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Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely
abundant protein in the brain where, remarkably, it is estimated to
make up 1– 5% of total neuronal protein. Although it comprises
only 223 amino acids it has one of the most complicated 3D
knotted structures yet discovered. Beyond its expression in
neurons UCH-L1 has only very limited expression in other
healthy tissues but it is highly expressed in several forms of
cancer. Although UCH-L1 is classed as a deubiquitinating enzyme
(DUB) the direct functions of UCH-L1 remain enigmatic
and a wide array of alternative functions has been proposed.

UCH-L1 is not essential for neuronal development but it is
absolutely required for the maintenance of axonal integrity and
UCH-L1 dysfunction is implicated in neurodegenerative disease.
Here we review the properties of UCH-L1, and how understanding
its complex structure can provide new insights into its roles in
neuronal function and pathology.

Key words: axon, neurites, ubiquitin C-terminal hydrolase L1
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INTRODUCTION

The identification and safe destruction of unwanted, misfolded
or aggregated proteins is essential for cell viability. The
complexity and sophistication of neuronal architecture and
signalling pathways make them especially vulnerable to protein
aggregation and failure to adequately destroy proteins underlies
multiple neuropathologies [1].

The ubiquitin system

Ubiquitin is a highly conserved 76-amino acid protein that
can be conjugated, either singly or as polyubiquitin chains, to
residues in a target protein to alter its function and/or fate.
Lysine is the most common residue to undergo ubiquitination,
although non-canonical serine, threonine and cysteine side
chains, as well as the N-terminal amino group, can also be
modified [2]. The ubiquitin system is central to the regulation
of almost all cellular processes because it controls protein
activity and abundance [3]. Substrate proteins tagged with
Lys48-linked polyubiquitin chains enter the ubiquitin-proteasome
system (UPS), which mediates their degradation via the 26S
proteasome [4–6]. Ubiquitinated proteins can also be targeted
for lysosomal degradation. Monoubiquitination can be a tag for
recruiting substrates into the lysosomal pathway via the ESCRT
complex [7].

In addition to protein degradation, ubiquitination can mediate
a wide variety of cellular events, ranging from protein
membrane trafficking and endocytosis to DNA repair [8]. In
neurons, ubiquitination plays a major role in regulating neuronal
development, function and pathology [9]. For example, enhancing
or reducing synaptic activity reciprocally regulates the properties,
localization and abundance of many proteins [10,11], but how
the ubiquitin system itself is regulated, and the consequences of

its function and dysfunction on individual synaptic proteins and
signalling networks remain largely unknown.

UCH class of DUBs

Ubiquitin is removed from substrate proteins by deubiquitinases
(DUBs). There are ∼90 DUBs in the human genome, of which
the ubiquitin C-terminal hydrolase (UCH) subgroup has four
members. Each UCH contains an N-terminal C12 peptidase
domain formed from a knotted peptide backbone, a C-terminal
extension and an unstructured loop that regulates substrate access
to the catalytic site. UCH DUBs are implicated in a diverse
range of pathways (Table 1). In vitro experiments suggest that
they cleave C-terminal peptide adducts as well as N-terminally
conjugated ubiquitin from substrate proteins [12] and it has also
been proposed that UCHs can deubiquitinate small nucleophiles,
such as glutathione, which become aberrantly modified in the
cytoplasm [13–15].

UCH-L1 distribution

The tissue distribution of ubiquitin C-terminal hydrolase L1
(UCH-L1) is predominantly within the brain where it can make
up to 5% of total neuronal protein [16,17], but it is also present
at much lower levels in the gonads and is weakly expressed in
some cells under specialized conditions, such as human fibroblasts
during wound healing, and in some clonal cell cultures [18,19].
Intriguingly, it is also present in cancerous cells originating
from tissues that do not normally express UCH-L1, including
pancreatic cancer, colorectal cancer and invasive breast cancer
[20–22].

At a cellular level UCH-L1 exhibits strong, uniform
cytoplasmic staining in neurons throughout the brain [16] and is
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Table 1 Core characteristics of the Ub C-terminal hydrolase (UCH) family of deubiquitinating enzymes (DUBs)

UCH DUB Length C-terminal extension Function References

UCH-L1 223 aa Small, unstructured Currently unclear. Abundantly expressed in neurons,
testes and ovaries

[16,45]

UCH-L3 233 aa Small, unstructured Shares 52 % sequence homology with UCH-L1 but is
more widely expressed throughout mammalian
tissues. Hydrolyses the disease-associated
frame-shifted Ubb + 1 ubiquitin molecule

[46,110]

UCH-L5 (UCH37) 329 aa Fibrous domain that interacts with the
Rpn13 subunit of the 26S proteasome

The only member of the UCH class known to play a direct
role in proteasomal function, responsible for Lys48

ubiquitin isopeptidase activity to recycle ubiquitin from
proteasomal degradation

[48,49]

BAP1 729 aa Long extension contains a nuclear
localization signal

Plays a role in histone ubiquitination, chromatin
remodelling and transcriptional regulation as well as
inhibiting activity of BRCA1

[111,112]

also present in large sensory and motor neurons [23]. Consistent
with this, a transgenic mouse in which the UCH-L1 promoter and
5′UTR were used to drive expression of an eGFP displays robust
fluorescence in subsets of cortical neurons and corticospinal motor
neurons [24]. This abundance of UCH-L1 in neurons, coupled
with its restricted distribution in other tissues, has led to the
clinical use of UCH-L1 as a neuron-specific biomarker for severe
brain trauma [25,26].

Membrane association

Although UCH-L1 is mainly cytosolic various reports have
suggested that between 20 and 50% can be membrane associated
[25,27,28]. Interestingly, however, subcellular fractionation of
clonal cell lines did not detect membrane associated UCH-L1 in
COS7 or HEK293 cells whereas it was present in cultured
rat neurons and adult brain [29]. UCH-L1 lacks obvious lipid
interaction domains but since many DUBs can operate as part of
larger protein complexes that may well be membrane bound [30],
it is likely that UCH-L1 membrane association occurs indirectly
via such macromolecular complexes in neurons [29].

UCH-L1 STRUCTURE

Knotted backbone

UCH-L1 is a globular protein comprising a conserved peptidase
C12 superfamily catalytic domain with very short N- and C-
terminal extensions [31] (Figure 1). There are five crossings
of the peptidase C12 polypeptide backbone forming a ‘52’ or
‘Gordian’ knot (Figure 2). This knot has been described as the
most complicated eukaryotic protein structure discovered to date
[32]. The overall 3D structure results in two ‘lobes’ of α-helices
surrounding a tightly-packed conserved hydrophobic core of β-
strands [31]. Based on the role of UCH-L5 in recycling ubiquitin
from proteasomal degradation, it is believed that the knotted
backbone evolved to protect UCH class DUBs from unintended
proteasomal unfolding and degradation [33].

Hydrophobic core

UCH-L1 unfolds with three populated states, transitioning from
folded to fully denatured via an intermediate stage where the
α-helices have unfolded but the central hydrophobic core of β-
strands remains intact [34]. In silico simulations and in vitro
mutagenic studies indicate that removal of relatively few amino

acids from either the N- or C-terminus can destabilize the 3D
structure, resulting in unfolding and loss of solubility consistent
with protein aggregation [29,32], likely through exposure of this
hydrophobic core. Removal of eleven amino acids from the N-
terminus is sufficient for the protein to lose affinity for ubiquitin
and ultimately leads to the formation of insoluble aggregates [35].
This region includes a portion of the α1 helix, which penetrates
into the core of the protein and contacts the β1-strand (Figure 3).
Similarly, the loss of just four amino acids from the C-terminus,
which includes a portion of the β6-strand, is sufficient to make
the protein insoluble and abolish binding to ubiquitin-substrates
[29]. Both truncations result in exposure of the hydrophobic core
β-sheets to the cytosol causing a loss of conformational integrity,
insolubility and neuronal death [36,37]. Rather than a loss of
function, as observed in UCH-L1-deficient animal models (see
below), UCH-L1 unfolding leads to a toxic gain-of-function.
This is most likely due to the exposure of previously hidden
hydrophobic regions causing aberrant interactions with other
proteins and cellular membranes, as occurs for other misfolded
proteins [38–40].

Active/inactive conformations

Many DUBs exist in an ‘inactive’ state that requires additional
protein–protein interactions to adopt an ‘active’ conformation,
which protects against aberrant hydrolytic activity [41]. In the
unbound (apo) state, the geometry of the aspartate, histidine and
cysteine residues that form the catalytic triad of the active site
for hydrolysis is distorted, making the enzyme non-functional,
with the His161 and Cys90 residues being 8.2 Å (1 Å = 0.1 nm)
apart [31]. Ubiquitin vinyl methyl ester (UbVME) is a synthetic
ubiquitin substrate containing a rigid extension that mimics the
transition state of ubiquitin-substrate hydrolysis, allowing it to
bind covalently to the catalytic Cys90 cysteine residue in the active
site of UCH-L1 (Figure 4) [42]. Crystallographic data indicate that
when UCH-L1 is bound to ubiquitin, a conformational change
occurs that brings the residues of the catalytic triad into closer
proximity and promotes enzymatic activity [43].

Active-site loop

The UCH class of DUBs all contain an unstructured loop that
restricts access to the active site. UCH-L1 contains the shortest
loop in the UCH class, which prevents access to the active site for
all proteins except for very short disordered peptides (∼10 amino
acids) conjugated to ubiquitin [31]. In crystal structures obtained
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Figure 1 Schematic of UCH-L1 structure

Schematic illustrating the α-helical and β-strand structure of UCH-L1. The residues 1–11 at the N-terminus, 220–223 at the C-terminus and residues Ile93 and Cys152 are highlighted. It has been
proposed that modification at these points can affect the hydrophobic core of β-strands that are otherwise protected from solution.

Figure 2 UCH-L1 knotted backbone

(A) Schematic representation of the peptide backbone structure of UCH-L1. (B) A simplified schematic of UCH-L1 backbone knot. Schematics taken from [16]: Day, I.N. and Thompson, R.J. (2010)
UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog. Neurobiol. 90, 327–362, with permission. (C) Crystal structure of UCH-L1 secondary structure highlighting the two
‘lobes’ of α-helices surrounding the β-strands in the hydrophobic core. The location of the six cysteine residues are in blue. The location of Cys90 in the catalytic triad and Cys152 in the short loop
covering the active site can be observed. Schematic from [36]: Koharudin, L.M., Liu, H., Di Maio, R., Kodali, R.B., Graham, S.H. and Gronenborn, A.M. (2010) Cyclopentenone prostaglandin-induced
unfolding and aggregation of the Parkinson disease-associated UCH-L1. Proc. Natl. Acad. Sci. U.S.A. 107, 6835–6840, with permission.
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Figure 3 Folding arrangement of N- and C-terminal domains

Positions of the N-terminal (residues 1–11) and C-terminal (residues 220–223) domains.
Residues indicated in yellow illustrate how the N- and C-terminal sequences penetrate
into the hydrophobic core of the protein and how deletion of either of these
regions results in loss of solubility and misfolding (diagram drawn using Cn3D
http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).

so far, with and without ubiquitin bound, the widest diameter
under the active site loop is approximately 10 Å, meaning that any
substrate would have to ‘tunnel’ under the loop to allow ubiquitin
to dock in the active site (Figure 4). This severely restricts possible
UCH-L1 substrates because folded proteins are not able to access
the catalytic domain [31,43]. Consistent with this modelling data,
in vitro assays have shown that UCH-L1 can bind and efficiently
hydrolyse ubiquitin-AMC – a ubiquitin molecule conjugated to a
small organic fluorescent probe containing two benzene rings [44]
– but it cannot bind slightly larger ubiquitin-sepharose conjugates
[45]. In contrast, UCH-L3 contains an extended loop that enables
it to bind larger ubiquitin-conjugates, such as ubiquitin-sepharose,
and peptide sequences up to 80 amino acids in length. It has
been reported that UCH-L3 regulates processing of UBA80, a
ribosomal-ubiquitin fusion gene [46,47], suggesting that UCH-
L1 and UCH-L3 have distinct substrates and functions.

It should be noted, however, that in vitro assays have also
shown that the efficiency of UCH-L5 (UCH37) at cleaving
ubiquitinated substrates can vary enormously depending on the
reaction conditions used, suggesting that the simplified assays
used so far may not accurately reflect the in vivo conditions
necessary for UCH-L1 substrate hydrolysis [48,49]. For example,
based on UCH-L1 protein structure, it has been hypothesized that
the short active site loop adjoins regions of potential flexibility and
so could swing out to adopt an extended, accessible conformation,
induced by binding the correct substrate [31], although no
experimental evidence of this has yet been found.

FUNCTIONAL ROLES OF UCH-L1

UCH-L1 has a high affinity for ubiquitin, which it can efficiently
hydrolyse from small C-terminal extensions in in vitro assays [50].
It also has high affinity for monomeric ubiquitin-like molecule
NEDD8, but cannot hydrolyse it, unlike the homologous but more
widely distributed UCH-L3 [51]. Indeed, the possibility of UCH-
L1 exerting an effect through binding to and/or regulating NEDD8

Figure 4 Short loop covering UCH-L1 active site

(A) UCH-L1 covalently binds ubiquitin substrate. Space-filling molecular model showing
UCH-L1 (purple) covalently bound to UbVME (blue), generated using Cn3D software and
based on PDB crystal structure 3KW5. (B) Crystal structure shows UCH-L1 (beige) bound to
UbVME substrate (green). It is believed that the short loop (purple) covering the active site
(yellow) limits access to short unfolded peptides only (generated by and used with permission
from Chittaranjan Daas, Purdue University).

is intriguing because NEDD8 is the most abundant ubiquitin-
like molecule (UBL) in neurons [52] and its regulation and roles
remain to be fully explored.

Homeostasis

Lys48-polyubiquitin chains are recognized by proteasomal
subunits and cofactors allowing the targeting of ubiquitinated
substrates for degradation. The ubiquitin molecule itself, however,
is recycled. The 19S proteasomal lid contains subunits that
can recognize and deubiquitinate substrate proteins, releasing
mono- and poly-ubiquitin chains, however it has been proposed
that recycled ubiquitin molecules can still be linked to small
peptide fragments, which need to be processed for re-use [46,53].
Consistent with a role in ubiquitin processing UCH-L1 can
efficiently cleave short disordered peptides of ∼10 residues from
the C-terminus of ubiquitin in in vitro substrate hydrolysis assays
[46]. Furthermore, free monomeric ubiquitin is reduced by 20–
30% in the brains of UCH-L1 deficient mice [54–56]. These data
strongly suggest that UCH-L1 can trim small disordered peptides
from the C-terminus of ubiquitin and increase monomeric
ubiquitin levels, consistent with a role in maintaining a pool of
available ubiquitin in the cytosol. It should be noted, however, that
UCH-L1 exogenously expressed in mouse embryonic fibroblasts
(MEFs) binds to and increases free ubiquitin [54]. This also occurs
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with expression of a hydrolase-deficient C90S mutant, but not a
non-ubiquitin binding (D30K) mutant of UCH-L1. These findings
have led to the proposal that it is the ability to bind ubiquitin and
increase its half-life, rather than the hydrolytic function of UCH-
L1 that mediates the increase in free ubiquitin [57].

Proteasomal function

Although UCH-L1 has been proposed as crucial for
maintaining proper proteasomal function [54,58], proteasomal
activity is not obviously impaired in UCH-L1 deficient
mice [55–57]. Furthermore, unlike UCH-L5, UCH-L1 is not
immunoprecipitated with components of the 19S proteasomal lid
[56,59].

Lysosomal function

UCH-L1 deficient nm3419 mice show increased mRNA levels of
the lysosomal enzymes cathepsins D and L [56]. Down-regulation
of UCH-L1 also correlates with increased apoptosis in fibroblasts
from patients with lysosomal storage disorder, although a specific
link was not established [60]. However, these phenotypes are not
seen in UCH-L1 deficient animal models. Therefore, it remains an
open question whether UCH-L1 may regulate a pool of ubiquitin
involved in lysosomal trafficking.

Proubiquitin processing

Monomeric ubiquitin is processed from proubiquitin precursor
proteins. Four different genes encode mammalian proubiquitin
precursors, two of which are synthesized as ribosomal subunit-
fusion proteins and two as polyubiquitin precursors [61]. In
bacterial expression assays UCH-L1 does not efficiently cleave
monoubiquitin from either ribosomal proteins or polyubiquitin
precursors because the folded substrates are too large to fit through
the active site loop [46,62]. Intriguingly, however, although UCH-
L1 still could not efficiently hydrolyse ubiquitin from ribosomal
fusion proteins, it could cleave ubiquitin when co-transfected
with a plasmid expressing a polyubiquitin gene, whereas the
opposite was true of UCH-L3, suggesting that UCH-L1 may act
co-translationally, but not post-translationally, on poly-ubiquitin
gene products.

Indeed, although there is clearly a great deal to discover
about the mechanisms underlying ubiquitin processing, work
using rabbit reticulocytes, mouse liver and HeLa cells has
provided evidence that polyubiquitin gene products can be co-
translationally processed [47]. UCH-L3 was implicated in these
screens, and although UCH-L1 was not identified this could be
attributable to the fact that the systems used probably do not
express UCH-L1 in sufficient amounts to be detected. Thus in
neurons, where UCH-L3 is less abundant, UCH-L1 may fulfil
this function. In this scenario as the nascent ubiquitin polypeptide
leaves the ribosome it could fit through the restricted active site
loop of UCH-L1 and be cleaved allowing full folding into a
ubiquitin molecule [46]. Moreover, this mechanism is consistent
with the changes to free monoubiquitin levels associated with the
gain or loss of UCH-L1 in cells [54,63].

UCH-L1 deubiquitinase (DUB) activity

UCH-L1 has been proposed to deubiquitinate several exogenously
expressed proteins in clonal cell lines, including NOXA and
NOX4 [63,64]. Nonetheless, the spatial constraints that limit

access of folded proteins to the catalytic site of UCH-L1 make
it difficult to understand how it can have general DUB activity.
Recent recombinant in vitro experiments using UCH DUBs and
ubiquitinated substrates show that UCH-L1 is far less efficient
than the homologous UCH-L3 [12]. Overall, current data suggest
that direct substrates for DUB activity of UCH-L1 cannot be
fully folded ubiquitinated substrates. Rather, as outlined above,
UCH-L1 is highly efficient at cleaving monoubiquitin from small
disordered peptides covalently linked to the C-terminus of a
ubiquitin molecule [45].

DUBs act as part of larger protein complexes and the
identification of component proteins provides information
about the pathways and functions regulated. As discussed
below, proteins reported as UCH-L1 interactors from co-
immunoprecipitation studies include amyloid precursor protein
(APP) [65] and tubulin [65,66]. A high-throughput, unbiased MS
screen of the human DUB interactome in cell lines detected an
interaction between UCH-L1 and two keratin proteins as well
as the uncharacterized coiled-coil domain-containing protein 14
(CCDC14) [30]. Notwithstanding these findings, few functionally
verified interaction partners of UCH-L1 in the brain have yet been
identified. Nonetheless, we expect that future proteomic analysis
of UCH-L1 in neurons will reveal a wide array of novel interactors
leading to a much greater understanding of tissue-specific UCH-
L1 function.

Does UCH-L1 have dimerization-dependent E4 ubiquitin ligase
activity?

In addition to its monomeric DUB function, a dimeric form of
UCH-L1 has been proposed to have ubiquitin E4 ligase function,
acting to extend polyubiquitin chains on substrate proteins such
as α-synuclein and tubulin [25,66]. Interestingly, the first attempts
at producing a crystal structure of UCH-L1 found that the protein
existed as an asymmetrical dimer in the crystals, with the two
units interacting via a 161◦ rotation [31]. However, sedimentation
equilibrium experiments, performed using the same preparation
techniques, detected only a monomeric form, leading the
authors to conclude that UCH-L1 does not exist as dimers in
solution [31].

It has also been reported that UCH-L1 acts as a ligase to extend
Lys63 polyubiquitin chains on α-synuclein thereby preventing
its proteasomal degradation [25]. However, from the current
understanding of UCH-L1 structure, it is unclear how UCH-L1
could extend a polyubiquitin chain on a substrate protein and
then have a folded ubiquitin molecule or the substrate pass back
through the active site loop. Moreover, subsequent attempts have
been unable to recapitulate these results [67].

UCH-L1 IS NECESSARY FOR AXONAL MAINTENANCE IN THE CNS

Two naturally spontaneously occurring Uchl1 mutant mice lines
and an Uchl1 knockout mouse have been characterized [55,56,68].
The phenotypes of all three are remarkably consistent and suggest
that UCH-L1 has a crucial role in the maintenance of axonal health
and stability.

UCH-deficient mouse models

The gad mouse

The recessive gracile axonal dystrophy (gad) phenotype
developed spontaneously in a strain of lab mice, leading to sensory
ataxia at approximately 3 months, and motor ataxia at 4 months,
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manifesting first as a hind limb paralysis and followed by death
at approximately 6 months [69]. The defect was mapped to an
in-frame deletion including exons 7 and 8 from the Uchl1 gene,
corresponding to the loss of 42 residues from 154 aa to 196 aa,
including the catalytic His161 [55]. Although mRNA transcripts
are produced in equivalent amounts to WT (wild-type), there is
no UCH-L1 protein, which combined with the recessive nature
of the phenotype, suggests that defects in the gad mouse are due
to UCH-L1 ablation [55]. Post-mortem analysis of homozygous
gad mice revealed inclusion bodies in axon nerve terminals in
the gracile tract of the spinal cord. Axons from dorsal root
ganglion cells that pass through the gracile tract possess the
longest axons in the mammalian CNS [70]. The affected neurons
display spheroid bodies characteristic of a failure of axonal
transport and an axonal ‘dying-back’ phenotype, characteristic
of ‘Wallerian’ degeneration, a programmed event analogous to,
but distinct from, apoptosis [71–73]. Other sensory and motor
neurons that possess long axons are also affected and the extent
of degeneration is proportional to axon length. The spheroid
bodies contain accumulations of amyloid-β (Aβ) protein as well
as ubiquitin-positive deposits and the neurons are depleted of free
ubiquitin [54,74].

The nm3419 mouse

Another spontaneous mutation arose in a separate strain of lab
mice, with homozygous mice displaying signs of motor ataxia
at ∼1 month and death at ∼6 months [56]. This mutation
inserts a premature stop codon that truncates the last 78 amino
acids of UCH-L1 although, as with the gad mouse, no UCH-
L1 protein can be detected [56]. Also similar to gad mice,
free monomeric ubiquitin is reduced by ∼30% compared
with WT mice. Even at pre-symptomatic stages, nm3419 mice
corticospinal motor neurons show increased ER stress that
correlates with disintegration of the apical dendrite and spine
loss [75].

The Uchl1 knockout mouse

A specific UCH-L1− / − mouse has been generated that displays
a similar ataxic phenotype of progressive paralysis and
death at ∼7 months [68]. UCH-L1 ablation resulted in the
degeneration of presynaptic terminals at the neuromuscular
junction, a loss of synaptic vesicles and the presence of tubulo-
vesicular structures comparable to those seen in dynamin-1 null
mice [76].

Taken together the results from mouse models indicate that,
while not essential for neuronal development, UCH-L1 is
absolutely required for the maintenance of axonal integrity.

UCH-L1 AND DISEASE

Cells have developed numerous mechanisms to deal with
misfolded or aberrant proteins, mostly involving ubiquitin-
mediated degradation pathways, including the formation of
aggresomes and initiation of autophagic pathways [77]. However,
when these processes stall or become overwhelmed, as occurs in
neurons under prolonged stress conditions, they can contribute
to the pathogenesis of disease [78,79]. The protein aggregates
and inclusions that arise in many neurodegenerative diseases
are ubiquitin-rich because the aggregated proteins have been
ubiquitinated and marked for destruction [80,81]. Depending on
the circumstances, UCH-L1 has been proposed to constitute part

of the cell’s survival response or have a direct role in disease
progression [81].

Human Uchl1 mutation

Recently a Glu7Ala point mutation in UCH-L1 was identified
as the cause of early onset neurodegeneration in three siblings
who appeared normal at birth, but became blind at 5 years old
and suffered progressive neurological dysfunction and cerebellar
ataxia, and were unable to stand by the age of 30 [67]. No
phenotype was seen outside of the nervous system. The Glu7

residue in UCH-L1 is required for ubiquitin binding [31],
and in vitro assays with a Glu7 mutant show an almost total
abolition of Ub-AMC hydrolysis compared with WT [67].
The ataxic phenotype observed in humans expressing ubiquitin
binding/hydrolysing deficient UCH-L1 suggests that the axonal
degeneration observed in the mouse models are probably due to
loss of this function. An interesting line of future investigation
would be to discover if a homozygous Cys90 hydrolase-deficient
UCH-L1 mutant could produce a similar phenotype and thus
ascertain whether it is the binding or hydrolytic property of UCH-
L1 responsible for this effect.

UCH-L1 oxidative-modification at Cys152

A consistent theme of the involvement of UCH-L1 in neuro-
degenerative diseases is the extensive oxidative modifications
that render UCH-L1 susceptible to unfolding and toxic gain-
of-function through exposure of the hydrophobic protein core
[36,37,82–84]. For example, the oxidative stress products
cyclopentenone prostaglandins (CyPGs) and 4-hydroxynonenal
(4-HNE) both decrease UCH-L1 solubility and facilitate aberrant
protein interactions [85].

More specifically, CyPGs such as 15d-PGJ2 are fatty-acid
metabolites derived from cyclooxygenase-2 (COX2), induced
following ischaemic injury, and are implicated in the pathogenesis
of neurological diseases [86,87]. UCH-L1 is covalently modified
by 15d-PGJ2, at Cys152, a residue that is not present in UCH-
L3 [36,88] causing a loss of secondary structure and protein
stability [36]. Although Cys152 is situated in the short unstructured
active site loop (Figure 2C), it has been proposed that 15d-PGJ2
binding acts as a lipophilic wedge to disrupt the tightly packed
hydrophobic core leading to destabilization and aggregation.
Consistent with this, a C152A knock-in mouse rescued the defects
seen in WT mice following CyPG treatment, including reduced
cytotoxicity and UCH-L1 protein aggregation, as well as fewer
ubiquitinated aggregates in total [89].

Neurodegenerative diseases

Proteomic screens have indicated that UCH-L1 undergoes
oxidative modification in both Alzheimer’s disease (AD) and
Parkinson’s disease (PD). UCH-L1 solubility is decreased by
the oxidation of cysteine and methionine residues and carbonyl
formation [90–92] and the resultant increase in insoluble UCH-
L1 is proportional to the number of tau-immunoreactive tangles
[93,94]. The APP/PS1 mouse model of AD, which overproduces
Aβ, shows similar redistribution of soluble and insoluble UCH-
L1 to that observed in human AD brain, with a reported ∼20%
reduction of in vitro hydrolytic activity [95]. Mechanistically, it
is likely that the shift from soluble to insoluble forms of UCH-L1
and loss of hydrolytic activity is due to oxidative modification
disrupting its native structure, making it prone to aggregation
[35,36,90].
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UCH-L1 and Parkinson’s disease

The loss of dopaminergic neurons in PD is preceded by the
formation of Lewy Bodies, insoluble proteinaceous inclusions
enriched with ubiquitinated aggregates, as well as displaying
extensive protein oxidative modification [96]. Most cases of PD
are sporadic, although familial strains of the disease exist and a
few of these have been matched to specific genomic mutations
[97], including UCH-L1.

I93M

The I93M point mutation in UCH-L1 has been the focus of
considerable research because it occurred in four out of seven
family members who developed PD. As a result UCH-L1 has
been designated a Parkinson’s susceptibility gene and given the
alternative name of PARK5 [98]. It should be noted, however, that
no effect was seen in the presumed carrier of the mutation and
these observations do not satisfy the formal criteria for a genetic
linkage [16,98].

Transgenic mice expressing the human I93M gene are born
normally and are fertile [84]. However, they do display aberrant
dopaminergic neuron morphology in the substantia nigra at
12 weeks, consistent with degeneration and a loss of dopaminergic
neurons at 20 weeks [84]. This is unlikely to be due to loss of
UCH-L1 hydrolytic activity since heterozygous gad mice are
healthy and UCH-L1-deficient mice do not develop Parkinsonian
symptoms. Rather, I93M likely gives rise to a dominant toxic gain-
of-function, so studies have focused on the physical properties of
the mutant protein. The Ile93 site is located in an intramolecular
α-helix near the active site and contacts the hydrophobic core
of UCH-L1 (Figure 1). The I93M mutation decreases UCH-
L1 solubility, corresponding with an apparent loss of α-helical
structure seen via circular dichroism, and a reduction in hydrolytic
activity by approximately 50% [37,65,99]. Thus, it has been
proposed that the I93M mutant behaves similarly to oxidatively
modified forms of UCH-L1 [65]. However, another study using
NMR reported that the I93M mutant is well folded and structurally
similar to the wild-type protein, with only minor disturbance
around the site of mutation [36].

S18Y

By contrast, an S18Y mutation in UCH-L1 has been reported
to exert a neuroprotective effect against PD [100]. The S18Y
mutant was initially reported as a polymorphism, present in
approximately 46–61 % of those studied in Asian populations,
and 16–24% in European Caucasian populations who show
a reduced risk of PD [100]. Multiple subsequent studies
have yielded contrasting results and the findings have been
vigorously contested. A meta-analysis concluded that although
there was moderate basis for protection within the separate Asian
and Caucasian populations, where the effect was reported as
being recessive or dominant respectively, the effects seen were
contradictory and as a whole there was no significance [101].
At a protein level, the Ser18 side chain does not affect UCH-L1
structure or ubiquitin binding [29] suggesting that any protective
actions likely arise from altered protein–protein interactions at, or
near this site.

UCH-L1 in spontaneous PD

UCH-L1 is covalently modified by the endogenous parkinsonism-
inducing dopamine derivative 1-(3′,4′-dihydroxybenzyl)-1,2,3,4-

tetrahydroisoquinoline (3′,4′-DHBnTIQ), suggesting a possible
role in the pathogenesis of idiopathic PD [102]. Moreover, like
CyPGs (see above), 3′,4′-DHBnTIQ binds UCH-L1 specifically
at Cys152 in vitro. This increases the amount of insoluble
UCH-L1 and reduces its hydrolase activity in SH-SY5Y cells.
These results are consistent with the conserved Cys152 being
a site of modification with the potential to disrupt UCH-L1
stability, leading to neuronal cell death [102]. Although further
investigation is required, the data point to a possible mechanistic
explanation for how UCH-L1 could misfold and form protein
aggregates selectively in dopaminergic neurons in idiopathic
forms of PD.

UCH-L1 as an antioxidant

The complex morphology of neurons dictates a high membrane-
to-cytoplasm ratio and synapses require a high proportion
of unsaturated fatty acids that regulate membrane fluidity
[103]. However, unsaturated fatty acids are susceptible to lipid
peroxidation [104], suggesting that neurons require additional
mechanisms to regulate lipid metabolism and contain oxidative
damage. One possible explanation for the limited deubiquitinase
activity of UCH-L1 is that it fulfils other key roles independent of
any DUB activity, and, although full mechanistic data are yet to be
provided, UCH-L1 has been proposed as a neuronal antioxidant
[81,96]. This role could explain the presence of insoluble or
misfolded UCH-L1 in many neurodegenerative diseases [90,105].
One hypothesis is that the conserved Cys152 residue (see above)
acts as a redox buffer in neurons and reacts with, and chelates,
free radicals to maintain short-term cellular function [90].

Consistent with this, N2a cells treated with antisense UCH-
L1 cDNA to down-regulate UCH-L1 expression were more
susceptible to oxygen/glucose deprivation (OGD) induced cell
death [106]. Moreover, gad mice show increased vulnerability to
lipid peroxidation, and damage is further increased in neurons
cultured in media deficient in Vitamin-E (α-tocopherol), which
is an antioxidant that protects cells from ROS (reactive oxygen
species) damage. This is particularly relevant because chronic
Vitamin-E deficiency causes gracile tract degeneration, similar to
UCH-L1 deficient mouse models [107–109].

Overall, this hypothesis suggests that the abundance and diffuse
cytoplasmic distribution of UCH-L1 allows for the chelation of
excess ROS during acute damage, enabling the cell to continue to
function in the short term at the expense of ubiquitin homeostasis.

CONCLUSIONS AND FUTURE DIRECTIONS

What does UCH-L1 do?

Despite intense research efforts the precise functions of UCH-
L1 remain enigmatic. However, recent progress in defining the
folding and tertiary structure has provided new insights. UCH-
L1 has high affinity for monomeric ubiquitin, but is a poor
hydrolase of ubiquitinated proteins due to restricted access to
the active site [31]. Thus, evidence for UCH-L1 as an ubiquitin
processing enzyme is much more compelling than evidence that
it deubiquitinates substrate proteins. Furthermore, the fact that
UCH-L1 can process short disordered peptide sequences, suggests
a role in regulating particular forms of ubiquitin homeostasis.
Nonetheless, it is still unclear whether the effects observed on
monoubiquitin levels are simply due to ubiquitin binding by UCH-
L1 or whether hydrolytic activity is required.

c© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).
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UCH-L1 and maintenance of axonal integrity

UCH-L1 is necessary for the maintenance of axonal health and
stability and its loss results in axonal degeneration and neuronal
death. However, despite this clear and reproducible phenotype, as
set about above, the mechanisms underlying this degeneration are
unclear. We expect that future experiments exploring whether the
Cys90 mutation causes the same axonal degeneration and ataxic
phenotype as the Glu7Ala mutation in vivo will help resolve these
outstanding questions.

Motor neurons may be particularly susceptible to UCH-L1
loss because they contain a specific ubiquitin pool or pathway
that requires UCH-L1 regulation. Also, the high energy and
protein turnover burdens required to maintain extensive axonal
projections mean that they operate very close to their maximum
capacity and that they are more vulnerable to defects that other
neuronal types can withstand for longer. It is also possible
that UCH-L1 may regulate axon maintenance via microtubule-
associating proteins that are crucial for both axonal transport and
stability [66,85].

Linking protein instability to neurodegenerative disease

Beyond rare diseases caused by mutations in UCH-L1 that result
in axonal degeneration, UCH-L1 is also implicated in other forms
of neurodegenerative disease, most notably Parkinson’s disease.
Recent work highlights how residues in UCH-L1, particularly
Cys152, are readily modified by oxidation and that this can lead to
destabilization of the protein and exposure of the hydrophobic
core, which results in cytotoxic gain-of-function of insoluble
UCH-L1. Intriguingly, oxidative damaged induced instability and
aggregation is prevented by Cys152Ala mutation, which presents
an exciting possibility for therapeutic intervention.

Overall, although UCH-L1 retains some mystique there has
been significant progress towards defining its roles in healthy and
diseased neurons. We anticipate that in the next few years a more
complete understanding will lead to new strategies to exploit its
potential as a therapeutic target.
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