead, we use the visit 2 classical GLM estimates from models fit on unsmoothed 

cs-fMRI data as an unbiased proxy for the ground truth. Note that the classical GLM is 

used as the ground truth proxy for both the Bayesian and classical GLMs, providing two 

benefits: it is unbiased (though noisy), and it is common to both GLMs, avoiding any bias 

in favor of the Bayesian GLM or due to smoothing. To quantify the similarity of estimates 

to this ground truth, we compute the mean squared error (MSE) and Pearson correlation for 

the visit 1 estimates, relative to this reference. Lower MSE and higher Pearson correlation 

indicate better accuracy.

2.3.2. Reliability of areas of activation—To quantify the reliability of areas of 

activation produced from the Bayesian and classical GLMs, we utilize the Dice overlap 

coefficient (Dice, 1945). Dice of two binary maps A and B is given by the number of 

overlapping locations across the maps, divided by the average number of locations in each 

map.
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Dice(A, B) = 2 ∣ A ∩ B ∣
∣ A ∣ + ∣ B ∣

For both the Bayesian and classical GLMs, we compute the Dice coefficient of test-retest 

overlap across visits for each subject at each activation threshold. We compute the test-retest 

overlap of both the run-specific areas of activation, as well as for the cross-run average areas 

of activation.

3. Results

In this section, we examine the reliability of subject-level and group average estimates and 

areas of activation. Using the classical GLM as a benchmark, we provide visual illustrations 

and summary measures of the gain in reliability attained using the Bayesian GLM. We also 

examine the power of both the classical and Bayesian GLM to identify areas of activation in 

individual subjects and at the group level. Results shown are based on the multi-run analyses 

of the visit 1 data, combining across the LR and RL runs. For brevity, only images of the 

tongue task are displayed. Corresponding figures for the remaining tasks and for single-run 

analysis using only the LR run are shown in Appendix E and show similar patterns.

3.1. Subject-level estimates of activation amplitude

For three example subjects, Fig. 2 displays Bayesian and classical GLM estimates of 

activation amplitude for the tongue movement task. Appendix Fig. D.8 compares the 

classical GLM estimates for different smoothing FWHM distances. Appendix Figure E.11 

displays the estimates of activation amplitude for the tongue movement task based on 

data from a single run. Appendix Fig. E.12 and appendix Fig. E.13 contain the amplitude 

estimates for all motor tasks for the first run and both runs, respectively. The Bayesian 

GLM fitted to unsmoothed data and the classical GLM based on smoothed data produce 

estimates that are visually similar, though the Bayesian estimates are slightly smoother. This 

is due to the smoothing effect of the spatial prior in the Bayesian model. (Recall that the 

data analyzed in the Bayesian GLM are not smoothed.) However, some subject-specific 

activation features appear to be better preserved in the Bayesian GLM. These are particularly 

noticeable for Subject A, who exhibits a larger area of intense activation compared with the 

other two subjects.

We quantify the test-retest reliability of the estimates of activation amplitude via the ICC, 

as described in Section 2.3.1. The repeated measurements are the estimates from the two 

different visits for each subject (j = {1, 2} in Eq. (6)). Commonly-used ICC quality 

thresholds were established by Cicchetti (1994): ICC below 0.4 is considered “poor”, ICC 

between 0.4 and 0.6 is considered “fair”, ICC between 0.6 and 0.75 is considered “good”, 

and ICC over 0.75 is considered “excellent”. In Fig. 3, we summarize the ICC of each 

image based on the proportion of vertices where fair, good and excellent ICC is achieved. 

Interestingly, smoothing the data prior to applying the classical GLM has a mixed effect 

on reliability: smoothing clearly somewhat improves reliability for the tongue, visual cue, 

and left foot tasks; somewhat worsens reliability for the left lateral tasks; and results in 

little change for the right lateral tasks. By contrast, the Bayesian GLM uniformly improves 
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reliability for all tasks compared with the classical GLM applied to data both with or 

without smoothing. This illustrates that data smoothing may result in oversmoothing for 

some tasks and undersmoothing for other tasks, while the Bayesian GLM estimates the 

underlying smoothness of each task activation field and implicitly smoothes the estimates 

to the appropriate degree. These results suggest that the Bayesian GLM generally produces 

more reliable estimates of activation in individual subjects and better preserves unique 

features of individual subjects, compared with the classical GLM based on smoothed data.

3.2. Subject-level areas of activation

For the same three example subjects as above, Fig. 4 displays classical and Bayesian areas 

of activation for the tongue movement task. Appendix Figs. E.15 and E.14 show similar 

plots for all tasks in the multi-run and single-run cases, and Appendix Fig. D.9 shows 

comparisons of the classical GLM activations for different smoothing FWHM distances. 

Areas that show statistically significant activation above three activation thresholds (γ = 0%, 

0.5% and 1%) are displayed. The activation threshold γ = 0% is analogous to a traditional 

hypothesis testing framework in the classical GLM, but is based on the joint posterior 

distribution of activation amplitude across all vertices. For both the classical and Bayesian 

GLMs, the significance level is set to α = 0.01, which represents an upper bound on the 

probability of observing a single false positive vertex, e.g. the FWER.

The most notable difference between the Bayesian and classical GLMs in Fig. 4 is that the 

Bayesian areas of activation are substantially larger at each activation threshold. Comparing 

with the estimates of activation amplitude for the same subjects shown in Fig. 2, the 

Bayesian GLM areas of activation above γ = 0% correspond well to both areas of intense 

and more subtle activation (red to yellow areas in Fig. 2), while those exceeding γ = 0.5% or 

1% signal change correspond well to areas of peak activation (yellow areas in Fig. 2). This 

suggests that the Bayesian GLM has good power to detect activations above a given effect 

size. In general, the classical GLM appears to be comparatively underpowered to detect 

activations at the subject level.

For our three example subjects, Fig. 5 shows test-retest overlap of Bayesian areas of 

activation for the tongue task at thresholds of γ = 0.5% and 1%. Other tasks are shown 

in Appendix Fig. E.16. Areas displayed in dark purple correspond to overlap across both 

visits, while areas displayed in semi-transparent blue and red correspond to areas detected 

in only a single visit. These overlaps show remarkably strong within-subject, across-visit 

consistency of areas of activation with the Bayesian GLM. We also observe unique patterns 

of individual functional topology, particularly at the γ = 0.5% threshold. This suggests 

that while individuals react to stimuli in broadly similar regions, the extent and shape 

of their activations vary considerably. The Bayesian GLM appears able to discover these 

individualized patterns of functional activation, due to both its high power and ability to 

apply an appropriate level of smoothing to specific tasks.

Appendix Fig. E.17 quantifies the test-retest reliability of areas of activation in terms of 

the Dice coefficient of overlap, described in Section 2.3.2. Panel (a) displays the test-retest 

overlap of the subject-level Bayesian and classical areas of activation. The average over 

subjects is shown, along with error bars indicating 95% bootstrap confidence intervals. The 
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most reliable activations are produced with the Bayesian GLM using an activation threshold 

of 0.5%, achieving a Dice overlap of near or above 0.6 for all tasks. For the classical 

GLM, the most reliable activations tend to be produced at the standard activation threshold 

of 0%, which corresponds to the traditional hypothesis testing approach. A reference line 

indicates this scenario, which serves as a baseline. Panel (b) shows the size of activations 

versus test-retest overlap. Note that while the Bayesian and classical GLMs sometimes 

produce activations with similar test-retest overlap (e.g. with the 0% activation threshold for 

the hand, foot and tongue tasks), the Bayesian areas of activation are substantially larger. 

Overall, the Bayesian GLM produces subject-level areas of activation that are generally both 

larger and more reliable compared with the classical GLM.

Fig. 6 directly compares the reliability of activations produced with the Bayesian and 

classical GLMs, in terms of the difference in the Dice coefficient of test-retest overlap 

between the Bayesian GLM using activation threshold of γ = 0.5% and the classical GLM 

using activation threshold of γ = 0%. These two thresholds were chosen for each GLM 

because they produce activations of roughly similar size and are the most reliable threshold 

for each GLM (see Appendix Fig. E.17). The Bayesian GLM produces more consistent 

areas of activation on average for all tasks. Paired t-tests indicate that the improvement is 

statistically significant for all tasks. This illustrates that the high power of the Bayesian 

GLM facilitates considering only activations above a scientifically relevant effect size, and 

that these can be reliably identified in individual subjects.

3.3. Group-level estimates and areas of activation

The surface-based spatial Bayesian GLM can also produce group-level estimates and areas 

of activation in a computationally efficient way. Here, we assess the reliability and power of 

the group-level Bayesian GLM in comparsion with the classical GLM.

Figure 7 displays group-average estimates of activation amplitude and areas of activation for 

the tongue task, based on all 45 subjects (Appendix Figs. E.18 and E.19 show group-average 

estimates and activations for all tasks, and Appendix Fig. D.10 compares the classical 

GLM tongue task estimates and activations for different smoothing kernel distances). The 

estimates of activation are visually similar for the classical and Bayesian GLMs. However, 

the size of activations are substantially larger with the Bayesian GLM at every activation 

threshold. This suggests that the Bayesian GLM has higher power to detect activations even 

in group analysis with a moderate sample size. In fact, with the Bayesian GLM at the 0% 

threshold we see large areas of the cortex being detected as statistically significant. These 

include areas of small effect size, as seen in the estimates of activation amplitude in dark 

red. This is similar to the known phenomenon of areas of small effect size being identified 

as statistically significant in very large group studies using the classical GLM. Due to the 

greatly increased power of the Bayesian GLM, the issue of small but statistically significant 

effect sizes may arise even with moderate sample sizes. This illustrates the importance 

of specifying a threshold above which activations are scientifically meaningful. Here, for 

example, adopting an activation threshold of 0.5% produces areas of activation that closely 

mimic the peak areas of activation seen in the amplitude maps in yellow and bright red.
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Figure 8 displays two measures of test-retest reliability for the group-level estimates of 

activation amplitude: mean squared error (MSE) and correlation. Both measures are based 

on using the visit 2 classical GLM estimates of activation amplitude based on unsmoothed 

data, providing a noisy but unbiased proxy for the unknown true activation amplitudes 

and avoiding any bias in favor of the Bayesian GLM or smoothing. Note that this will 

tend to result in somewhat pessimistic measures of reliability, e.g. higher MSE and lower 

correlation, for both GLMs. Yet even so, the Bayesian GLM approaches perfect reliability 

(MSE of 0; correlation of 1) as sample size increases. For instance, the Bayesian GLM 

estimates of activation amplitude achieve test-retest correlation of approximately 0.95 across 

all tasks in the full sample of n = 45 subjects. Overall, the Bayesian GLM produces more 

reliable group-average estimates of activation amplitude across nearly all settings (sample 

sizes and tasks).

Figure 8 additionally shows that the Bayesian GLM achieves small-sample reliability similar 

to or better than the reliability achieved by the classical GLM at different sample sizes. 

For example, the Bayesian GLM test-retest reliability with a sample of n = 20 is generally 

similar to that of the classical GLM with n = 45, more than double the sample size. 

This illustrates that the group-level Bayesian GLM can extract more reliable measures of 

population activation from smaller samples compared with the classical GLM. Given the 

high cost of collecting larger samples, this illustrates an important benefit of the Bayesian 

GLM: it is able to extract more information from a sample, rivaling the benefit of doubling 

the sample size.

Appendix Fig. E.20 examines the power of the Bayesian GLM for different sample sizes. 

The size of group-level activations are shown as a function of sample size. Using an 

activation threshold of 0% signal change, the size of both the Bayesian and classical GLM 

activations grows with increasing sample size. In the case of the Bayesian GLM these 

areas are quite large for some tasks, and many of these locations exhibit small effect 

size which may not be of scientific interest. This illustrates the importance of considering 

effect size when identifying areas of activation, especially when power is high as in the 

Bayesian GLM. However, when considering activations above 0.5% signal change the 

size of Bayesian activations is virtually flat as sample size grows. This illustrates that the 

Bayesian GLM has high power to detect areas that activate above 0.5% signal change, even 

in very small samples. The size of classical GLM activations is much smaller and continues 

to grow nearly linearly with increasing sample size, suggesting that the classical GLM is 

underpowered to detect these effects, even with moderately sized samples.

One interesting feature seen in Appendix Fig. E.20 is high variance in the number of 

activations associated with the tongue task for the Bayesian GLM when n = 10. This likely 

stems from two sources. First, the tongue task has larger active regions than the other motor 

tasks, and similar relative changes to the number of active locations will be more apparent 

when considering the number of detected activations. Second, the subject-level activations 

for the tongue task exhibit highly individualized areas of activation, which vary in size 

across subjects (see Fig. 2). Smaller samples may not be representative of populations in 

terms of their activations, leading to variance across samples. As the sample size increases, 
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the amount of variability tends to decrease and population-level inference becomes more 

consistent between samples.

4. Discussion

The surface-based spatial Bayesian general linear model (GLM) leverages information 

shared between neighboring locations on the cortical surface to improve the accuracy of 

task amplitude estimates and to increase power to detect significant activations. We analyze 

test-retest motor task fMRI data from 45 subjects in the Human Connectome Project (HCP). 

Our findings establish that surface-based spatial Bayesian modeling produces reliable 

subject-level and group-average estimates of activation amplitude and highly consistent 

subject-level areas of activation. We also observe a major gain in power over the classical 

GLM to detect activations in individuals and across groups of subjects. The Bayesian 

GLM is computationally efficient at both the subject and group level and is conveniently 

implemented in the R package BayesfMRI, facilitating the use of this approach to extract 

accurate and nuanced insights in future task fMRI studies.

4.1. Unique individual functional topology

We visualize estimates and areas of activation for several individual subjects to illustrate the 

effects of smoothness and noise reduction of the Bayesian GLM, but also to show the unique 

patterns of functional activation we observe in individuals using the Bayesian GLM. More 

importantly, the Bayesian areas of activation above 0.5% signal change closely resemble 

the patterns of peak activation seen in the amplitude maps. Areas of activation produced 

using the classical GLM are not as representative of these patterns, due to lower power at 

the subject level. We observe the Bayesian areas of activation to be highly similar across 

visits, suggesting that functional topology is a trait that can be consistently observed in 

individual subjects. Indeed, the within-subject test-retest overlap of activations is high in the 

Bayesian GLM achieving Dice coefficients as high as 0.7 for the left and right hand tasks. 

The ability to detect and quantify unique patterns of individual functional topology with 

relatively little data (e.g., four 12-second blocks of each motor task) is a valuable product 

of surface-based spatial Bayesian modeling. Such subject-level measures could be used to 

enhance understanding of differences in task performance across subjects, the manifestations 

of development or aging on functional topology, or the effects of disease progression or 

treatment on functional engagement.

4.2. Universally beneficial for subject-level analysis

We assess the ability of the Bayesian GLM to produce reliable subject-level estimates of 

activation on average across subjects (using ICC) and in individual subjects (using test-retest 

MSE and correlation). We show a substantial increase in the number of brain locations 

exhibiting at least “fair” or “good” ICC in certain tasks. This illustrates that on average 

across subjects, the Bayesian estimates are more reflective of reliable features of individual 

subjects. Furthermore, analyzing the test-retest reliability at the individual subject level, we 

find that the Bayesian GLM produces more reliable estimates of activation across every 
subject included in our analysis.
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The HCP includes two runs of motor task data (plus an additional two runs for the 45 

subjects in the HCP retest dataset). This may not be the case for many more typical task 

fMRI studies, where often a single run may be collected for each subject. Therefore, we also 

examine the performance of the Bayesian GLM using only a single run from each subject. 

The benefits of the Bayesian GLM are quite apparent for single-run data, producing larger 

areas of activation at the individual level. The areas of activation in individual subjects, 

though somewhat smaller than those based on both runs, are already reflective of unique 

patterns of functional topology.

4.3. High group-level power in small samples

A unique feature of this spatial Bayesian GLM is its ability to be easily extended to 

group-level analysis in a computationally efficient way. Spatial Bayesian modeling is often 

assumed to be primarily beneficial for subject-level analysis, as the classical GLM tends to 

produce underpowered areas of activation due to the low signal-to-noise ratio (SNR) in task 

fMRI data (Welvaert and Rosseel, 2013). However, we also observe clear benefits of the 

Bayesian GLM for group-level analysis. Namely, we observe improved test-retest reliability 

of group-average estimates of activation amplitude and increased power to detect activations. 

Notably, the power of the Bayesian GLM to detect activations above 0.5% signal change is 

remarkably consistent across sample sizes from n = 10 to n = 45. This illustrates that the 

Bayesian GLM has high power to detect activations above a scientifically meaningful effect 

size even in small samples.

4.4. Efficient Bayesian computation

While the benefits of spatial Bayesian modeling for task fMRI analysis have been long 

recognized (Guhaniyogi et al., 2017; Spencer et al., 2020; Zhang et al., 2015; 2016; 

2014), previous methods for volumetric fMRI were constrained by high computational 

demands. Analyzing cortical surface data has the dual benefit of leveraging scientifically 

relevant spatial dependencies along the cortical surface and of dramatically reducing 

dimensionality, facilitating efficient computation. The surface-based spatial Bayesian GLM 

also leverages recent advances in Bayesian computation and spatial statistics to maximize 

both computational efficiency and accuracy in model estimation. Areas of activation are 

based on the joint posterior distribution using an efficient Bayesian computation approach, 

which maximizes power to detect activations (Bolin and Lindgren, 2018).

It is important to note that the Bayesian GLM takes substantially more computation time, 

memory and processing requirements compared to a massive univariate approach. Indeed, 

such approaches were originally designed for maximal computational efficiency, given the 

much more limited computing power available in the early days of task fMRI. Today, 

statistical and computational advances make it quite feasible to use more sophisticated 

techniques to extract more accurate and nuanced information from task fMRI studies. In 

our analysis, model estimation per hemisphere requires approximately 6.5 minutes for each 

individual subject and approximately 3 hours for group-level analysis with n = 45. While 

this certainly represents a greater investment of time than the classical GLM, it is a small 

fraction of the time and resources already invested in experimental design, participant 
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recruitment, data collection, and data processing. Therefore, the benefits of the Bayesian 

GLM are likely worth the computational tradeoff.

4.5. Software implementation

The surface-based spatial Bayesian GLM is implemented in the R package BayesfMRI, 

which is designed to be maximally convenient from a user perspective. The main function 

in BayesfMRI can be used to directly analyze surface data in CIFTI and GIFTI format and 

performs all processing steps described in this paper, including resampling, scaling, nuisance 

regression and prewhitening using a high-order, spatially varying AR process. Integration 

with the ciftiTools R package (Pham and Mejia, 2021) allows for direct visualization of 

estimates and areas of activation in R, as well as the ability to write out results in CIFTI or 

GIFTI format.

4.6. Study limitations

This study is subject to several important limitations. First, here we analyze data from 

the young adult HCP, a large repository containing high-quality fMRI data acquired using 

multi-band techniques optimized for high cortical SNR. Our findings are therefore reflective 

of the HCP acquisition and processing and the study population. In other contexts, our 

findings would surely be somewhat different. However, given the quality of HCP data, 

particularly on the cortical surface, it represents something of a best-case scenario for the 

classical GLM. In higher-noise data, surface-based spatial Bayesian modeling may prove to 

be even more beneficial.

Second, our analyses are based on test-retest data in lieu of information on the ground truth 

of task activation at the individual and group level. Furthermore, for analyses using MSE 

and correlation, we utilize the classical GLM estimates of activation using unsmoothed data 

as a noisy but unbiased proxy for the ground truth to avoid bias in favor of the Bayesian 

GLM. Our measures of reliability are therefore also subject to noise. Although this results 

in an imperfect assessment of reliability, the consistency of our results across subjects, tasks 

and samples provides clear evidence of the benefits of the Bayesian GLM.

Finally, here we limit our analysis to the cortical surface, excluding subcortical and 

cerebellar regions. These areas represent great scientific interest and importance. Given 

the low SNR in the subcortex, particularly in HCP-style multiband data, spatial Bayesian 

modeling may be particularly beneficial for these regions. While the current implementation 

of the Bayesian GLM considered here is limited to the cortical surface, extension to 

subcortical and cerebellar regions is an important area for future research.

4.7. Future work

In ongoing and future work, we plan several extensions and improvements to the surface-

based spatial Bayesian GLM. First, we are developing an alternative empirical Bayesian 

computation approach using expectation-maximization (EM) for even greater computational 

efficiency and flexibility. Second, we plan to extend the spatial Bayesian GLM to subcortical 

and cerebellar regions, which are also of interest in the neuroscience research community. 

Third, we plan on investigating the value of using the full-resolution cortical surface data 
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in conjunction with a mesh that uses fewer points than data locations to see if there 

is an inferential benefit to using the full-resolution data over using data resampled to a 

computationally feasible resolution. Finally, we plan to directly integrate HRF derivatives 

into the Bayesian model to fully account for variability in the temporal properties of the 

hemodynamic response. These improvements and extensions will be incorporated into future 

versions of the BayesfMRI R package.

Future work should assess the value of the improvement in subject-level reliability of the 

Bayesian GLM. Does the improvement in reliability lead to better prediction of behavioral 

measures, such as task performance? Are the unique functional topologies that we see 

reflected in subject-level areas of activation reliable enough to serve as a “finger-print”, 

whereby a subject is identifiable based on these patterns? Future work should also assess 

the effect of the Bayesian GLM on the scan duration necessary to produce highly reliable 

estimates and areas of activation. For example, how much data is required at the subject 

level to produce estimates that are predictive of behavior, or functional topologies that are 

identifiable? These questions are important to address in order to better understand the true 

benefits of surface-based spatial Bayesian modeling, in terms of extracting not only reliable 

but informative measures of task activation in individuals, and of reducing the burden of 

long and repeated scanning sessions to achieve these goals.

5. Conclusion

In this study, we assess the reliability of individual and group-average task activations 

produced by a surface-based spatial Bayesian general linear model (GLM), compared 

with the classical “massive univariate” GLM. Based on an analysis of test-retest motor 

task fMRI data from the Human Connectome Project, we find that surface-based spatial 

Bayesian modeling produces reliable subject-level and group-average estimates of activation 

amplitude and highly consistent subject-level areas of activation. Furthermore, the Bayesian 

GLM has high power to detect activations in individuals and small group studies. The 

Bayesian GLM is computationally efficient at both the subject and group level and is 

conveniently implemented in the R package BayesfMRI. The ease of implementation makes 

this powerful method widely accessible.

The code used to perform the analyses and produce the visualizations used in this validation 

study can be found online via GitHub4.
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Appendix A. Midthickness versus spherical surface distances

One of the advantages to using an SPDE prior is improved accounting for spatial 

dependence through subject-specific cortical surfaces. This offers an improvement by 

reducing the distance distortion resulting from using spherical surfaces (see Fig. A.1 in 

the Appendix).

Fig. A.1. Distance distortions between neighboring vertices on spherical surface relative to 
midthickness surface.
For this analysis, group-average spherical and midthickness 32k surfaces were resampled to 

6k using the Connectome Workbench. The distance between each pair of neighbors in the 

triangular mesh was computed for each surface. On the left-hand plot, a random sample of 

1000 neighbors is shown. The red line indicates equality. Distances on the spherical surface 

are much more uniform and tend to be larger than those on the midthickness surface. The 

right panel shows the distribution of spherical distance distortions. The red line indicates 

no distortion. For each pair of neighboring vertices, spherical distance distortion is defined 

as the ratio of their distance on the spherical surface to their distance on the midthickness 

surface. Distortions range from approximately 0.5 (distance is halved on the spherical 

surface) to 3.5 (distance is over 3 times as large on the spherical surface).
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Fig. A.2. 
An example of the triangular mesh structure on the midthickness and spherical surface 

resampled to a resolution of around 5000 vertices.

Appendix B. Prewhitening

Fig. B.3. Illustration of prewhitening procedure.
(a) Left hemisphere AR(1) coefficient estimates from a single subject and run. Systematic 

spatial variation in the degree of autocorrelation is clearly apparent. (b) Histogram of the 

optimal AR model order at each vertex, based on AIC. A low-order AR process (e.g. AR(1) 

or AR(2)) would fail to fully capture and remove the residual autocorrelation at many 
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locations in the brain. (c) Left hemisphere estimates of the AR(1) coefficient at each vertex 

after regularization through averaging over runs and surface smoothing at 5mm FWHM.

Appendix C. Choice of multiplicity correction method in the classical GLM

In order to compare activations detected between the classical GLM and the Bayesian GLM, 

the multiplicity correction method to use in the classical GLM is an important question. 

Here we compare three popular methods: Bonferroni correction, the Benjamini-Hochberg 

procedure to control the FDR, and in the group analysis setting, nonparametric permutation 

testing. Both the Bonferroni multiple testing method and the permutation method control 

the FWER, which is the probability of at least one false positive. Each method is based 

on first performing a t-test at each vertex. The test statistic at location ν for task k is 

tv, k
∗ = (βv, k − γ) ∕ SE(β ). Uncorrected p-values pν,k are based on the t distribution. In the 

Bonferroni correction, p-values are multiplied by the number of locations V to produce 

corrected p-values pv, k
Bonferroni. These corrected p-values are then compared to a significance 

level α, where any locations in which pv, k
Bonferroni < α are determined to be active. The 

Benjamini-Hochberg procedure first orders the V p-values and determines a location to be 

active if ℓ
V pv, k < α for the ℓlowest p-value. In the group analysis setting, the nonparameteric 

permutation testing method follows the method described by Nichols and Holmes (2002) 

for multi-subject analysis. This method creates a null distribution based on randomly 

multiplying each subject’s activation amplitude estimates by −1 or +1 for S different 

reordering, assuming that subjects are exchangeable. Since there are 45 subjects in the 

group analysis, a t-test can be performed for at each location and for each reordering, but 

a pseudo t-test would have to be used for smaller group analyses. Null hypothesis test 

statistics tv, k, m
null  are found for each location and task for each reordering, which induces 

no relationship on average between the BOLD signal and the task paradigm. Next, the 

maximum null test statistic across locations, tk, m
null, max, is found for each reordering, and then 

the (1 − α) percentile is found across all tk, m
null, max to produce a test statistic threshold tkthreshold

for task k. Any location ν where tv, k
∗ > tkthreshold is considered to be active. Appendix Fig. 

C.4 shows the activation map for a single subject for the tongue task under the two single-

subject multiple corrections methods. As expected, the Benjamini-Hochberg method is much 

less conservative than the Bonferroni method, as it controls the FDR. Since Bonferroni 

correction is analogous to the excursions method used in the spatial Bayesian GLM, we 

adopt Bonferroni correction to identify activations in the classical GLM.
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Fig. C.4. 
A comparison of the activations identified using different multiple comparisons correction 

methods for the tongue task in a single subject using cs-fMRI data smoothed with a 

Gaussian kernel with FWHM = 6mm. The Bayesian activations found using the excursions 

method found using unsmoothed data are shown as a comparison.

Fig. C.5. 
A comparison of the activations identified using different multiple comparisons correction 

methods for the tongue task in a group analysis 45 subjects using cs-fMRI data smoothed 

with a Gaussian kernel with FWHM = 6mm. The Bayesian activations found using the 

excursions method found using unsmoothed data are shown as a comparison. Bonferroni 

correction and permutation testing produced similar results, with permutation testing being 

slightly less conservative.
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Appendix D. Effect of resampling and smoothing on results

The spatial Bayesian GLM presented here is generally applied to data that has been 

resampled (interpolated) to reduce computational demands. This comes with a tradeoff 

in terms of resolution of the inference on the latent task activation fields. However, it 

is important to note that typical levels of spatial smoothing actually result in greater 

interpolation (and hence more loss of fine spatial detail) than resampling, as illustrated 

by Mejia et al. (2020b). Since in the spatial Bayesian GLM presented here we perform 

resampling but no smoothing, finer details are preserved in the underlying data relative to 

the traditional classical GLM approach, which is based on full-resolution but smoothed data.

In order to investigate the effects of resampling, we examine the HCP Gambling task. While 

there are three tasks in the experiment (for winning, losing, and neutral events), all three 

events show similar activation patterns (Barch et al., 2013). Thus, combining the three 

tasks into a single “gambling event” task can be used to infer which parts of the brain are 

associated with participation in a gambling task. To ease the computational burden, only one 

run is considered in this analysis. Smoothing done for the classical analysis was performed 

using a Gaussian kernel with a full-width half-maximum (FWHM) of 6mm. The results of 

these analyses can be seen in Fig. D.6. Resampling indeed produces a smoothing effect on 

the estimates for both the classical and the Bayesian GLM. In the classical GLM, the effect 

of smoothing (32K) is more dramatic than the effect of resampling (5K), which illustrates 

that the resampling we perform results in less interpolation than standard spatial smoothing. 

Considering the Bayesian estimates, while the resampled 5K results are smoother than the 

full-resolution 32K results, the primary areas of activation remain well-preserved.

In conclusion, resampling provides important computational advantages, allowing the SBSB 

GLM to be fit when there are more tasks, and longer and/or multiple runs. However, the 

amount of resampling required will vary based on computational resources, the number of 

tasks, and the duration and quantity of runs per subject. The amount of resampling should 

therefore be minimized to preserve the maximum amount of spatial detail.

Fig. D.7 shows the test-retest reliability of subject-level classical GLM estimates using 

different smoothing kernels. Though the optimal degree of smoothing varies by task, a 6mm 

FWHM kernel is near optimal across all tasks. Therefore, we adopt this smoothing level in 

the classical GLM analyses presented in the paper.

Spencer et al. Page 27

Neuroimage. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. D.6. 
A subject-level comparison of the results of the gambling task analysis at full resolution 

and at a resampled resolution of around 5000 vertices. Smoothing was performed using a 

Gaussian kernel with a full-width half-maximum of 6mm.

Fig. D.7. Comparison of the test-retest correlations for the classical results.
Each of the different smoothing kernel full-width half-maxima (FWHM) in millimeters 

data were fit using the classical GLM for all 45 subjects using both sessions of the first 

visit data. The correlations with the estimates from the classical GLM using unsmoothed 

data from the second visit across all tasks are used as a basis of comparison to see which 

smoothing kernel achieved the optimal balance between smoothing out spurious activation 

signals and reducing the peak estimates from truly active signals. Observe that the test-retest 

correlation begins to plateau for the left foot task when the smoothing FWHM is around 
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6mm. Test-retest correlation is only one metric of reliability, and it is important to avoid 

oversmoothing in order to ensure that smaller activated regions are found and accurate 

boundaries between active and inactive regions are preserved.

Fig. D.8. Effect of smoothing on classical subject-level estimates.
For the sake of space, only the lateral view of the left hemisphere is displayed. Results 

of the classical GLM estimates with values for the smoothing FWHM distance shown in 

parentheses. This clearly illustrates the balance that must be struck when smoothing between 

having a noisy estimate and an estimate that misses smaller areas of activation.

Fig. D.9. Effect of smoothing on classical subject-level activations.
For the sake of space, only the lateral view of the left hemisphere is displayed. Results of the 

classical GLM areas of activation for different thresholds γ with values for the smoothing 
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FWHM distance shown in parentheses. Here we see that smoothing results in larger areas of 

activation, as well as activation at higher thresholds in some locations.

Fig. D.10. Effect of smoothing on classical group-level estimates and activations.
Results are based on the average across data from the first visit for all 45 subjects. In the 

group analysis, there is only a minor effect of smoothing: While there are small differences 

between the different estimates, the overall inference is largely the same. This is likely due 

to the higher signal-to-noise ratio in group averaged data.

Appendix E. Additional reliability analysis figures

Fig. E.11. 
Single run (LR) amplitude estimation results for subjects A, B, and C.
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Fig. E.12. 
Subject-level estimates of activation for each motor task and the visual cue, in units of local 

percent signal change, based on a single run (LR). For lateral tasks, only the contralateral 

hemisphere is displayed.
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Fig. E.13. 
Subject-level estimates of activation for each motor task and the visual cue, in units of local 

percent signal change. For lateral tasks, only the contralateral hemisphere is displayed.
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Fig. E.14. 
Single-run activation maps for one subject across all six tasks.
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Fig. E.15. 
Single-visit (two runs) activation maps for one subject across all six tasks.
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Fig. E.16. 
Subject-level activations consistently detected across visits for subject A. Areas of activation 

are found using the Bayesian GLM with activation thresholds γ = (0.5%, 1%) and 

significance level α = 0.01. Areas of activation are highly consistent within the subject 

across visits.
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Fig. E.17. Test-retest reliability of subject-level areas of activation.
Bayesian GLM areas of activation are based on the joint posterior distribution of activation 

amplitude across all vertices. Classical GLM areas of activation are based on performing a 

hypothesis test at every location and controlling the FWER. For both GLMs, the significance 

level is α = 0.01 within each hemisphere. (a) The average Dice test-retest overlap of areas 

of activation across all subjects, with 95% bootstrap confidence intervals. For the classical 

GLM, the most reliable areas of activation are typically produced using activation threshold 

γ = 0%. corresponding to a traditional hypothesis-testing approach; this is treated as the 

benchmark and is indicated with a vertical line. For the Bayesian GLM, an activation 

threshold of γ = 0.5% tends to produce the most reliable results, which significantly 

outperforms the classical GLM benchmark for all tasks. (b) Size of activation (overlap 

across both visits) versus Dice overlap. The Bayesian GLM produces areas of activation that 
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tend to be both larger and more reliable. This illustrates that the Bayesian GLM benefits 

from both a gain in power, producing larger areas of activation, and a gain in reliability.

Fig. E.18. 
Group-level estimates of activation for each motor task and the visual cue, in units of local 

percent signal change, based on the average across all subjects using the test data. For lateral 

tasks, only the contralateral hemisphere is displayed.
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Fig. E.19. 
Group-level activations found for each motor task and the visual cue for three different 

thresholds in percent signal change, based on the average across all subjects using the test 

data. For lateral tasks, only the contralateral hemisphere is displayed.
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Fig. E.20. Size of group-level areas of activation above 0% and 0.5% signal change.
Jittered dots represent random sub-samples of 10, 20 and 30 subjects; lines connect 

the averages within each sample size. Note that the total number of data locations is 

approximately 10,000.
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Fig. 1. 
The surface-based spatial Bayesian GLM compared with the classical GLM. Both GLMs 

consist of two stages: (1) estimating activation amplitude and (2) identifying areas of 

activation. At stage 1, the Bayesian GLM incorporates spatial dependence and performs 

shrinkage of background locations through a prior on β, resulting in smoother and more 

reliable estimates of activation, given by the maximum-a-posteriori (MAP) value from the 

posterior distribution of β. At stage 2, the Bayesian GLM identifies the collection of vertices 

with activation amplitude above a specified effect size, based on joint posterior probabilities. 

This results in greater power to detect true activations.
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Fig. 2. Subject-level estimates of activation amplitude in response to tongue movement, in units 
of percent signal change.
For the sake of space, only the lateral view of the left hemisphere is displayed. The Bayesian 

estimates are visually similar to those of the classical GLM when smoothing is applied in 

the latter case. However, the Bayesian GLM appears to better preserve some subject-specific 

features, particularly in Subject A.
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Fig. 3. Test-retest reliability of subject-level estimates of activation amplitude, in terms of ICC.
Each bar shows the proportion of vertices with estimates significantly greater than zero 

in the group analysis of the Bayesian result with “fair” (0.4 to 0.6), “good” (0.6 to 0.75) 

and “excellent” (over 0.75) ICC values, based on the independent estimates of activation 

from each visit. Three models are compared: the classical GLM based on unsmoothed 

data (C), the classical GLM based on smoothed data (C6mm), and the Bayesian GLM 

(B). Recall that the Bayesian GLM is applied to unsmoothed data but implicitly smoothes 

each task activation field. Data smoothing prior to applying the classical GLM has only a 

small effect on the reliability, offering similar results as the unsmoothed classical GLM. 

The Bayesian GLM uniformly improves reliability compared with the classical GLM with 

or without smoothing. These results suggest that the Bayesian GLM improves reliability of 

subject-level activation patterns while avoiding oversmoothing.
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Fig. 4. Subject-level areas of activation during tongue movement.
For the sake of space, only the lateral view of the left hemisphere is shown. For the 

classical GLM, activations are based on controlling the FWER via the Bonferroni correction; 

for the Bayesian GLM, areas of activation are based on the joint posterior distribution. 

For all activations, the significance level is α = 0.01. In both the classical and Bayesian 

GLM, this is the probability of a single false positive among the activated vertices. Three 

activation thresholds are considered: γ = (0%, 0.5%, 1%) signal change. Areas of activation 

at an activation threshold of 0% represent areas exhibiting greater-than-zero amplitude, 

which corresponds to the traditional hypothesis testing approach in the classical GLM. 

The Bayesian GLM areas of activation are substantially larger than classical GLM ones 

(even when the data are smoothed), suggesting increased power to detect activations while 

maintaining strict false positive control.
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Fig. 5. Subject-level activations consistently detected across visits.
Areas of activation are found using the Bayesian GLM with activation thresholds γ = (0.5%, 

1%) and significance level α = 0.01. Areas of activation are highly consistent within each 

subject across visits. At the 0.5% threshold, areas of activation closely mimic the regions of 

peak activation amplitude observed in Fig. 2.
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Fig. 6. Improvement in reliability of areas of activation with the Bayesian GLM.
The paired difference of the Dice coefficients found for each subject. Dice coefficients are 

found using the threshold γ = 0.5% for the Bayesian GLM, and γ = 0% for the classical 

GLM. Classical GLM results are based on smoothed data. These two thresholds were chosen 

for each GLM because they produce activations of roughly similar size and are the most 

reliable threshold for each GLM. The Bayesian GLM produces more reliable subject-level 

areas of activation on average for all tasks, and this difference is statistically significant for 

all tasks.
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Fig. 7. Group-average estimates of activation amplitude (top) and areas of activation (bottom) for 
the tongue task.
Results are based on the average across 45 subjects. Areas of activation remain smaller in 

the classical GLM versus the Bayesian GLM (even with smoothed data), suggesting reduced 

power to detect activations, even at the standard classical GLM hypothesis testing threshold 

of γ = 0%.
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Fig. 8. Test-retest reliability of group-level estimates of activation amplitude, in terms of test-
retest MSE and correlation.
Note that we used the classical GLM visit 2 group-level amplitude estimates found using 

unsmoothed data as a noisy but unbiased proxy for the truth to compute MSE and 

correlation. This avoids any bias in favor of the Bayesian GLM or smoothing, but will 

tend to result in inflated MSE and underestimated correlation for both GLMs. Both panels 

show that the classical and Bayesian GLMs become more reliable as sample size increases. 

The Bayesian GLM produces more reliable group-level estimates of activation compared 

with the classical GLM using smoothed data in all but the tongue task, where they have 

similar performance. For the full sample of 45 subjects, the Bayesian GLM outperforms the 

classical GLM (using smoothed or unsmoothed data) for all tasks.
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Table 1

The mean (standard deviation) of the computing times in minutes for single-subject and group-level analyses. 

Each time reported corresponds to the time taken to analyze both hemispheres of the brain. Note that the time 

shown to complete a group analysis is in addition to the time required for the requisite single-subject analyses. 

The small standard deviation in the times to analyze the 45-subject groups is a result of only performing three 

separate full-sample group analyses.

Single-subject Analyses Bayesian Group Analyses

Preprocessing Bayesian Classical n = 10 n = 20 n = 30 n = 45

3.93
(0.03)

12.50
(3.94)

0.12
(0.05)

84.79
(8.9)

175.8
(76.82)

230.2
(63.19)

335.87
(1.18)
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