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Abstract 
Background.  Primary central nervous system lymphoma (PCNSL) is a rare extranodal lymphomatous malignancy 
which is commonly treated with high-dose methotrexate (HD-MTX)-based chemotherapy. However, the prognosis 
outcome of HD-MTX-based treatment cannot be accurately predicted using the current prognostic scoring sys-
tems, such as the Memorial Sloan-Kettering Cancer Center (MSKCC) score.
Methods.  We studied 2 cohorts of patients with PCNSL and applied lipidomic analysis to their cerebrospinal 
fluid (CSF) samples. After removing the batch effects and features engineering, we applied and compared several 
classic machine-learning models based on lipidomic data of CSF to predict the relapse of PCNSL in patients who 
were treated with HD-MTX-based chemotherapy.
Results.  We managed to remove the batch effects and get the optimum features of each model. Finally, we found 
that Cox regression had the best prediction performance (AUC = 0.711) on prognosis outcomes.
Conclusions.  We developed a Cox regression model based on lipidomic data, which could effectively predict 
PCNSL patient prognosis before the HD-MTX-based chemotherapy treatments.

Key Points

1. Our results provide an applicable model that predicts the prognosis of HD-MTX-based 
treatment for PCNSL better than any other machine-learning models tested.

2. Our results highlight the potential of lipidomics as biomarkers in clinical and medical 
research.

Primary central nervous system lymphoma (PCNSL), an 
extranodal non-Hodgkin lymphoma (NHL),1 is an aggressive 
neoplasm confined to the brain, eyes, cranial nerves, leptome-
ninges, or spinal cord in the absence of disease outside of the 
central nervous system.2 It is a rare disease whose incidence 
is 0.4/100 000 individuals,1 making up about 1% of NHL cases 
and 3%–4% of all intracranial tumors.3 Notably, PCNSL inci-
dence is increased in immunocompromised patients, in which 
the tumor cells are typically Epstein-Barr virus (EBV)-positive.4

PCNSL has been shown to be highly sensitive to chemo-
therapy and radiation,5 with high doses of methotrexate-based 

treatments proving to be the most effective.3 HD-MTX can 
also be combined with other chemotherapies.6 Alternatively, 
rituximab, a monoclonal anti-CD20 antibody has been widely 
used as a treatment option,4 but there is no consensus for 
a single superior regimen. Unfortunately, despite avail-
able treatments, 25%–50% relapse after initial response.7 
Chemoradiation treatments can prolong lifespan, but patients 
are often faced with debilitating side effects, such as neuro-
toxicity, psychomotor slowing, neurocognitive impairments, 
memory dysfunction, gait ataxia, behavioral changes, and 
incontinence associated with significant functional decline.8 

Predicting prognosis outcomes of primary central 
nervous system lymphoma with high-dose 
methotrexate-based chemotherapeutic treatment using 
lipidomics  
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Taking into account these risk factors, it would be beneficial 
to be able to predict the effectiveness of HD-MTX-based 
treatment. This would allow healthcare professionals and 
patients to make calculated and informed decisions when 
choosing treatment for PCNSL.

Several clinical prognostic models have been devel-
oped for PCNSL, including the International Extranodal 
Lymphoma Study Group (IELSG) score,9 the Nottingham-
Barcelona score,10 and the Memorial Sloan-Kettering 
Cancer Center (MSKCC) classification.11 Recently, several 
studies have utilized machine learning to assist the diag-
nosis12,13 and survival prediction of PCNSL.14 However, 
these models are limited to predict the prognosis only 
based on clinical and biochemical characteristics,15,16 and 
are not designed to specifically consider the outcome of 
HD-MTX-based treatments. As MTX interferes with one-
carbon metabolism17 and metabolomics has been proven 
to be helpful in the diagnosis of PCNSL,18 we have suffi-
cient grounds to believe that the application of “omics” to 
machine-learning models can provide better and more ac-
curate prognostic predictions.

As a disease with high heterogeneity and complex path-
ogenesis, PCNSL is a challenging yet essential disease to 
characterize. Alternatively, lipids have been established as 
robust biomarkers for cancerous diseases. Specific lipid 
profiles are emerging as unique disease biomarkers, with 
diagnostic, prognostic, and predictive potentials.17

Lipids serve crucial roles in cellular function, acting as struc-
tural components of membranes, energy sources for meta-
bolic processes, and signaling molecules. As such, bioactive 
lipids play a significant role in controlling immunological pro-
cesses, inflammation, and maintaining homeostasis.18 The 
complete set of lipids present within a cell is referred to as 
the cell’s “lipidome,” potentially comprising over 1000 distinct 
lipid species.19 In the context of cancer, both cancer cells and 
other cells within the tumor microenvironment undergo sig-
nificant metabolic reprogramming. Consequently, alterations 
in lipid metabolism are closely linked to the pathogenesis of 
cancer, leading to the identification of distinct lipid profiles as 
potential biomarkers for diagnosis, prognosis, and prediction 
of therapeutic outcomes. Lipidomics have been applied to 
the studies on ovarian cancer,20 lung cancer,21,22 and pancre-
atic cancer.23

In cases of PCNSL, tumors are highly invasive and can 
infiltrate surrounding tissues along blood vessels.1 The 

degradation and remodeling of these tumors’ extracellular 
matrix release PCNSL-related lipid biomarkers to cerebro-
spinal fluid.24 Using metabolomics data of patient CSF 
samples, several metabolic biomarkers have been identi-
fied, and a Logistic Regression (LR) model to predict the 
effectiveness of HD-MTX-based chemotherapeutic treat-
ments has been established.16

MTX-resistant cells have been proven to have altered 
lipid metabolism compared to nonresistant cancer cells,25 
and identification of such cells could be possible using 
lipidomic analysis of CSF. Currently, there are no reports 
on predicting the prognosis of PCNSL patients undergoing 
MTX-based chemotherapy through CSF lipidome.26,27

In this work, we managed to avoid common pit-
falls in machine learning, like batch effects and leaky 
preprocessing, and offered a standard operating proce-
dure for processing mass spectrometric datasets gathered 
from multiple batches. Based on lipidomic characteristics 
that a relatively small number of clinical samples but rela-
tively deep dimensional data structure, we constructed and 
compared several classic machine-learning models which 
included Cox regression, LR, K-nearest neighbor, Naive 
Bayes (NB), decision tree, Random Forest (RF), XGBoost 
and Support Vector Machine (SVM). Finally, we found that 
the Cox regression model had the best prediction perfor-
mance, which may be helpful for the prognostic prediction 
of PCNSL patients with HD-MTX-based treatment.

Materials and Methods

Patients and Grouping Criteria

Progression-free survival (PFS) was used as the criterion 
for assessing the treatment effectiveness of HD-MTX che-
motherapy. Patients with PFS longer than 12 months were 
classified as the good prognosis group, patients with PFS 
shorter than 12 months and experiencing relapse were 
classified as the bad prognosis group, and patients who 
did not relapse at the last follow-up and whose PFS were 
shorter than 12 months could not be categorized according 
to this criterion and were therefore excluded from the 
analysis.

All patients gave their informed consent for the utiliza-
tion of samples, following the guidelines approved by 

Importance of the Study

MTX is the therapeutic backbone in the treatment of 
PCNSL. However, it could produce toxicity and side 
effects such as bone marrow suppression, pulmonary 
toxicity, nephrotoxicity, hematological toxicity, and 
an increased risk of infections. Following HD-MTX-
based treatment, 60% of patients experience revers-
ible hepatitis, with 25% developing hyperbilirubinemia. 
Additionally, lymphoma patients undergoing HD-MTX-
based treatment have a 9.1% probability of experien-
cing nephrotoxicity. It is essential for patients to find 

the balance between the benefits and risks of HD-MTX-
based treatment to better their quality of life. Faced with 
a scarcity of clinical samples, and the challenge of the 
high dimensionality of lipidomic data, we embarked on 
comparing several classic machine-learning models. 
Ultimately, our analysis revealed that the Cox regres-
sion model exhibited the most promising prediction 
performance and lipidomic data could offer guidance in 
selecting clinical therapeutic regimens.
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the respective Ethical Committees on Human Research at 
Huashan Hospital institution.

All patients received an HD- MTX-based chemotherapy as 
a combination regimen. But none of these patients received 
consolidation, eg, with high-dose chemotherapy plus–
minus autologous stem cell transplant. Each HD-MTX treat-
ment was administered as a 3-hour infusion. Prehydration 
and alkalinization protocols were followed at least 72 hours 
prior to MTX administration. Standard leucovorin rescue 
was initiated 24 hours after the start of each HD-MTX in-
fusion. Eight cycles of treatment were repeated every 3 
weeks, until tumor progression or toxicity occurred. The 
clinical features of all patients were collected from their 
medical records, including, but not limited to, age, gender, 
height, weight, performance status, time of diagnosis, sur-
gical resection, biopsy type, lesion site, number of lesions, 
HIV status, and serum lactate dehydrogenase (LDH) levels. 
Magnetic resonance imaging (MRI) was used to assess the 
location and quantity of lesions in all patients. The continuity 
of treatment was evaluated by contrast-enhanced MRI scans 
following every treatment cycle, and by Positron Emission 
Tomography-Computed Tomography (PET-CT) after every 3 
cycles of treatment and after all therapeutic procedures. PFS 
was calculated from the date of diagnosis to the date of dis-
ease progression, the first relapse, death from any cause, or 
the last follow-up.

Sample Collection

All patients underwent biopsy before CSF sampling and 
were diagnosed pathologically. Each PCNSL patient under-
went a lumbar puncture to examine CSF at baseline before 
chemotherapy. An additional 2 mL of CSF was collected, 
centrifuged for 10 minutes to remove cells, and frozen at 
−80°C for future use.

Lipid Extraction

Lipid extraction was performed following a published pro-
tocol.28 We transferred 50 μL CSF sample, 200 μL of water, 
and 1 mL of methanol at 4°C into a clean glass centrifuge 
tube. Five milliliters of methyl tert-butyl ether (MTBE) was 
then added and the mixture was vortexed for 1 minute. 
The glass centrifuge tube containing the homogenate was 
rocked on a shaker at 140 rpm for 1 hour at 23°C. In total, 
1.25 mL of water was then added to the glass centrifuge 
tube followed by another minute of vortexing. The homog-
enate was centrifuged at 4°C at 1000 × g for 10 minutes, 
after that 2-phase layers could be observed in the glass 
centrifuge tube. A total of 4 mL of the top lipid phase su-
pernatant were collected and dried under a stream of ni-
trogen. The extracted lipid samples were stored at −80°C in 
preparation for liquid chromatography–mass spectrometry 
with tandem mass spectrometry (LC-MS/MS) analysis.

Untargeted Lipidomic Analysis

The lipidomic approach was adopted from a published 
method.29 Lipid samples, extracted as per the previous 
section, were resuspended in 100 μL of isopropanol: 

acetonitrile: water (v/v/v, 30:65:5), and 10 μL was injected 
into an Orbitrap Exploris 480 LC-MS/MS (Thermo, USA) 
coupled to high-performance liquid chromatography (HPLC) 
system (Shimadzu, Kyoto, Japan). Lipids were eluted using 
a 3 µm, 2.1 × 150 mm C30 column (Waters, USA) with a flow 
rate of 260 μL/min using buffer A (10 mM ammonium for-
mate at a 60:40 ratio with acetonitrile: water) and buffer B 
(10 mM ammonium formate at a 90:10 ratio with isopro-
panol: acetonitrile). Gradients were held in 32% buffer B 
for 0.5 minutes and run from 32% buffer B to 45% buffer B 
at 0.5–4 minutes; from 45% buffer B to 52% buffer B at 4–5 
minutes; from 52% buffer B to 58% buffer B at 5–8 minutes; 
from 58% buffer B to 66% buffer B at 8–11 minutes; from 
66% buffer B to 70% buffer B at 11–14 minutes; from 70% 
buffer B to 75% buffer B at 14–18 minutes; from 75% buffer 
B to 97% buffer B at 18–21 minutes; 97% buffer B was held 
from 21 to 25 minutes; from 97% buffer B to 32% buffer B at 
25–25.01 minutes; and 32% buffer B was held from 25.01 to 
33.01 minutes. All ions were acquired through non-targeted 
multiple reaction monitoring (MRM) transitions associated 
with their predicted retention time, switching between posi-
tive and negative modes. ESI voltage was +5500 and −4500 
V in positive and negative modes, respectively.

Procedures for Data Processing and Modeling

One batch of data was generated from each of the 2 co-
horts of patients subjected to untargeted lipidomic anal-
ysis. Firstly, we merged data from different batches, 
retaining only the lipids which were detected in both 
batches. Secondly, all the MS data were processed with 
Log10 transformation using Metaboanalyst (https://new.
metaboanalyst.ca/) to get normalized data. Missing values 
were replaced by one-fifth of minimal positive values of 
their corresponding variables, which is a common strategy 
against missing values that are due to low abundance or 
deficiency of metabolites.30 Thirdly, we used the Combat 
function of R package sva,31 based on empirical Bayes 
methods to correct for the batch effect. Finally, in order to 
remove the dependence of the rank of the metabolites on 
the average concentration and the magnitude of the fold 
changes,32 the data were auto-scaled using metaboanalyst. 
Specifically, all data were mean-centered and divided by 
the standard deviation of each variable.33

Using stratified sampling, we randomly divided the sam-
ples into a training set and a testing set in a 70:30 ratio. 
Feature engineering, model training, and hyperparameter 
optimization were based on data in the training set. The 
machine-learning models applied in our study include Cox 
regression, LR, K-nearest neighbor, NB, decision tree, RF, 
XGBoost, and SVM.

In the Cox regression model, features associated with 
prognosis were determined by univariate Cox analysis. The 
15 features with the smallest P-value were included in the 
multivariate Cox analysis. Features of other models were de-
termined by Sequential Selection Algorithms. Specifically, 
we used classification accuracy as the standard of model it-
eration, gradually increasing the number of features from 0. 
We selected the feature combination with the highest accu-
racy and the lowest number of features.

We tuned hyper-parameters of KNN, decision tree, and 
SVM models based on their classification AUC performance 

https://new.metaboanalyst.ca/
https://new.metaboanalyst.ca/
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using 3-fold cross-validation in the training dataset. The 
hyper-parameters of RF and XGBoost models were optimized 
using R packages RandomForest34 and Caret,35 respectively.

Statistical Analysis

The patient’s baseline characteristics were summarized 
using descriptive statistics, and descriptive analyses were 
conducted for all variables. Survival curves were plotted 
using the Kaplan–Meier method.36 All statistical analyses 

were performed using R 4.3.1, Metaboanalyst, Graphpad 
Prism version 9.0.0 (Graphpad Software).

Results

Baseline Characteristics of Patients

In this study, 2 batches of patient CSF samples were col-
lected; their clinical baseline characteristics are shown in 
Table 1. The first cohort consisted of 52 patients diagnosed 

Table 1. Demographic and Clinical Baseline Characteristic for 2 Batches of Patients

Overall
(n = 81)

Test cohort
(n = 24)

Train cohort
(n = 57)

P

Age, years 57.85 (11.52) 59.75 (11.45) 57.05 (11.55) .339

Gender .391

  Male 43 (53.1) 15 (62.5) 28 (49.1)

  Female 38 (46.9) 9 (37.5) 29 (50.9)

Weight, kg 65.80 (15.51) 65.69 (9.41) 65.84 (17.52) .968

BMI, kg/m2 1.70 (0.18) 1.72 (0.15) 1.69 (0.20) .445

Group .137

  Good prognosis 42 (51.9) 16 (66.7) 26 (45.6)

  Bad prognosis 39 (48.1) 8 (33.3) 31 (54.4)

Relapse .369

  Yes 45 (55.6) 11 (45.8) 34 (59.6)

  No 36 (44.4) 13 (54.2) 23 (40.4)

CSF protein, g/L 0.78 (0.53) 0.76 (0.51) 0.78 (0.54) .870

Deep brain involvement .099

  Yes 59 (72.8) 21 (87.5) 38 (66.7)

  No 22 (27.2) 3 (12.5) 19 (33.3)

ECOG score .327

  0 18 (22.2) 5 (20.8) 13 (22.8)

  1 28 (34.6) 11 (45.8) 17 (29.8)

  2 17 (21.0) 6 (25.0) 11 (19.3)

  3 12 (14.8) 1 (4.2) 11 (19.3)

  4 6 (7.4) 1 (4.2) 5 (8.8)

LDH, U/L 190.85 (41.39) 181.33 (36.80) 195.00 (42.90) .179

No. of lesions .689

  0 20 (24.7) 5 (20.8) 15 (26.3)

  1 43 (53.1) 15 (62.5) 28 (49.1)

  2 7 (8.6) 2 (8.3) 5 (8.8)

  3 11 (13.6) 2 (8.3) 9 (15.8)

Regimen .084

  MTX 46 (56.8) 14 (58.3) 32 (56.1)

  MTX + IDA 17 (21.0) 2 (8.3) 15 (26.3)

  MTX + IDA + R 2 (2.5) 0 (0.0) 2 (3.5)

  MTX + R 16 (19.8) 8 (33.3) 8 (14.0)

Abbreviation: BMI, body mass index; CSF, cerebrospinal fluid; ECOG, Eastern Cooperative Oncology Group; LDH, serum lactate dehydrogenase; 
MTX, methotrexate; IDA, Idarubicin; R, Rituximab.
For continuous variables, data were presented as mean (SD) and the student t-test was applied; for categorical variables, data were presented as 
numbers (percentage) and the Chi-square test was applied.
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with PCNSL between 2018 and 2020. Diagnosis for all parti-
cipants was confirmed based on the WHO classification of 
hematologic and lymphoid tissue tumors.37 Patients with 
systemic lymphoma or immunodeficiency diseases were 
excluded from our study. Four additional patients from this 
cohort were excluded, because they had not relapsed by 
the date of the final follow-up appointment, or had a PFS 
period shorter than 12 months. The second cohort included 
35 patients diagnosed with PCNSL between 2020 and 2021. 
Their samples were treated following the same inclusion–
exclusion criteria and sample handling procedures as the 
first cohort of patients. Follow-ups were conducted until 
July 2022. Due to insufficient clinical information, 2 sam-
ples were removed, leaving a final sample size of 33 pa-
tients for the second cohort.

We then classified 81 patients into training sets and test 
sets as we mentioned in Materials and Methods. The pa-
tients exhibited relatively similar characteristics (in terms 
of Age, BMI, CSF protein, deep brain involvement, ECOG, 
gender distribution, prognosis grouping, lactate dehydro-
genase (LDH), number of lesions, regimen, and weight) 
across the 2 groups.

Data Preprocessing

CSF was collected and processed by untargeted lipidomics 
analysis using an LC-MS-based technique, as illustrated in 
Figure 1A. We selected 70 lipids that were detected in both 
batches (Figure 1B). All mass spectrum data were Log10 trans-
formed and normalized before the batch effect correction 
(Figure 1C). This accomplished several effects: Elimination of 
heteroscedasticity, removal of the dependence of metabolite 
rank on average concentration and fold change magnitude, 
and demonstration of biological significance. To fit a model 
that will generalize to new batches, we removed the batch ef-
fects. Principal component analysis indicated successful cor-
rection of batch effects (Figure 1D and E).

Feature Engineering and Hyper-Parameters 
Optimization

In the Cox regression model, features associated with prog-
nosis were determined by univariate Cox analysis. Fifteen 
features with the lowest P-values were included in the mul-
tivariate Cox analysis, as shown in the forest plot (Figure 
2A). Features of other applied models (Table 2) were deter-
mined by Sequential Selection Algorithms (Figure 2B–H). 
Details of Sequential Selection Algorithms are described in 
the Materials and Methods section.

To obtain a better model for HD-MTX-based PCNSL 
lipidome prognosis prediction, we also tuned hyper-
parameters (Table 3) for multiple machine-learning models, 
including KNN, decision tree, RF, XGBoost, and SVM.

Comparison of Machine-Learning Models

According to the model prediction values, we ap-
plied receiver operating characteristic curves analysis 
(Figure 3A–B). Area under the curve (AUC) > 0.70 indicates 
that the model discrimination is acceptable in a clinical-
based model.38 All models achieved good performance 
with AUC > 0.7 in the training dataset and the AUC value 
of the RF model even reached 1. However, when faced with 
the testing dataset, their performances were significantly 
decreased, with RF and K-nearest neighbor models per-
forming worst of all (Figure 3A–B). From all tested models, 
Cox regression performed the best, reaching an AUC value 
of 0.711. It was closest to the AUC value of the training 
dataset, which indicates we did not overfit it.

In order to evaluate if the Cox regression model was 
overfitting, the tested calibration curves of the models 
were tested (Figure 3C–D). A good calibration degree was 
evaluated by the overlapping of the calibration curve to 
Y = X curve,39 and the Cox regression calibration curve in-
dicated a better fitting degree without overfitting. However, 

Patients CSF Lipidomics Modeling
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the calibration curves of the other machine-learning 
models were found to be overfitted.

To avoid varied model performance caused by different 
feature sets, we applied features which were generated by 
univariate Cox analysis to all models. Surprisingly, the per-
formances of almost all models deteriorated (Figure S1), 
which indicated each model should undergo independent 
feature engineering to achieve the best model performance.

Performance of Cox Regression model

The results above showed that the Cox regression model 
was the most accurate model at predicting the effective-
ness of high-dose methotrexate-based chemotherapeutic 
treatment on PCNSL. The formula used by the model can 
be written as follows:

H(t) =H0(t) × exp [ 0.4513 × PC(16: 0 \ 20: 4) + 0.28182
× PC(16: 0 \ 16: 0) + 0.7067 × PC(38: 5)+ 0.2509
×Cer(d32: 0) + 0.09848× PE(18: 1e \ 20: 4)
+ 0.26526PE(16: 1e \ 22: 6) + 0.9525
× Cer(d18: 1e \ 24: 1)− 0.55617
×TG(11: 0 \ 10: 1 \ 18: 1)− 0.44201
× PC(15: 0 \ 20: 4)− 0.06013 × Cer(t34: 0)− 0.38158
× Cer(t34: 0)− 0.03433 × PC (16: 0e \ 20: 4)− 0.42982
× PC(18: 1e \ 20: 4)− 0.49833 × PC (40: 7)]

The optimal cutoff was 0.0744. When Hscore < 0.0744, it meant 
the patients would have good prognosis; while when Hscore 
≥ 0.0744, it meant the patients would have bad prognosis. 
In this formula, lipids with negative coefficients include 
TG(11:0\10:1\18:1), PC(15:0\20:4), Cer(t34:0), PC(16:0e\20:4), 
PC(18:1e\20:4), Cer(d34:0), TG(16:0\14:0\14:0), PC (40:7), 
suggesting an association with good prognosis. On 
the other hand, lipids with positive coefficients include 
PC(16:0\20:4), PC(16:0\16:0), PC(38:5), PE(18:1e\20:4), 
Cer(d32:0), PE(16:1e\22:6), Cer(d18:1e\24:1), suggesting an 
association with poor prognosis.

We then used Kaplan–Meier analysis to compare the 
relapse of the patients (Figure 4). The model developed 
by Cox regression could accurately classify patients with 
different survival probabilities, and the median PFS of 
predicting the bad prognosis group was about 9 months, 
which also fitted our hypothesis.

Discussion

Using “omics” data to develop a prediction model for clin-
ical utilization was always been a challenging task,40 es-
pecially for clinical lipidomic results. A limited amount of 
existing lipidomics data, combined with the existence of 
batch effects, and the unique structure of MS data have 
made it challenging to construct machine-learning models. 
To address this, we have developed a standard operating 
procedure which avoids the common pitfalls in machine 
learning such as batch effect and leaky preprocessing. This 
has allowed us to utilize metabolomics and lipidomics data 
from different batches without the help of internal stand-
ards. Existing research on the application of lipidomic 
data to machine learning has not reached a consensus on 
model selection. Perakakis and colleagues41 used SVM, 
K-nearest neighbors (KNN), and RF to diagnose nonalco-
holic steatohepatitis (NASH), finding that SVM had the best 
performance. Villagrana and colleagues42 have tested the 
performance of RF, LR, SVM, and NB in the prediction of 
Sudden Infant Death Syndrome, finding that RF had the 

Table 2. Features for Each Model

Models Features

Cox regression PC(16:0_20:4), PC(16:0_16:0), TG(11:0_10:1_18:1), PC(38:5), Cer(d32:0), PC(15:0_20:4), PE(18:1e_20:4), 
PE(16:1e_22:6), Cer(d34:0), Cer(t34:0), PC(16:0e_20:4), Cer(d18:1_24:1), PC(18:1e_20:4), TG(16:0_14:0_14:0), 
PC(40:7)

Logistic regression Cer(d18:1_24:1), Cer(d32:0), Cer(d34:0), Cer(d36:0), Cer(d36:2), ChE, ChE(18:2), ChE(22:6), DG(18:0_18:0), 
DG(26:2e), DG(32:0e), DG(32:1e), LPC(16:0), LPC(18:0), LPC(18:2), MG(18:1), PC(15:0_20:4), PC(16:0_16:0), 
PC(18:1e_20:4), PC(36:4), PC(38:5), PC(38:6), PE(16:1e_22:6), PE(18:0_20:6), SM(d32:1), TG(16:0_16:1_16:1)

K-nearest neighbor DG(26:2e), TG(16:0_18:1_18:2), TG(18:1_18:2_18:2)

Naive Bayes Cer(t34.0), ChE(18:2), DG(32:0e), DG(6:0_14:1), PC(36:4), PE(16:0_22:6), TG(15:0_16:0_16:1), 
TG(18:1_18:2_18:2)

Decision tree TG(18:1_18:2_18:2)

Random forest Cer(d22:0_18:0), DG(34:4e), DG(36:2e), DG(6:0_14:1), TG(16:0_14:0_14:0)

XGBoost DG(34:4e), LPC(18:1), TG(18:1_18:2_18:2)

Support vector machine PC(15:0_20:4), PC(38:6), TG(18:1_18:1_18:2), TG(18:1_18:2_18:2)

Table 3. Hyper-Parameters for Models Which Need to Tune 
Hyper-Parameters

Algorithms Hyper-parameters

KNN k = 8 and other default parameters

Decision tree minbucket = 2, maxdepth = 2 and other de-
fault parameters

Random forest mtry = 1, ntree = 250 and other default 
parameters

XGBoost max_depth = 1, eta = 0.3, colsample_
bytree = 0.6, min_child_weight = 1, sub-
sample = 1, gamma = 0, nround = 50

SVM gamma = 10^-1, cost = 10^1, 
kernel=“radial”

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae119#supplementary-data
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best performance. We think it was essential to try more 
models to find the model with the best performance.

From this study, we have found that Cox regression 
model could provide a better prediction performance, and 
15 features were selected as the prognostic-related fac-
tors. In total, 86.7% of identified features of patients with 
PCNSL are membrane lipids, which not only indicates an 
altered lipid metabolism, but also implies that the mem-
brane lipids play an important role in MTX-resistance. The 
plasma membrane exhibits non-uniformities characterized 
by variations in lipid composition, structure, and signaling 
activity.21 Membrane lipid saturation, which is mediated 
by de novo lipogenesis, has been linked to the sensitivity 
of cancer cells to free radicals and chemotherapeutics.43 
Sphingolipids and cholesterol, which are involved in the 
formation of lipid rafts, are also critical for the pathological 
process of the tumor.27,44–47

Phosphoinositide 3-kinase (PI3K) exhibited at least 3 
times as many distal translocations in PCNSL, which in-
dicates the hyperactivation of PI3K signaling.4 PI3K/
AKT/mTOR axis is critical to lipid metabolism48–50 and its 
hyperactivation promotes membrane building via a supply 
of ample de novo lipogenesis molecules,51 which promotes 
cell proliferation, growth, metabolism, and motility.52 
Notably, the NF-κB pathway, which is not only associated 
with resistance to chemotherapy,53 but also essential to al-
tered lipid metabolism via inflammation,54 was found to 
be activated in patients with PCNSL.4 As PCNSL is a rare 

subtype of NHL and is confined to the central nervous 
system,55 we suggest that the lipid features group found 
in CSF could become the biomarkers for prognosis predic-
tion of HD-MTX-based treatment.

Compared to other machine-learning models whose 
advantages are estimation of the strength of the associa-
tion between different predictor variables and categorical 
outcomes, Cox proportional hazards regression approach 
allows the use of multiple predictor variables when com-
paring time-to-event outcomes that include censored 
data.56 As the prognosis grouping criteria is based on 
time-to-event outcome, Cox regression has its advan-
tages in feature engineering. It is important to consider 
the characteristics of the model to select and develop a 
model for prediction. For example, the KNN model is very 
sensitive to the distance metric used to find the K-nearest 
neighbors,26 which makes it incapable of dealing with 
high-dimensional data, such as MS data. SVMs failed to 
accurately scale with large datasets because of their com-
putational complexity.57 Tree-based models, including 
decision tree, RF, and XGBoost, could discover impor-
tant combinations of predictors among a large pool of 
covariates, which may introduce noise due to limited 
sample size.58 Although the NB classifier did not perform 
well in this study, this model showed unexpected robust-
ness when applied to the testing dataset. Continued ef-
forts are still needed to determine its value in making 
predictions based on MS data.59
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Figure 4. Kaplan–Meier survival analysis of patients in test set based on the prediction of each model. (A) Cox Regression, (B) Logistic 
Regression, (C) K-Nearest Neighbor, (D) Naive Bayes, (E) Decision tree, (F) Random Forest, (G) XGBoost, and (H) Support Vector Machine.
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This study created the first prediction model based on 
lipidomic data that can be used to predict the prognosis 
behavior of PCNSL patients treated with HD-MTX-based 
chemotherapeutic treatment. The results shed light on the 
value of lipidomic data in predicting treatment effective-
ness, allowing patients to weigh the advantages and disad-
vantages of HD-MTX-based treatment. As it could provide 
reliable relapse prediction, our model could reduce the suf-
fering of patients faced with the considerable side effects of 
HD-MTX-based chemotherapy. Additionally, our procedure 
avoids batch effects and leaky processing, which has consid-
erable value for future models based on mass spectrum data.

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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Lay Summary 

Primary central nervous system lymphoma is a rare and aggres-
sive brain tumor. The usual treatment involves high doses of a 
chemotherapy drug called methotrexate. It is challenging to pre-
dict how long patients will survive after this treatment. To better 
understand this, the authors studied the different types of fats 
in the fluid surrounding the brain and spine of patients with this 
disease. They created computer models using information about 
these fats to predict patient survival. Their results showed that 
they could predict survival with about 70% accuracy.
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