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INTRODUCTION

Alzheimer’s disease (AD), a neurodegenerative disorder, is the 
sixth most common cause of death in the United States, with 

an increase of 71% in AD-induced deaths between 2000 and 
2013.1 It is estimated that there will be one million new cases 
per year and a total estimated prevalence of 13.8 million by 
2050 in the United States.1 AD is characterized by intracellular 
neurofibrillary tangles (NFTs) formation and extracellular 
amyloid-β (Aβ) deposition, together with a loss or impairment 
of language, memory, behavior, and cognition abilities.2 NFTs 
are composed of insoluble and hyperphosphorylated micro-
tubule-binding protein tau, and Aβ is produced from cleavage 
of amyloid precursor protein (APP).2 Although much progress 
has been made in the diagnosis and management of AD over 
the past decades, currently, therapeutic agents are only able to 
retard AD progression with limited efficiency.3,4 Hence, deeper 
insight into the molecular basis of AD may help to identify 
some effectively therapeutic strategies.

Recently, an amyloid hypothesis proposes that Aβ accumu-
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lation contributes to the initiation of AD by causing hyperphos-
phorylation of tau and damage to neurons and synapses.5,6 In 
nervous systems, NF-κB has been identified as a critical regu-
lator in multiple biological processes, such as neuronal surviv-
al, inflammation, and apoptosis.7 Moreover, exogenous in-
creases in Aβ can activate NF-κB signaling in both neuronal 
cells and microglial cells, and NF-κB is implicated in AD patho-
genesis by regulating upstream regulators and downstream ef-
fectors.8 

MicroRNAs (miRNAs), a class of small noncoding ribonu-
cleic acids with the length about 18–25 nucleotides (nt), regu-
late messenger RNA (mRNA) activity at posttranscriptional 
levels.9 MiRNAs have been identified as vital players in neuro-
degenerative diseases, such as AD, Huntington’s disease, or 
Parkinson’s disease.10 A prior study pointed out that microR-
NA-128 (miR-128), miR-9, miR-7, miR-125, miR-23b, miR-132, 
miR-137, and miR-139 are substantially enriched in brains.11 
Also, data analysis of the GEO database (GSE36981, expression 
data from Alzheimer’s disease model mouse) showed that 
miR-128 expression is notably altered, compared with other 
miRNAs (miR-9, miR-7, miR-125, miR-23b, miR-132, miR-137, 
and miR-139), hinting at roles for miR-128 in the development 
of AD. Moreover, miR-128 has been demonstrated to be highly 
expressed in the hippocampus of AD patients relative to age-
matched controls.12 Müller, et al.13 further demonstrated that 
miR-128 expression is upregulated in the hippocampus in an 
intermediate stage of AD patients and to be downregulated in 
the late stage of AD patients. These data suggested that miR-
128 might play a role in AD pathogenicity. Hence, the roles and 
molecular mechanisms of miR-128 in AD progression have 
been further explored. 

Peroxisome proliferator-activated receptor gamma (PPAR-γ), 
a ligand-activated transcription factor, has been implicated in 
the pathogenesis of AD.14 Moreover, decreased PPAR-γ expres-
sion has been demonstrated in AD brain.15 Additionally, previ-
ous studies showed that activation of PPAR-γ could inhibit Aβ-
induced inflammation and neurotoxicity.16,17 

In the present study, we demonstrated that miR-128 exerts 
its cytotoxic effect by targeting PPAR-γ via regulation of the NF-
κB pathway in Aβ-stimulated mouse neuron cells. 

MATERIALS AND METHODS

Clinical samples and cell culture
Our study was approved by the Ethic Committee of Huaihe 
Hospital of Henan University, and signed consent was obtained 
from every participant. Blood samples (10 mL) were collected 
from AD patients (n=20) and age and education-matched 
healthy volunteers (n=20) at our hospital in EDTA vacutainers, 
followed by isolation of plasma by centrifugation (3000 rpm, 5 
min). AD patients (70±5 years old, male:female=2:3) were di-
agnosed following the International Working Group (IWG)-2 

criteria for Alzheimer’s disease.18 The severity of dementia was 
evaluated using an updated standard of the Clinical Demen-
tia Rating scale (CDR)19 and Mini-Mental Status Examination 
(MMSE).20 All AD patients were in CDR2 stage and exhibited 
moderate cognitive impairment with mean MMSE scores of 
about 15. Healthy people (70±5 years old; male:female=2:3) 
with MMSE scores higher than 28 were recruited following the 
standards without any cognitive impairment, dementia, and 
other disease. 

Mouse neuroblast Neuro2a (N2a) cells were purchased from 
American Type Culture Collection (ATCC, Manassas, VA, USA) 
and were cultured in Eagle’s Minimum Essential Medium 
(ATCC) containing 10% FBS (Invitrogen, Carlsbad, CA, USA). 
Primary mouse cortical neurons (MCN) were isolated from preg-
nant embryonic day 18 (E18) mice as previously described.21 
Briefly, mouse cerebral cortices were digested for 15 min at 
37°C using 0.25% trypsin in Hank’s Balanced Salt Solution 
(HBSS, Corning, NY, USA) without calcium and magnesium, 
followed by dissociation using a fire-bored Pasteur pipette. 
Next, cells were maintained using DMEM medium (Invitro-
gen) supplemented with 5% FBS (Invitrogen) on poly-L-ly-
sine-coated dishes. At 3 h after incubation, DMEM medium 
was changed to NeurobasalTM medium (Gibco, Grand Island, 
NY, USA) supplemented with B27 supplement (Gibco) and 0.5 
mM glutamine (Gibco). All experiments were started from 6–7 
days after plating. N2a and MCN were cultured in an incuba-
tion chamber with 5% CO2 at 37°C.

Reagents and cell transfection
PPAR-γ antagonist GW9662 and PPAR-γ agonist Troglitazone 
(Tro) were obtained from MedChem Express (MCE, Monmouth 
Junction, NJ, USA). Aβ-Peptide (1–42) monomer (rat/mouse) 
was purchased from Abcam (Cambridge, UK). Aβ Peptide was 
dissolved in 1% NH4OH/Water and stored in aliquots in tightly 
sealed vials at -20°C. The solution was equilibrated to room 
temperature for at least 1 hour before use. MiR-128 mimic and 
its scramble control (miR-control) and miR-128 inhibitor (anti-
miR-128) and its scramble control (anti-miR-control) were 
purchased from GenePharma Co., Ltd (Shanghai, China). 
These mimics or inhibitors were transfected into MCN or N2a 
cells by Lipofectamine 2000 reagent (Invitrogen) referring to 
the manufacturer’s protocols.

RT-qPCR assay
Total RNA was extracted from plasma (1 mL) and cells using 
TRIzol reagent (Invitrogen) following the protocols of the man-
ufacturer. Then, cDNA first strands were synthesized by M-
MLV reverse transcriptase (Invitrogen) and random primer 
(PPAR-γ, β-actin or U6 snRNA) or specific reverse transcrip-
tion (RT) primers (miR-128). Next, PowerUpTM SYBRTM Green 
Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) and 
quantified PCR (qPCR) primers were used to detect expression 
patterns of PPAR-γ, β-actin, miR-128, or U6 snRNA. β-actin act-
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ed as an endogenous control of PPAR-γ, and U6 snRNA served 
as an internal normalization standard of miR-128. RT primer 
sequences were as follows: miR-128, 5'-GTCGTATCCAGTG 
CAGGGTCCGAGGTATTCGCACTGGATACGACAAAGAG-3'. 
qPCR primer sequences were as follows: miR-128, 5'-TCC 
GATCACAGTGAACCGGT-3' (for ward) and 5'-GTG 
CAGGGTCCGAGGT-3' (reverse); U6, 5'-CTCGCTTCGGCAG 
CACA-3' (forward) and 5'-AACGCTTCACGAATTTGCGT-3' 
(reverse); PPAR-γ, 5'-GACCTGAAACTTCAAGAGTACCAAA-3' 
(forward) and 5'-TGAGGCTTATTGTAGAGCTGAGTC-3' (re-
verse); β-actin 5'-AGGGGCCGGACTCGTCATACT-3' (for-
ward) and 5'-GGCGGCACCACCATGTACCCT-3' (reverse).

Western blot assay
Treated or transfected cells were collected at indicated time 
points, followed by the extraction of whole protein using RIPA 
buffer (Beyotime Biotechnology, Shanghai, China). Then, 
equal weight (40 μg) protein in each sample was separated by 
SDS-PAGE electrophoresis and then transferred to NC mem-
branes (Millipore, Bedford, MA, USA). After blocking in 5% 
non-fat milk for 2 h at room temperature, the membranes were 
incubated with primary antibodies against PPAR-γ or β-actin 
(Abcam, Cambridge, UK) overnight at 4˚C. Subsequently, the 
membranes were probed with horseradish peroxidase-conju-
gated appropriate secondary antibody for 1 h at room tempera-
ture. Finally, specific protein signals in the membranes were 
detected using ClarityTM ECL Western Blotting Substrates 
(Bio-Rad, Hercules, CA, USA) and quantified using Image J 
software (National Institutes of Health, Bethesda, MD, USA). 

MTT assay
Cell viability was assessed by MTT (Sigma-Aldrich, St. Louis, 
MO, USA) assay. Transfected or treated MCN and N2a cells 
were plated into 96-well plates and were cultured in correspond-
ing medium. At the indicated time after incubation, 10 μL of 
MTT solution (5 mg/mL) was added to each well for 4 h at 
37˚C. Next, generated formazan crystal was dissolved in 150 
μL of DMSO (Sigma-Aldrich), followed by the detection of ab-
sorbance at 490 nm. 

Apoptotic rate detection
Cell apoptotic rate was determined using flow cytometry via 
an Annexin V-FITC Apoptosis Detection Kit (Sangon Biotech, 
Shanghai, China). Generally, cells were re-suspended in 195 
μL of binding buffer (1×) at a density of 2–5×105 cells/mL. Then, 
5 μL of Annexin V-FITC solution was added to each sample for 
15 min at room temperature in the dark. After washing with 
binding buffer (1×), 10 μL of propidium iodide solution was 
added to cell samples [re-suspended in 195 μL of binding buf-
fer (1×)]. Finally, cell apoptotic rate was determined by flow 
cytometry (BD Biosciences, San Jose, CA, USA). 

Luciferase activity assay
Partial fragments of PPAR-γ 3'UTR containing predicted miR-
128 binding sites were amplified by PCR and subcloned into 
pGL3-control vectors (Promega, Madison, WI, USA) to gener-
ate wild-type (WT) PPAR-γ reporter. Moreover, mutant type 
(MUT) PPAR-γ reporter with mutant miR-128 binding sites was 
produced using Quickchage Multi Site-Directed Mutagenesis 
kit (Stratagene, Lajolla, CA, USA). Next, constructed WT-PPAR-γ 
or MUT-PPAR-γ reporter was co-transfected into MCN and 
N2a cells together with control Renilla luciferase pRL-TK vec-
tors (Promega) and miR-Control or miR-128. At 48 h after trans-
fection, relative luciferase activity was determined via dual-
luciferase reporter assay (Promega). 

Caspase 3 activity detection
Caspase 3 activity in MCN and N2a cells was measured using 
a Caspase 3 Activity Assay Kit (Beyotime Biotechnology) fol-
lowing the instructions of the manufacturer. Briefly, collected 
cells were lysed using lysis buffer provided in the kit, followed 
by high-speed centrifugation to obtain cell supernatant. Then, 
caspase 3 substrate Ac-DEVD-pNA (0.2 mM) was added to 
cell supernatant. After incubation for 2 h at 37°C, caspase 3 
activity was determined at 405 nm.

NF-κB p65 activity detection
MCN and N2a cells were treated as described in the figure leg-
ends. NF-κB activity was determined using NF-κB p65 Tran-
scription Factor Assay Kit (Abcam) following the manufactur-
er’s instructions. 

Statistical analysis
Our results were obtained from at least three independent ex-
periments and are presented as a mean±SD. Significance dif-
ferences were analyzed using one-way ANOVA or Student’s t-
test. Differences were considered to be statistically significant 
when p<0.05 and to be strikingly significant when p<0.01.

RESULTS

MiR-128 levels are upregulated and PPAR-γ levels are 
downregulated in the plasma of AD patients and in 
Aβ-stimulated MCN and N2a cells.
Firstly, miR-128 and PPAR-γ levels in plasma from healthy vol-
unteers (normal, n=20) and AD patients (n=20) were deter-
mined by RT-qPCR assay. MiR-128 expression was markedly 
increased and PPAR-γ expression was significantly decreased 
in the plasma from AD patients, compared to that from healthy 
volunteers (Fig. 1A and B), suggesting that miR-128 and PPAR-γ 
might play a role in AD pathogenicity. Aβ has been identified as 
a vital mediator in the initiation and progression of AD.2 Hence, 
expression patterns of miR-128 and PPAR-γ in Aβ-treated pri-
mary MCN and N2a cells were measured. As displayed in Fig. 
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Fig. 1. MiR-128 expression is upregulated and PPAR-γ expression is downregulated in plasma from AD patients and Aβ-treated MCN and N2a cells. (A and 
B) Expression patterns of miR-128 and PPAR-γ in plasma from healthy volunteers (Normal) (n=20) and AD patients (n=20) were detected using RT-qPCR assay. 
(C-H) Primary MCN cells and N2a cells were treated with different concentrations of Aβ (0, 5, 10, 20 μM) for 24 h. Then, levels of miR-128 (C and D) and PPAR-γ 
mRNA (E and F) were determined by RT-qPCR assay, and PPAR-γ protein expression (G and H) was measured using Western blot assay. *p<0.05. PPAR-γ, 
proliferator-activated receptor gamma; AD, Alzheimer’s disease; Aβ, amyloid-β; MCN, mouse cortical neurons; N2a, Neuro2a; mRNA, messenger RNA.
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1C and D, Aβ induced a notable increase in miR-128 expression 
in a dose-dependent manner in MCN and N2a cells. Moreover, 
PPAR-γ expression at the mRNA (Fig. 1E and F) and protein 
(Fig. 1G and 1H) level was remarkably reduced in a dose-de-
pendent manner under the treatment of Aβ in primary MCN 
and N2a cells. Taken together, these results indicated that miR-
128 and PPAR-γ might be associated with AD progression.

Inhibition of miR-128 undermines Aβ-mediated 
cytotoxicity by inactivating NF-κB in MCN and N2a 
cells
To further investigate the roles of miR-128 in Aβ-induced neu-
rotoxicity, MCN and N2a cells transfected with miR-128 in-
hibitor (anti-miR-128) or its negative control (anti-miR-con-
trol) were treated with different doses of Aβ (0, 5, 10, 20 μM) 
for 24 h, followed by detection of cell viability, apoptotic rate, 
and caspase 3 activity. Results showed that Aβ induced a 
marked downregulation of cell viability and a significant up-
regulation of apoptotic rate and caspase-3 activity, showing the 
cytotoxicity of Aβ on MCN and N2a cells (Fig. 2A-F). However, 
the depletion of miR-128 weakened Aβ-mediated cytotoxicity 
in MCN and N2a cells, as reflected by increased cell viability, 
decreased apoptotic rate, and reduced caspase-3 activity in Aβ-
treated cells following the inhibition of miR-128 by anti-miR-128 
(Fig. 2A-F). Additionally, Aβ stimulation triggered a significant 
upregulation of NF-κB activity in MCN and N2a cells, while 
this effect was abated by miR-128 inhibition (Fig. 2G and H). 
Thus, these data showed that inhibition of miR-128 alleviates 
Aβ-mediated cytotoxicity by inactivating NF-κB in MCN and 
N2a cells.

PPAR-γ is a target of miR-128
To further explore miR-128, the Targetscan website (http://
www.targetscan.org) was used to search for potential targets 
of miR-128. Among candidate targets, PPAR-γ was selected by 
virtue of its important roles in neurodegenerative disorders, 
including AD (Fig. 3A).22 To further validate this prediction, 
the effect of miR-128 on luciferase activity of WT and MUT 
PPAR-γ reporter was examined in primary MCN and N2a 
cells. Results showed that miR-128 overexpression notably re-
duced luciferase activity of WT PPAR-γ reporter, while it had 
no effect on the luciferase activity of MUT PPAR-γ reporter in 
MCN and N2a cells (Fig. 3B and C). These results indicated 
that miR-128 could directly interact with PPAR-γ 3'UTR via pu-
tative binding sites. Next, we further demonstrated that miR-
128 overexpression strikingly decreased PPAR-γ expression at 
mRNA (Fig. 3D and E) and protein (Fig. 3F and G) levels in 
MCN and N2a cells. Conversely, the introduction of miR-128 
inhibitor induced a significant increase in PPAR-γ expression 
at mRNA (Fig. 3D and E) and protein (Fig. 3F and G) levels in 
MCN and N2a cells. These data indicated that PPAR-γ is a tar-
get of miR-128. 

PPAR-γ attenuates Aβ-mediated cytotoxicity by 
inactivating NF-κB in MCN and N2a cells
Next, the PPAR-γ agonist Tro and the PPAR-γ antagonist GW 
9662 were used to explore the effect of PPAR-γ on Aβ-mediated 
cytotoxicity in MCN and N2a cells. First, we demonstrated that 
the PPAR-γ agonist Tro facilitates PPAR-γ expression, while the 
PPAR-γ antagonist GW9662 suppresses PPAR-γ expression in 
MCN and N2a cells (Fig. 4A and B). Functional analyses re-
vealed that the upregulation of PPAR-γ by Tro weakened Aβ-
induced cytotoxicity in MCN and N2a cells, as reflected in in-
creased cell viability and reduced apoptotic rate in Aβ-treated 
cells following the addition of Tro (Fig. 4C-F). Conversely, in-
activation of PPAR-γ by GW9662 in Aβ-treated cells resulted in 
a dramatic decrease in cell viability and a notable increase in 
apoptotic rate, indicating that PPAR-γ inactivation could po-
tentiate Aβ-mediated cytotoxicity in MCN and N2a cells. 
Moreover, enhanced NF-κB activity by Aβ was lessened by Tro 
and was improved by GW9662 (Fig. 4G and H). Thus, PPAR-γ 
upregulation by Tro inhibited Aβ-induced NF-κB activation, 
while conversely, PPAR-γ downregulation by GW9662 facili-
tated Aβ-triggered NF-κB activation in MCN and N2a cells (Fig. 
4G and H). Collectively, these data showed that PPAR-γ attenu-
ated Aβ-mediated cytotoxicity via inactivating NF-κB in MCN 
and N2a cells. 

MiR-128 inhibitor decreases Aβ-mediated cytotoxicity 
by upregulating PPAR-γ by inactivating NF-κB signaling 
in MCN and N2a cells
Next, we further demonstrated that depletion of PPAR-γ by 
GW9662 results in marked suppression of cell viability and a 
notable elevation of apoptotic rate in anti-miR-128-transfected 
and Aβ-treated MCN and N2a cells (Fig. 5A-D). In other words, 
PPAR-γ downregulation by GW9662 abolished the inhibitory 
effect of anti-miR-128 on Aβ-induced cytotoxicity in MCN and 
N2a cells. Additionally, the inhibition of PPAR-γ by GW9662 
significantly improved NF-κB activity in anti-miR-128-trans-
fected and Aβ-treated MCN and N2a cells (Fig. 5E and F), in-
dicating that anti-miR-128 exerts its inhibitory effect on NF-κB 
activity by upregulating PPAR-γ in Aβ-treated MCN and N2a 
cells. Collectively, these data demonstrated that miR-128 inhibi-
tor decreases Aβ-mediated cytotoxicity by upregulating PPAR-γ 
via inactivating NF-κB signaling in MCN and N2a cells. 

DISCUSSION

Mounting evidence indicates that miRNAs play critical roles 
in the progression and pathophysiology of AD by regulating 
critical proteins and key biological processes, such as Aβ lev-
els, cellular senescence, and inflammation.23-25 For instance, 
microRNA-153 (miR-153) expression has been found to be re-
duced in the brains of advanced AD patients, and miR-153 has 
been shown to suppress APP expression in cultured human fe-
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tal brain cells.26 Others have demonstrated that microRNA-
26b (miR-26b) expression is upregulated in AD and that its 
overexpression facilitate tau-phosphorylation and AD neuro-
nal pathology.27

As mentioned above, abnormal miR-128 expression has 
been noted in the hippocampus of AD patients.12,13 Moreover, 
downregulation of miR-128 has been found to facilitate excit-

ability of cultured cortical neuronal networks.28 Tiribuzi, et al.29 
showed that miR-128 downregulation facilitates Aβ degrada-
tion in monocytes from sporadic AD patients, indicating that 
miR-128 contributes to AD progression. However, Guidi, et al.30 
demonstrated that miR-128 overexpression results in a marked 
increase in cell number and anti-apoptotic factor BCL2 levels 
in SH-SY5Y neuroblastoma cells. In the present study, we dem-

Fig. 4. PPAR-γ attenuates Aβ-mediated cytotoxicity by inactivating NF-κB in MCN and N2a cells. (A and B) MCN and N2a cells were treated with Control 
(DMSO), Tro (20 μM), or GW9662 (10 μM) for 24 h, followed by detection of PPAR-γ protein level via Western blot assay. (C-H) MCN and N2a cells were 
treated with Aβ (10 μM) for 24 h and stimulated with Control (DMSO), Tro (20 μM), or GW9662 (10 μM) for another 24 h. Next, at the indicated time point, 
cell viability (C and D), apoptotic rate (E and F), and NF-κB activity (G and H) were determined. *p<0.05. PPAR-γ, proliferator-activated receptor gamma; 
Aβ, amyloid-β; MCN, mouse cortical neurons; N2a, Neuro2a; Tro, troglitazone.
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Fig. 5. miR-128 inhibitor decreases Aβ-mediated cytotoxicity by upregulating PPAR-γ via inactivation of NF-κB signaling in MCN and N2a cells. (A-F) 
MCN and N2a cells were treated with Aβ (10 μM) for 24 h, followed by stimulation of control (DMSO) or Tro (20 μM) for another 24 h. Aβ-treated cells 
were transfected with anti-miR-control or anti-miR-128 for another 24 h, together with or without the treatment of control (DMSO) or GW9662 (10 μM) 
for an additional 24 h. Following this, cell viability (A and B), apoptotic rate (C and D), and NF-κB activity (E and F) were determined in treated cells. 
*p<0.05. Aβ; amyloid-β PPAR-γ, proliferator-activated receptor gamma; MCN, mouse cortical neurons; N2a, Neuro2a; Tro, troglitazone.
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onstrated that miR-128 is highly expressed in plasma from AD 
patients and in Aβ-treated MCN and N2a cells. Additionally, we 
discovered that the inhibition of miR-128 weakens Aβ-mediated 
cytotoxicity on MCN and N2a cells, reflected in decreased cell 
viability and increased apoptotic rate and caspase activity in 
Aβ-treated cells following depletion of miR-128 by anti-miR-128.

Previous studies have shown that NF-κB is activated in neu-
rons surrounding early plaques and brains of AD patients.31,32 
Additionally, Aβ was found to induce NF-κB activation in pri-
mary neurons and neuronal cells.31-33 Hence, we further tested 
whether miR-128 exerts its roles by regulating NF-κB activity. 
Our results revealed that Aβ stimulates an increase in NF-κB 
activity in a dose-dependent manner at concentrations of 0–20 
μM in MCN and N2a cells, which is in accordance with the 
aforementioned studies. Furthermore, downregulation of miR-
128 inhibited Aβ-induced NF-κB activation in MCN and N2a 
cells. Overall, this suggests that the inhibition of miR-128 weak-
ens Aβ-mediated cytotoxicity by inhibiting NF-κB activation in 
MCN and N2a cells. 

PPAR-γ has been shown to be a critical factor in multiple 
processes, such as neuroprotection, anti-inflammation, and 
metabolism.34-36 Moreover, mounting evidence suggests that 
PPAR-γ could regulate lipid and glucose metabolism and inhib-
it inflammatory gene expression in AD. Accordingly, PPAR-γ ag-
onists are considered attractive therapeutic targets for AD.14,37 
For instance, PPAR-γ agonist pioglitazone enhances cerebel-
lar dysfunction at the pre-Aβ deposition stage in AD model 
mice.38 In the present study, we demonstrated that PPAR-γ ex-
pression is notably decreased in the plasma of AD patients 
and in Aβ-stimulated MCN and N2a cells, which is consistent 
with earlier findings.15 However, studies on PPAR-γ expression 
in AD patients are considered controversial. For instance, de 
la Monte and Wands39 and Kitamura, et al.40 demonstrated that 
PPAR-γ expression is strikingly elevated in AD brain. Mean-
while, functional analyses in the present study revealed that 
PPAR-γ activation by Tro weakens Aβ-induced cytotoxicity in 
MCN and N2a cells, similar to a preceding study.41 Conversely, 
PPAR-γ inhibition by GW9662 potentiated Aβ-mediated cyto-
toxicity in MCN and N2a cells. Prior studies also indicated 
that activation or inducing expression of PPAR-γ results in a 
marked reduction in Aβ levels in cultured neuronal and non-
neuronal cells,42-44 suggesting that PPAR-γ might exert protec-
tive effects on AD patients. Furthermore, upregulation of 
PPAR-γ by Tro hampered Aβ-induced NF-κB activation, and 
downregulation of PPAR-γ by GW9662 contributed to Aβ-
induced NF-κB activation in MCN and N2a cells. Collectively, 
our data showed that PPAR-γ activation weakens Aβ-induced 
cytotoxicity by inactivating NF-κB signaling in MCN and N2a 
cells. Subsequent restoration assays further demonstrated that 
PPAR-γ downregulation by GW9662 abolishes the inhibitory 
effect of anti-miR-128 on Aβ-induced cytotoxicity by increas-
ing NF-κB activity in MCN and N2a cells.

Taken together, our results revealed that miR-128 abates Aβ-

mediated neurotoxicity by targeting PPAR-γ via inactivation of 
NF-κB in MCN and N2a cells. Our findings may contribute to 
determining the roles and molecular mechanisms of miR-128 
and PPAR-γ in AD progression, providing a potential therapeu-
tical target for AD. 
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