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Abstract: No thermal process, even the biological systems, can escape from the long arms of the
second law. All living things preserve entropy since they obtain energy from the nutrition they
consume and gain order by producing disorder. The entropy generation in a biological and thermally
isolated system is the main subject of current investigation. The aim is to examine the entropy
generation during the convective transport of a ciliated nano-liquid in a micro-channel under the
effect of a uniform magnetic field. Joint effects of electroosmosis and thermal radiation are also
brought into consideration. To attain mathematical simplicity, the governing equations are trans-
formed to wave frame where the inertial parts of the transport equations are dropped with the use
of a long-wavelength approximation. This finally produces the governing equations in the form of
ordinary differential equations which are solved numerically by a shooting technique. The analysis
reports that the cilia motion contributes to enhance the flow and heat transfer phenomena. An
enhancement in the flow is observed near the channel surface for higher cilia length and for smaller
values of the electroosmotic parameter. The entropy generation in the ciliated channel is observed to
be lessened by intensifying the thermal radiation and decreasing the Ohmic heating. The extended
and flexible cilia structure contributes to augment the volumetric flow rate and to drop the total
entropy generation in the channel.

Keywords: entropy analysis; electroosmotic ciliary flow; thermal radiation; magnetic field; Joule
heating; Carreau nanofluid

1. Introduction

Motile cilia aided transport plays an important role in the motion of the cell body or
the neighboring material over the cell surface. Cilia consists of minuscule hair resembling
threads that move periodically to move in a bio-fluid. They move similar to sculls, lashing
backward and forth, collide in synchronization, and generate a pattern of coordinated
traveling waves along the wall called metachronal waves. Thus, an escalation in the liquid
stream is produced due to the force exerted on the fluid through power strokes. Motile
cilia have varied usage in the disciplines of physiology and bioengineering. For instance,
in the respiratory system [1] cilia are accountable for clearing the airways by eradicating
mucus and dust particles, cilia contribute to drive the food to its ultimate end [2] in the
digestive tract, to transport eggs via oviducts in female fallopian tubes [3,4], and to ductile
afferents mix sperms in the male testis to control them from congregating and blocking the
tubules [5].

Artificial cilia-structured micro-scale electromechanical devices such as sensors, actua-
tors, and lab-on-a-chip devices have nowadays gained significant interest from scientists.
These microfluidic tools, triggered by electric and magnetic forces, have been widely used

Micromachines 2021, 12, 1004. https://doi.org/10.3390/mi12091004 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-4173-0870
https://doi.org/10.3390/mi12091004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12091004
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12091004?type=check_update&version=3


Micromachines 2021, 12, 1004 2 of 21

in hemodialysis, drug supply, and micromixers in nano and microfluidic pumps, etc. To
emphasize the significance of ciliary motion in biology and bioengineering fields, some
important studies have been mentioned for the interested audience [6–8].

An electroosmotic motion evolves as a result of the submission of the electric field on
the liquid. This flow is associated with an electric double layer (preserving the net charge
density) that develops at the solid-fluid borderline. Examples of some advanced electrical
machines in micro and nanofluidic devices are electroosmotic liquid pumps, DNA testing,
pharmaceutical drug supply pump, cooling chips, lab-on-a-chip devices, and microfabri-
cated liquid devices, etc. In this regard, the pioneering contribution was made in 1964 by
Burgreen and Nakache [9]. Abo-Elkhair et al. [10] considered an electric double layer and
partial slip in a peristaltic motion and established that the high values of an electroosmotic
parameter hinder the fluid motion near microchannel walls. Chaube et al. [11] analyzed
the impact of electric field on non-Newtonian liquid and emphasized the importance of
this study in lab-on-chip devices and micropumps. A theoretical analysis dealing with
an axially applied electric field on the peristaltic motion of Jeffrey fluid was delivered
by Ramesh et al. [12]. Javayel et al. [13] considered the electroosmotic peristaltic motion
of nanofluid and determined that the skin friction at the pump walls increases for the
elevated values of an electroosmotic parameter. Hang et al. [14] studied the electroosmosis-
driven stream in a microchannel with a stretching upper boundary. Some current studies
with the concept of combined electric and magnetic forces in a peristaltic flow through a
microchannel are reported in [15–17].

One of the major issues in the preparation of energy-resonant materials is the low
thermal conductance of traditional heat transfer fluids. Nowadays, this issue is being
addressed by suspending nanoscale solid granules such as copper, silver, gold, titanium,
copper oxide, etc., in a conventional liquid such as water, ethylene glycol, oil, or blood, etc.
This homogeneous mixture is called nanofluid which has efficient thermal performance
and serves as an optimal heat transfer medium. Novel applications of nano-liquids are seen
in fuel batteries, thermal spread in micro-electrical devices, refrigerators, engine cooling,
chiller, healing, and therapeutic procedures. Various biomedical applications, specifically
drug delivery, involve incorporating the Copper-nanoparticles or Gold-nanoparticles in
blood transport for therapeutic effectiveness. An interesting study by Majewski et al. [18]
shows how Cu-nanoparticles increase the antioxidant capacity of the blood. This aspect of
nanoparticles in physiological fluids is further studied vastly by many investigators con-
sidering different nanoparticles. The combined heat and mass transfer phenomenon was
investigated by Ali et al. [19] in the peristaltic motion of a nanofluid in a symmetric channel.
Tripathi and Beg [20] discussed the use of the peristaltic motion of water-based nanofluid
in the drug delivery process. A similar application was also reported by Abbas et al. [21]
in a water-based nanofluid flow through a nonuniform microchannel. Some recent investi-
gations in the field of nanofluid transport in different channels are mentioned in [22–24].

In various biological processes involving chemical reactions, another remarkable
phenomenon is the deterioration in free energy. For instance, the metabolic system in living
creatures produces chemical reactions to trigger the free energy which consequently results
in the production of a considerable extent of entropy. Some antientropic actions include
the flow of various materials, such as urination, sweat, blood stream, muscle spasms, and
biosynthesis. Owing to these important applications of thermodynamics in biological
systems, some investigations ([25,26]) have been conducted in this field. A remarkable
contribution to entropy generation and its minimization were contributed by Bejan [27].
Furthermore, Bejan [28] studied entropy production in four separate modes of heat transfer.
In the biological regime, Saleem and Munawar [29] analyzed the entropy generation trend
in an inclined channel containing ciliated structures filled with non-Newtonian hyperbolic
tangent fluid. An interesting contribution divulging the thermal analysis of Cu-water
nano-liquid in a tube was given by Akbar and Butt [30]. Recently, a bio-magnetic liquid
transport considering heat transfer aspect was studied by Saleem and Munawar [31].
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In microchannels, at low shear rates many physiological fluids behave like non-
Newtonian fluids due to their shear-thinning and elastic characteristics. Due to their rheo-
logical characteristics, some physiological fluids are modeled as Carreau fluid. In a com-
parison study, Johnson et al. [32] computed wall shear stress for various non-Newtonian
fluid models and compared it with the experimental data, and found that Carreau fluid is
the best fluid model for blood flow. Therefore, in the present study, we consider Carreau
fluid as the base fluid.

A glance over the past literature reveals that the entropy problem in ciliated channels
must be studied further under various physical assumptions, such as, under electroosmosis,
thermal radiation, Joule heating, etc. The primary objective of this study is to explore the
entropy generation aspects of thermally radiated nano-liquid in an electroosmotic pump
with its surface lined with a cilia mat. Due to rheological characteristics, the Carreau
fluid is considered as blood combined evenly with a 1−6% volume fraction of Copper
nano-sized particles. The collective impact of Joule heating and radiative heat transfer
has been considered while formulating the entropy expression. The problem has been
transformed in the moving frame under the practical assumptions of long-wavelength
approximation and the Debye-Hückel linearization. Roseland approximation has been used
to linearize the thermal radiation term while the Debye-Hückel approximation has been
applied to linearize the Poisson-Boltzmann equation. The simplified governing system
has been solved numerically with the aid of the shooting technique. The results have been
discussed with the aid of several graphs. The expression for pressure-rise per metachronal
wavelength is numerically calculated by integrating the pressure gradient.

2. Mathematical Modelling

We consider a steady, two-dimensional flow of a Cu-blood nanofluid in a long chan-
nel contains hair-like structure at the wall, called cilia (see Figure 1). A synchronized
metachronal traveling wave progressing with an angular velocity c along the flexible wall,
thus, produces an electric current of intensity Ex in the direction of flow. The surface
temperature of the wall remains constant at a value TH. The effective and recovery strokes
of the cilia field stimulate the rhythmic waves. The cartesian coordinate system is framed
by taking the axis X along the wave transmission and the Y-axis in the upright direction.
The cilia geometry is expressed by the following wave function [33,34]:

Y = H
(
X, t
)
= a + aε cos

(
2π

λ

(
X− ct

))
. (1)

Sleigh [35] proved in an experimental investigation that the cilia tip adopts an elliptic
path, and are positioned with the channel wall at

X = G
(
X, t
)
= X0 + aεα sin

(
2π

λ

(
X− ct

))
, (2)

where ε is the cilia length, α is the eccentricity of cilia’s elliptical motion, a symbolizes the
mean width of channel, λ is the wavelength, t is the time, and X0 is the position of the
fluid particle.
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Figure 1. Schematic diagram of flow through the electroosmotic ciliated pump.

Differentiating Equations (1) and (2) with respect to t to obtain the velocity components
at channel wall as

U0 =

(
∂X
∂t

)
X0

=
−
( 2π

λ

)
acεα cos

( 2π
λ

(
X− ct

))
1−

( 2π
λ

)
aεα cos

( 2π
λ

(
X− ct

)) , (3)

V0 =

(
∂Y
∂t

)
X0

=
−
( 2π

λ

)
acεα sin

( 2π
λ

(
X− ct

))
1−

( 2π
λ

)
aεα sin

( 2π
λ

(
X− ct

)) . (4)

The flow is assumed to be under the influence of an external force F which is the sum
of transverse magnetic field and an axially applied electric field and is given by

F = ρeE + J× B, (5)

where J = σnf (V × B) is the electric current density by Ohm’s law. Here B = (0, B0, 0) is
external uniform magnetic field of strength B0 and E = (Ex, 0, 0) represents intensity of
axially applied electric field. Thus, the governing equations under the aforementioned
suppositions in a stationary frame of reference are given by

∂U
∂X

+
∂V
∂Y

= 0, (6)

ρn f

(
∂U
∂t

+ U
∂U
∂X

+ V
∂U
∂Y

)
= − ∂P

∂X
+

∂SXX

∂X
+

∂SXY

∂Y
− σn f B2

0U + ρeEx, (7)

ρn f

(
∂V
∂t

+ U
∂V
∂X

+ V
∂V
∂Y

)
= − ∂P

∂Y
+

∂SXY

∂X
+

∂SYY

∂Y
, (8)

(ρCP)n f

(
∂T
∂t + U ∂T

∂X
+ V ∂T

∂Y

)
= kn f

(
∂2T
∂X2 +

∂2T
∂Y2

)
+ SXX

∂U
∂X

+ SXY

(
∂U
∂Y

+ ∂V
∂X

)
+ SYY

∂V
∂Y
− ∂qr

∂Y

+σn f

(
E2

x + B2
0U2

)
,

(9)

Subject to the boundary conditions

U = U0, T = TH at Y = H,
∂U
∂Y

= 0, ∂T
∂Y

= 0 at Y = 0,

}
(10)
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where P is the pressure, T the temperature field, TH the wall temperature, and
(
U, V

)
is

the velocity vector. For Carreau fluid, the stress tensor is described as

S = −
[

µn f

(
1 +

(
Γ
•
γ
)2
) n−1

2
]
•
γ (11)

with
•
γ =

√
1
2 ∑i ∑j

•
γij
•
γji =

√
1
2 Π.

The components of stress tensor in Equation (11) are given by

SXX = −2µn f

[
1 +

(
n− 1

2

)
Γ2 •γ

2
]

∂U
∂X

, (12)

SXY = −µn f

[
1 +

(
n− 1

2

)
Γ2 •γ

2
](

∂U
∂Y

+
∂V
∂X

)
, (13)

SYY = −µn f

[
1 +

(
n− 1

2

)
Γ2 •γ

2
](

∂V
∂Y

)
, (14)

where µnf is the effective viscosity, Γ is the fluid time relaxation parameter, n the power-law
index and Π represents the second invariant strain tensor. The Carreau model given in
Equation (11) exhibits the Newtonian fluid model at n = 1 and/or Γ = 0.

The default volume fraction of Cu nanoparticles assumed in the current study is 1–6%
of the base fluid (Carreau fluid). The mathematical equations representing the attributes of
Cu-blood nanofluid are listed as [36,37]:

ρn f = ρ f

[
(1− φ) + φ

(
ρnp

ρ f

)]
, (15)

µn f =
µ f√

(1− φ)5
, (16)

(ρCP)n f = (1− φ)(ρCP) f + φ(ρCP)np, (17)

σn f = σf +
3
(

σs
σf
− 1
)

φσf(
σs
σf

+ 2
)
−
(

σs
σf
− 1
)

φ
, (18)

kn f

k f
=

knp + (S− 1)k f − (S− 1)φ
(

k f − knp

)
knp + (S− 1)k f + φ

(
k f − knp

) , (19)

where ρf, µf, (ρCP)f, σf, kf, and φ are the density, viscosity, specific heat capacity, electrical
conductivity, thermal conductivity, and the total volume fraction of solid nano particles,
respectively, for the base fluid. Whereas, the subscripts “np” assign to these quantities
corresponds to nanofluid characteristics. The numerical values of these characteristics are
mentioned in Table 1. The parameter S represents the nanoparticles shape [38,39], such
as, a value of S = 5.7 corresponds to lens-shaped nanoparticles and S = 4.7 represents
cylindrical-shaped nanoparticles. In this study, S is considered to be lens-shaped (=5.7).

Table 1. Thermophysical characteristics of base fluid and nano bits [40].

Physical Quantities Base Fluid (Blood) Solid Nanoparticles (Cu)

ρ (kg/m3) 1063 8933
σ (1/Ωm) 0.8 59.6 × 106

Cp (J/KgK) 3594 385
k (W/mK) 0.492 400
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The radiation heat transfer is one of the heat transfer modes present in thick media
flows. The radiative heat flux in the X-direction is assumed to be negligible as compared to
the Y-direction. For intense absorption and a system in thermal equilibrium, Rosseland’s
approximation [41] suggests that the radiative heat flux qr is approximated by:

qr = −
4σ∗

3K∗
∂T4

∂Y
, (20)

where σ* is the Stefan-Boltzmann constant and K* the Rosseland mean spectral absorption
coefficient. The fractional variation in temperature is considered to be adequately small
in a distance of one mean free path. The first two terms of Taylor’s series of T4 about
the temperature difference are T4 ∼= 4(T1−T0)3T − 3(T1 −T0)4. Thus, Equation (1) takes
the form

qr = −
16σ∗(T1 − T0)

3

3K∗
∂T
∂Y

. (21)

Transforming the variables from fixed frame to wave frame by utilizing the following
conversions:

x = X− ct, y = Y, u = U − c, v = V, p(x, y) = P
(
X, Y, t

)
. (22)

The distribution of electric potential Φ is modeled by the Poisson-Boltzmann equation
as [42]:

∂2Φ

∂X2 +
∂2Φ

∂Y2 = − ρe

εε0
, (23)

where ε0 is the permittivity of free space and ε is the medium permittivity. The parameter
ρe is the net charge density which is a function of Φ. In the case of binary fluid comprising
of cation and anion, it can be expressed as:

ρe = ez(n+ − n−), (24)

where the positive and negative charges in bulk concentration are defined as

n+

(
= n0e

− zeΦ
kbTave

)
and n−

(
= n0e

zeΦ
kbTave

)
, (25)

with z is the valence of type-i ions, e is the electric charge of a proton, kb is the Boltz-
mann constant, n0 is the bulk ionic concentration. The concentration of nanofluid in
Equations (15−19) is homogeneous, thus, there does not exist any concentration gradient
in the fluid and the flow Peclet number is adequately insignificant. Such an assumption
validates the distribution of ionic concentration.

For symmetric electrolytes, the net charge density can simply be computed as:

ρe = 2n0ze sin h
(

zeΦ
kbTave

)
, (26)

To obtain an analytic solution of Equation (23), it is common to perform one fur-
ther simplification and linearize the sine hyperbolic function to obtain the Debye-Hückel
approximation [43]. Since the wall zeta potential is sufficiently small (≤25 mV), one obtains

sin h
(

zeΦ
kbTave

)
∼=

zeΦ
kbTave

, (27)

Utilizing Equations (7) and (8), Equation (4) transforms to

∂2Φ

∂X2 +
∂2Φ

∂Y2 =
2n0z2e2

kbTaveεε
Φ (28)
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Introducing the following dimensionless quantities

x = x
λ , y = y

a , Φ = Φ
ζ , u = u

c , v = λv
ac , H = H

a , t = ct
a , p = pa2

µ f cλ , θ = T−T0
TH−T0

,

β = a
λ , Re =

ρ f ac
µ f

, Ha =

√
σf
µ f

B0a, Pr =
µ f (CP) f

k f
, Ec = c2

(CP) f (TH−T0)
,

Rn =
16σ∗(∆T)

3

3µ f (CP) f k∗f
, UHS = −Exεεζ

cµ f
, We = Γc

a , Sp =
σf E2

xa2

∆Tk f
,


(29)

where x, y are new independent variables, u, v are the dependent variables, p is the pressure,
θ is the dimensionless temperature, β is the wave number, Ha is the Hartmann number, Pr
is the Prandtl number, Ec is the Eckert number, Rn is the thermal radiation number, UHS
the Helmholtz-Smoluchowski velocity, We is the Weissenberg number for Carreau fluid,
and Sp is the term signifying Joule heating.

The velocity components in the stream function form can be written as u = ∂Ψ/∂y
and v = –∂Ψ/∂x. Normalizing Equations (6−10) in light of Equations (22) and (29), and
afterword employing the long wavelength and small Reynolds number approximation, the
inertia effects become negligible [42] and the following set of equations are obtained:

∂p
∂x

= L1
∂3Ψ
∂y3 +

n− 1
2

L1We2 ∂

∂y

[(
∂2Ψ
∂y2

)3]
− L2Ha2 ∂Ψ

∂y
+ UHS

∂2Φ
∂y2 , (30)

∂p
∂y

= 0, (31)

(
L3

Pr
+ Rn

)
∂2θ

∂y2 + EcL1

[(
∂2Ψ
∂y2

)2

+
n− 1

2
We2

(
∂2Ψ
∂y2

)4]
+

L2Sp

Pr
+ L2EcHa2

(
∂Ψ
∂y

)2
= 0. (32)

Cross differentiation of Equations (30) and (31) leads to the following equation:

L1
∂4Ψ
∂y4 +

(n− 1)L1

2
We2 ∂2

∂y2

[(
∂2Ψ
∂y2

)3]
− L2Ha2

(
∂2Ψ
∂y2

)
+ UHS

∂3Φ
∂y3 = 0, (33)

and the linearized Poisson-Boltzmann equation simplifies to

∂2Φ
∂y2 = K2Φ, (34)

where

L1 = 1√
(1−φ)5

,

L2 =

(
σs
σf

+2
)
−
(

σs
σf
−1
)

φ+3
(

σs
σf
−1
)

φ(
σs
σf

+2
)
−
(

σs
σf
−1
)

φ
,

L3 =
knp+(S−1)k f−(S−1)φ(k f−knp)

knp+(S−1)k f +φ(k f−knp)
,

and K = aze
√

2n0
εε0kbTave

is the Debye-Hückel parameter.

The subsequent nondimensional boundary conditions are

Ψ = 0, ∂2Ψ
∂y2 = 0, ∂Φ

∂y = 0, ∂θ
∂y = 0 at y = 0,

Ψ = F, ∂Ψ
∂y = −1− 2παεβ cos 2πx

1−2παεβ cos 2πx , θ = Φ = 1, at y = H = 1 + ε cos 2πx,

 (35)
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Integrating the pressure gradient to obtain the pressure-rise per wavelength

∆P =
∫ 1

0

(
dp
dx

)
dx. (36)

The mean flow rates for fixed frame (Q) and for the wave frames (F) are given by:

F =
∫ H

0

(
∂Ψ
∂y

)
dy, Q = F + 1. (37)

Equations (32)–(34) along with boundary conditions (35) form a set of linear boundary
value problem BVP. Such BVP can easily be solved in the Mathematica software with
the help of the built-in “shooting” technique provided by the utility package “NDSolve”.
We use this routine which solves nth order BVP as a system of n first-order initial value
problems to obtain the exact numerical solution.

3. Entropy Analysis

For second-law analysis, consider the radiation, convection, viscous dissipation, and
the Joule heating effects as the primary source of entropy production. Thus, the second-law
yields ([44–47]):

S′′′gen =
kn f

T2
0

(
1 +

16σ∗(T1 − T0)
3

3K∗

)[(
∂T
∂X

)2

+

(
∂T
∂Y

)2]
+

µn f

T0

[
SXX

∂U
∂X

+ SXY

(
∂U
∂Y

+
∂V
∂X

)
+ SYY

∂V
∂Y

]
+

σn f

T0

(
B2

0U2
+ E2

x

)
. (38)

Normalizing Equation (38) by assuming long wavelength approximations, incorporat-
ing Equations (22) and (29), and dividing with characteristic entropy, the expression for
total entropy generation number is

NG = (L3 + Rn)

(
∂θ

∂y

)2
+ L1

PrEc
τ

[(
∂2Ψ
∂y2

)2

+
n− 1

2
We2

(
∂2Ψ
∂y2

)4]
+ L2

PrEcHa2

τ

(
∂Ψ
∂y

)2
+

L2

τ
Sp, (39)

where τ = ∆T/T0 represents the dimensionless temperature difference (assumed to
be 1).

The Bejan number Be is given by:

Be =
1

1 + Ξ
, (40)

where Ξ =
L1

PrEc
τ

[(
∂2Ψ
∂y2

)2
+ n−1

2 We2
(

∂2Ψ
∂y2

)4
]
+L2

PrEcHa2
τ

(
∂Ψ
∂y

)2
+

L2
τ Sp

L3(1+Rn)
(

∂θ
∂y

)2 is the irreversibilities ratio.

4. Results and Discussion

In this section, we discuss the graphical results of the present numerical solution
and provide the physical interpretation. Several graphs are plotted for dynamically or
thermodynamically important characteristics against various parameters of interest in
Figures 2–27. The Eckert number is kept fixed at 0.05, the nanoparticles concentration φ
is 0.06, and the wave number β is 0.1 while the rest of the parameters are varied within
suitable ranges.

Figures 2–5 describe the modifications in the axial velocity profile u(y) when different
values of the Hartmann number (Ha), Helmholtz-Smoluchowski velocity parameter (UHS),
Debye-Hückel parameter (K), and cilia length parameter (ε) are selected. Figure 2 reveals
that an elevated value of Hartmann number (Ha) decelerates the fluid motion in the envi-
rons of the channel center and boosts near the channel boundary. Furthermore, this upsurge
(in the Hartmann number) develops a more flattened pattern of velocity distribution close
to the channel center. This declining conduct of Ha on fluid stream is due to the electromo-
tive force which is linked to the magnetic force. The induced force possesses the ability to



Micromachines 2021, 12, 1004 9 of 21

defy the fluid flow in the channel deep zone. But in a wavy channel, in order to preserve a
constant flow rate, an utterly inverse state can be encountered near the channel boundaries.
Figure 3 concluded that induction of Helmholtz-Smoluchowski velocity UHS in the flow
direction enhances the fluid velocity. The same intensity of Helmholtz-Smoluchowski
velocity, when applied in the reverse direction, produces a deceleration in fluid velocity
especially in the center of the channel. The impact of the electroosmotic parameter (K)
on the velocity field is shown in Figure 4. From the figure, it is observed that the large
values of K reduce the fluid velocity at the center of the channel and hinder the velocity in
the locality of the ciliated boundary. This conduct is quite expected since an increase in
Debye thickness results in a strong electric double layer. Thus, the fluid velocity reduces at
the channel center. However, near the wall of the channel, an entirely reverse behavior is
noticed which signifies the momentum balance inside the channel. Figure 5 depicts that the
prolonged cilia obstruct the flow in the deep channel region and exhibit trivial effects close
to the ciliated wall. This behavior emerges as the cilium whip is directly proportional to
its length. Therefore, a high value of the cilium length parameter proposes a considerable
drop in fluid flow in the core channel region.

Figure 2. Axial velocity u(y) for various Ha.

Figure 3. Axial velocity u(y) for various UHS.
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Figure 4. Axial velocity u(y) for various K.

Figure 5. Axial velocity u(y) for various ε.

Figure 6 depicts that the long appendages (coated channel surface) interact more
acutely as compared to smaller ones. Therefore, an increase in cilia length parameter (ε)
causes augmentation in the pressure gradient in the center of the channel, however, an
inflected trend is noticed near the channel boundaries. Figures 7 and 8 reveal that for
large values of K (i.e., small Debye length), and the Weissenberg number We, the pressure
gradient increases throughout the channel. This promising effect of these parameters is
highly considered in the contracted cross-sections of the channel. Figure 9 indicates that
in the pumping zone (∆P > 0), the ciliary motion is more influential than the peristaltic
motion. However, this domination becomes weak in the free pumping area. In addition, in
the augmented pumping zone (∆P < 0), the pressure rise per metachronal wavelength with
a positive volume flow rate reflects a diminishing role of cilium length. From Figure 10, it
is depicted that an enhancing behavior of electroosmosis parameter (K) on ∆P is retained
throughout the pumping region.
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Figure 6. Pressure gradient at varying ε.

Figure 7. Pressure gradient at varying K.

Figure 8. Pressure gradient at varying We.
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Figure 9. Pressure-rise per wavelength at varying ε.

Figure 10. Effect of variation in K on pressure rise per wavelength.

Variations in nanofluid temperature (θ) for different values of the Prandtl number
(Pr), thermal radiation (Rn), Joule heating (Sp), and double electric layer (K) parameters are
stated in Figures 11–14. It is observed that the nanofluid temperature is enhanced when
the Prandtl number rises (Figure 11). This rise is more considerable as one moves close
to the channel center. A substantial drop in nanofluid temperature for large values of Rn
is reported in Figure 12. The Joule heating is known as the impact of an electric current
passing through a conductor (medium) and produces thermal energy. Figure 13 shows that
with an increase in the Joule heating parameter Sp, the nanofluid temperature increases.
Figure 14 reflects a remarkable augmentation in temperature for high values of K (due to an
inverse relationship with the Debye length). However, this association is more significant
near the middle of channel.



Micromachines 2021, 12, 1004 13 of 21

Figure 11. Temperature profile at various Pr.

Figure 12. Temperature profile at various Rn.

Figure 13. The temperature field for various values of Sp.
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Figure 14. The temperature field for various values of K.

Figure 15 depicts that the overall entropy in the ciliated channel is diminished when
high values of Rn are considered. However, an incredibly remarkable impact of this
parameter on entropy generation can be seen in the surroundings of the channel wall. The
Joule heating parameter Sp (Figure 16) reflects an absolutely opposite effect on entropy
production when compared to Figure 15. From Figures 17 and 18, it is concluded that the
size and flexibility of the motile cilium perform an essential role in reducing the overall
entropy production within the ciliated channel. More extended and elastic cilia have the
ability to lessen the total entropy in the channel. Therefore, ciliary flows are found to be
more antagonistic to entropy generation than peristaltic flows. Figures 19–22 demonstrate
the behavior of the Bejan number for the beating effects of fluid friction irreversibility and
heat transfer irreversibility close to the channel center and wall, respectively. It is seen that
the fluid friction and heat transfer irreversibilities rise for small values of heat radiation
parameter Rn and for large values of the Hartmann number (Ha) and Joule heating (Sp)
parameters. Moreover, it is also noticed that the Prandtl number (Pr) has a lessening effect
on heat transfer irreversibility but its impact on fluid friction irreversibility is insignificant.
A three-dimensional glimpse of the Bejan number and total entropy generation number are
plotted through Figures 23 and 24. From Figure 23, it is noticed that the primacy of fluid
friction irreversibility is associated with channel center. Whereas an ascendancy of heat
transfer irreversibility is viewed close to the channel surface. Figure 24 reveals that the
total entropy generation in the channel rises to its highest point in the contracted portion
of the ciliated channel. Moreover, in the locality of the channel center, entropy production
is nominal.

Figure 15. Entropy generation number for different values of Rn.
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Figure 16. Entropy generation number for different values of Sp.

Figure 17. Entropy generation number for different values of ε.

Figure 18. Entropy generation number for different values of α.
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Figure 19. The Bejan number at various Ha.

Figure 20. The Bejan number at various Rn.

Figure 21. The Bejan number for different values of Sp.
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Figure 22. The Bejan number for different values of Pr.

Figure 23. The entropy number when Br = 5, ε = 0.2, α = 0.3, We = 0.01, β = 0.1, K = 2, Rn = 3, Ha = 1,
n = 0.2, and Ec = 0.05.

Figure 24. The Bejan number when Br = 5, ε = 0.2, α = 0.3, We = 0.01, β = 0.1, K = 2, Rn = 3, Ha = 1,
n = 0.2, and Ec = 0.05.
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Trapping is an interesting trend noticed in the cilia-endorsed thrusting flows. It is
defined as the development of an internally moving fluid mass surrounded by streamlines.
Figure 25 established that the confined bolus shrinks in size when large values of the
Debye-Hückel parameter (K) are considered. This suggests the decrease in flow rate at
higher electroosmosis. Figure 26 depicts the same trend for the Hartmann number Ha on
the streamlines. Since the main role of the magnetic force is to resist the fluid flow, thus,
this trend meets the expectation. Figure 27 demonstrates that the bolus size expands as the
cilia length ε increases. This shows a supportive role of the cilia structure in the channel to
augment the fluid flow.

Figure 25. Streamlines for variation in K when n = 0.2 We = 0.05, α = 0.45, ε = 4, β = 0.1, UHS = 2, Ha = 1, Q = 0.4. (a) K = 2;
(b) K = 4.

Figure 26. Streamlines for variation in Ha when n = 0.2 We = 0.05, α = 0.45, ε = 4, β = 0.1, UHS = 2, K = 2, Q = 0.4. (a) Ha = 0.5;
(b) Ha = 1.2.
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Figure 27. Streamlines for variation in ε when n = 0.2 We = 0.05, α = 0.45, Ha = 1, β = 0.1, UHS = 2, K = 2, Q = 0.4. (a) ε = 0.4;
(b) ε = 0.6.

5. Conclusions

An entropy analysis is performed in a ciliated channel filled with nano-Carreau fluid
under thermal radiation in the presence of an electric double layer EDL and magnetic field
in the wave frame. The flow in the symmetric channel is stimulated by the metachronal
waves and EDL. The numerical solution by the shooting method is presented. The following
remarks conclude the present study:

1. Large values of magnetic and cilia length parameters support the fluid flow near the
channel surface and are hindered near the core channel portion.

2. Electroosmosis parameter weakens the fluid stream near the channel wall and exhibits
converse behavior near the channel center.

3. Large values of the cilia length parameter support the pressure gradient in the deep
channel zone, whereas this behavior is sustained throughout the channel for the
electroosmotic parameter and Weissenberg number.

4. In the pumping region, ciliary motion is more effective than peristaltic motion. But in
the augmented pumping region, an opposite behavior is observed.

5. Electroosmosis parameter has an increasing effect on pressure rise and fluid tempera-
ture throughout the channel.

6. Fluid temperature escalates as Joule heating increases and thermal radiation decreases.
7. Total entropy inside the channel can be minimized by accomplishing an adequate

thermally radiated fluid flow driven by the prolonged and more elastic cilia field.
8. Entropy in the channel is high for large values of the Joule heating parameter.
9. Entropy is observed to attain high values near the core channel part and stays small

near the channel ciliated surface.
10. Trapping is enhanced as the cilia structure length grows and the electroosmotic

parameter becomes smaller.
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18. Majewski, M.; Ognik, K.; Juśkiewicz, J. Copper nanoparticles modify the blood plasma antioxidant status and modulate the

vascular mechanisms with nitric oxide and prostanoids involved in Wistar rats. Pharmacol. Rep. 2019, 71, 509–516. [CrossRef]
[PubMed]

19. Ali, A.; Ali, Y.; Khan, D.N.M.; Awis, M.; Shah, Z. Peristaltic flow of nanofluid in a deformable channel with double diffusion. SN
Appl. Sci. 2020, 2, 100. [CrossRef]

20. Tripathi, D.; Beg, O.A. A study on peristaltic flow of nanofluids: Application in drug delivery systems. Int. J. Heat Mass Trans.
2014, 70, 61–70. [CrossRef]

21. Abbas, M.A.; Bai, Y.Q.; Rashidi, M.M.; Bhatti, M.M. Application of drug delivery in magnetohydrodynamics peristaltic blood
flow of nanofluid in a non-uniform channel. J. Mech. Med. Biol. 2016, 16, 1650052. [CrossRef]

22. Rahimi, A.; Saee, A.D.; Baghban, A.; Kasaeipoor, A.; Ashrafi, H.; Malekshah, E.H. Double-MRT lattice Boltzmann simulation of
natural convection in a C-shaped heat exchanger. Powder Technol. 2018, 336, 465–480. [CrossRef]

23. Munawar, S.; Saleem, N.; Chamkha, A.J.; Mehmood, A.; Dar, A.A. Lubricating hot stretching membrane with a thin hybrid
nanofluid squeezed film under oscillatory compression. Eur. Phys. J. Plus 2021, 136, 833. [CrossRef]

24. Mehmood, A.; Iqbal, M.S.; Khan, S.; Munawar, S. Entropy analysis in moving wavy surface boundary-layer. Therm. Sci. 2019, 23,
233–241. [CrossRef]

25. Munawar, S.; Saleem, N. Entropy generation in thermally radiated hybrid nanofluid through an electroosmotic pump with ohmic
heating: Case of synthetic cilia regulated stream. Sci. Prog. 2021, 104, 00368504211025921. [CrossRef]

26. Munawar, S.; Saleem, N.; Aboura, K. Second law analysis in the peristaltic flow of variable viscosity fluid. Int. J. Exergy 2016, 20,
170–185.

27. Bejan, A. Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 1982, 15, 1–58.

http://doi.org/10.1172/JCI0215217
http://doi.org/10.1007/BF00718590
http://www.ncbi.nlm.nih.gov/pubmed/2492690
http://doi.org/10.1016/S0015-0282(16)43041-4
http://doi.org/10.1007/s10483-018-2305-9
http://doi.org/10.1093/biolre/iox096
http://doi.org/10.1038/s41378-018-0010-9
http://www.ncbi.nlm.nih.gov/pubmed/31057899
http://doi.org/10.3390/coatings10030240
http://doi.org/10.1115/1.4049810
http://www.ncbi.nlm.nih.gov/pubmed/33462593
http://doi.org/10.1021/j100787a019
http://doi.org/10.1007/s40995-017-0374-y
http://doi.org/10.1007/s13367-018-0010-1
http://doi.org/10.1016/j.molliq.2020.113568
http://doi.org/10.1007/s40430-018-1555-0
http://doi.org/10.1016/j.mvr.2018.01.001
http://doi.org/10.1016/j.aej.2020.03.017
http://doi.org/10.3390/lubricants9050048
http://doi.org/10.1016/j.pharep.2019.02.007
http://www.ncbi.nlm.nih.gov/pubmed/31009842
http://doi.org/10.1007/s42452-019-1867-4
http://doi.org/10.1016/j.ijheatmasstransfer.2013.10.044
http://doi.org/10.1142/S0219519416500524
http://doi.org/10.1016/j.powtec.2018.06.012
http://doi.org/10.1140/epjp/s13360-021-01829-7
http://doi.org/10.2298/TSCI161029029M
http://doi.org/10.1177/00368504211025921


Micromachines 2021, 12, 1004 21 of 21

28. Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. Trans. ASME 1979, 101, 718–725.
[CrossRef]

29. Saleem, N.; Munawar, S. Entropy analysis in cilia driven pumping flow of hyperbolic tangent fluid with magnetic field effects.
Fluid Dyn. Res. 2020, 52, 025503. [CrossRef]

30. Akbar, N.; Butt, A.W. Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation.
J. Hydrodyn. Ser. B 2017, 29, 135–143. [CrossRef]

31. Munawar, S.; Saleem, N. Entropy Analysis of an MHD synthetic cilia assisted transport in a microchannel enclosure with velocity
and thermal slippage effects. Coatings 2020, 10, 414. [CrossRef]

32. Johnson, B.M.; Johmston, P.R.; Corney, S.; Kilpatrick, D. Non-Newtonian blood flow in human right coronary arteries steady state
simulations. J. Biomech. 2004, 37, 709–720. [CrossRef] [PubMed]

33. Farooq, A.A.; Siddiqui, A.M. Mathematical model for the ciliary-induced transport of seminal liquids through the ductuli
efferentes. Int. J. Biomath. 2017, 10, 1750031. [CrossRef]

34. Saleem, N.; Munawar, S.; Tripathi, D. Thermal analysis of double diffusive electrokinetic thermally radiated TiO2-Ag/blood
stream triggered by synthetic cilia under buoyancy forces and activation energy. Phys. Scr. 2021, 96, 095218. [CrossRef]

35. Sleigh, A. The Biology of Cilia and Flagella; MacMillian: New York, NY, USA, 1962.
36. Nadeem, S.; Sadaf, H. Theoretical analysis of Cu-blood nanofluid for metachronal wave of cilia motion in a curved channel. IEEE

Trans. Nanobiosci. 2015, 4, 447–454. [CrossRef]
37. Eid, M.R. Thermal characteristics of 3D nanofluid flow over a convectively heated riga surface in a Darcy–Forchheimer porous

material with linear thermal radiation: An optimal analysis. Arab J. Sci. Eng. 2020, 45, 9803–9814. [CrossRef]
38. Eid, M.R. Effects of NP Shapes on Non-Newtonian Bio-Nanofluid Flow in Suction/Blowing Process with Convective Condition:

Sisko Model. J. Non-Equilib. Thermodyn. 2020, 45, 97–108. [CrossRef]
39. Bibi, S.; Elahi, Z.; Shahzad, A. Impacts of different shapes of nanoparticles on SiO2 nanofluid flow and heat transfer in a liquid

film over a stretching sheet. Phys. Scr. 2020, 95, 115217. [CrossRef]
40. Elnaqeeb, T.; Mekheimer, K.S.; Alghamdi, F. Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis.

Math. Biosci. 2016, 282, 135–146. [CrossRef]
41. Magyaria, E.; Pantokratoras, A. Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat

transfer characteristics of various boundary layer flows. Int. Commun. Heat Mass Transf. 2011, 38, 554–556. [CrossRef]
42. Lin, T.Y.; Chen, C.L. Analysis of electroosmotic flow with periodic electric and pressure fields via the lattice Poisson–Boltzmann

method. Appl. Math. Model. 2013, 37, 2816–2829. [CrossRef]
43. Mallick, B.; Misra, J.C. Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field. Eng. Sci. Technol.

2019, 22, 266–281. [CrossRef]
44. Chamkha, A.J.; Selimefendigil, F. MHD free convection and entropy generation in a corrugated cavity filled with a porous

medium saturated with nanofluids. Entropy 2018, 20, 846. [CrossRef] [PubMed]
45. Mehmood, A.; Khan, S.; Iqbal, M.S.; Munawar, S. Impact of surface texture on entropy generation in nanofluid. Therm. Sci. 2021,

13, 1171–1180. [CrossRef]
46. Saleem, N. Entropy production in peristaltic flow of a space dependent viscosity fluid in asymmetric channel. Therm. Sci. 2018,

22, 2909–2918. [CrossRef]
47. Salari, M.; Kasaeipoor, A.; Malekshah, E.H. Three-dimensional natural convection and entropy generation in tall rectangular

enclosures filled with stratified nanofluid/air fluids. Heat Transf. Res. 2018, 49, 685–702. [CrossRef]

http://doi.org/10.1115/1.3451063
http://doi.org/10.1088/1873-7005/ab724b
http://doi.org/10.1016/S1001-6058(16)60725-4
http://doi.org/10.3390/coatings10040414
http://doi.org/10.1016/j.jbiomech.2003.09.016
http://www.ncbi.nlm.nih.gov/pubmed/15047000
http://doi.org/10.1142/S1793524517500310
http://doi.org/10.1088/1402-4896/ac0988
http://doi.org/10.1109/TNB.2015.2401972
http://doi.org/10.1007/s13369-020-04943-3
http://doi.org/10.1515/jnet-2019-0073
http://doi.org/10.1088/1402-4896/abbc9d
http://doi.org/10.1016/j.mbs.2016.10.003
http://doi.org/10.1016/j.icheatmasstransfer.2011.03.006
http://doi.org/10.1016/j.apm.2012.06.032
http://doi.org/10.1016/j.jestch.2018.12.001
http://doi.org/10.3390/e20110846
http://www.ncbi.nlm.nih.gov/pubmed/33266570
http://doi.org/10.2298/TSCI191004469M
http://doi.org/10.2298/TSCI161020164S
http://doi.org/10.1615/HeatTransRes.2018020194

	Introduction 
	Mathematical Modelling 
	Entropy Analysis 
	Results and Discussion 
	Conclusions 
	References

