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Stagnant forearc mantle wedge inferred from
mapping of shear-wave anisotropy using S-net
seafloor seismometers
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Shear-wave anisotropy in Earth’s mantle helps constrain the lattice-preferred orientation of

anisotropic minerals due to viscous flow. Previous studies at the Japan Trench subduction

zone using land-based seismic networks identified strong anisotropy in the mantle wedge,

reflecting viscous flow induced by the subducting slab. Here we map anisotropy in the

previously uninvestigated offshore region by analyzing shear waves from interplate earth-

quakes that are recorded by a new seafloor network (the S-net). The newly detected ani-

sotropy is not in the mantle wedge but only in the overlying crust (∼0.1 s time delay and

trench-parallel fast direction). The distinct lack of anisotropy indicates that the forearc mantle

wedge offshore is decoupled from the slab and does not participate in the viscous flow, in

sharp contrast with the rest of the mantle wedge. A stagnant forearc mantle wedge provides

a stable and cold tectonic environment that is important for the petrological evolution and

earthquake processes of subduction zones.
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Shear-wave splitting is a phenomenon in which a shear wave
traveling in a medium with anisotropic elastic moduli splits
into two polarized components, with one traveling faster

than the other. Measurements of the polarization of the faster
shear-wave (the fast direction) and the arrival-time difference
between the fast and slow components (the delay time) help to
delineate anisotropy along the ray path1–3. In understanding
subduction zone dynamics, it is important to know the pattern of
solid flow within the mantle wedge between the upper plate and
subducting slab, and seismic anisotropy is an excellent indicator
of the flow pattern. At present, the anisotropy of the offshore part
of the forearc mantle wedge is essentially unknown because of the
lack of seafloor seismic observations.

The present knowledge of forearc shear-wave anisotropy is
based on limited observations from the land area3–8. In a number
of subduction zones, such as New Zealand4, Cascadia5,6, Suma-
tra7 and central South America8, these limited observations
suggest that the fast direction in onshore forearc from local
earthquakes is predominantly trench-parallel. The fast directions
from teleseismic events are also trench-parallel in some subduc-
tion zones9. From these results, it is almost impossible to infer the
anisotropy state of the forearc mantle wedge with confidence.
Many studies assume the source of the observed anisotropy to be
outside of the mantle wedge, either beneath the subducting slab
associated with trench-parallel mantle flow10, within the slab
associated with structural fabrics acquired before subduction11 or
upon subduction due to plate bending9, or within the overlying
crust associated with stress-controlled preferred orientation of
microcracks or geological fabrics6,12,13. Those that consider the
anisotropy to be within the forearc mantle wedge often associate
it with assumed abundance of B-type olivine minerals that are
aligned by the mantle wedge corner flow14. The remarkably poor
knowledge of mantle wedge anisotropy is to a large part due to
limitations in the spatial coverage of the observations and the
vertical resolution of the anisotropy analysis.

In the northeastern (NE) Japan subduction zone, trench-
normal and trench-parallel fast directions have been inferred for
the back-arc and forearc areas, respectively, from waveforms of
local earthquakes within the subducting Pacific slab15–18 (Fig. 1).
In the forearc, however, the observations are mostly limited to the
narrow land area stretching only ~50 km from the volcanic front
to the coast (Fig. 1a and c). It is unknown whether the results
represent the entire forearc which is mostly offshore. It is also
unresolved whether the source of the trench-parallel fast direction
is uniform in depth beneath the forearc.

Recently, the Seafloor Observation Network for Earthquakes
and Tsunamis along the Japan Trench (S-net) was established off
NE Japan by the National Research Institute for Earth Science
and Disaster Resilience (NIED)19. The deployment of the cable
system began in 2013 and was completed in 2017, and the data
were made publicly available from October 2018 onward20–22.
The new system covers a subsea area of about 300 × 1000 km with
150 ocean bottom seismometers (OBSs) connected by a 5,800 km
long fiberoptic cable (Fig. 1a). Seismic records from these
instruments not only help understand seismicity and megathrust
slip in the shallow subduction zone23–25, but also expand the
study of mantle wedge shear-wave anisotropy into a vast virgin
territory. In the following, we will document the densest sys-
tematic mapping of the shear-wave anisotropy of an offshore
forearc to date, and we will demonstrate that the results indicate a
lack of anisotropy in the offshore forearc mantle wedge and, in
conjunction with previous findings based on onshore networks,
provide a clear and simple picture of mantle wedge dynamics.
Given the consistency of our results with geodynamic models of
subduction zones, the knowledge learned in this study is expected
to be globally applicable.

Results
Selection of data for inferring mantle wedge dynamics. We use
waveform data recorded by the S-net OBSs from August 2016 to
April 2019 (Fig. 1a, c). Because of the mantle wedge focus of this
work, we ensure that the wave paths sample only the forearc
rocks above the subducting slab, so that the resolved anisotropy is
not within or beneath the slab. Therefore, we do not use tele-
seismic waveforms, and we use only local earthquakes along the
subduction interface and, where available, in the upper plate
including the cold nose of the forearc mantle wedge.

The S-net seafloor seismometers are not yet used for routine
hypocenter location, and therefore the depth determination of
many offshore events has large uncertainties because of the small
event depths compared to station separation. For offshore
earthquakes, source depths from the Full Range Seismograph
Network of Japan (F-net) catalog26 which is based on waveform
modeling are of better quality, and the focal mechanism
information in the catalog is useful for selecting interplate events
(see Supplementary Fig. 1 for the consistency of F-net depth and
S-P time from S-net). We have selected 287 interplate earth-
quakes with Mw ≥ 3.5 based on their focal mechanisms while
taking into account their depth information in the catalog of the
F-net26 (see Methods). In addition, we also use the 321 small
repeating earthquakes (M ≥ 2.5) that have been identified to be
located along the creeping parts of the subduction interface27

(Fig. 1a), which greatly increases the number of available
interplate earthquakes. Our selection of the repeating earthquakes
is based on waveform similarity at land stations and represents an
update of the catalog of Uchida and Matsuzawa [2013]28 (see
Methods). The distribution of the interplate events including the
repeaters shows a distinct gap in the rupture area of the 2011
Tohoku-oki earthquake (Mw 9.0)29 (near-trench area of 37°–39°
N), because few interplate events have occurred here since this
great earthquake (Fig. 1a). We also use 108 shallow earthquakes
(Mw ≥ 3.5) in the overlying plate which are selected on the basis
of their depths (shallower than subduction interface or 35 km,
whichever is shallower) and focal mechanisms according to the F-
net catalog (Fig. 1a, see Methods). The different ray paths of the
two types of earthquakes (interplate vs. upper-plate) are useful for
determining whether the observed anisotropy is within the
mantle wedge (Fig. 1c).

We use three-component 100-Hz-sampled waveforms
obtained from the S-net OBSs with a natural frequency of 15
Hz. We rotate waveforms to the geographic directions (up, east,
and north) based on sensor orientations24 (see Methods). We use
practically the same procedure employed by Nakajima et al.
[2006]17, so that our estimated splitting parameters are fully
comparable with those previously derived for the land area. We
employ a 2–8 Hz band-pass filter for the horizontal components
and visually identify and window the S phases for 1–1.5 cycles of
the waveform oscillations. We use a cross-correlation method30

to estimate the fast direction and delay time (Fig. 1b). To avoid
contamination by surface conversions, we only use earthquakes
within a 45° shear-wave window extending downward from each
seismic station31. Owing to the upward concave bending of ray
paths caused by the extremely low wave speed near the sea
bottom in our study area, we are able to use this shear-wave
window that is larger than the commonly used 35°. See Methods
for details.

Trench-parallel fast directions in the forearc crust. As a result,
we obtained 1400 and 264 fast directions from the shear waves of
the interplate and upper-plate earthquakes, respectively, together
with their delay times. For each station, we averaged the splitting
parameters of the same type of earthquakes (Fig. 2b). The number
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of waveforms used by each station ranges from 1 to 101 (Sup-
plementary Data 1 and 2), and station averages involving 10 or
more waveforms are considered relatively reliable estimates. The
splitting parameters at each station generally do not exhibit a
dependence on incident angle and back-azimuth (Supplementary
Fig. 2, Method).

The fast directions based on the interplate earthquakes have a
spatially correlated pattern that tends to have NNE-SSW and
ENE-WSW directions along the Japan and Kuril trenches,
respectively (Fig. 2b), but the delay times are mostly around
0.1 s without significant spatial variations (Fig. 2b, length of bars).
These directions are subparallel to the trench and the local strike
of the subducting slab beneath the stations (Fig. 2a). The
frequency distribution of the station-averaged fast directions
offshore shows a clear peak in regions F1, F2, and F3 along the
trench (Fig. 2b, black in the rose diagrams).

The used interplate events are located at ~10–50 km depths.
Figure 3 shows the station-average splitting parameters as a
function of the depth of the subduction interface (small red

circles). The source events are located within 45° from vertical
beneath each OBS station, and the subduction interface depth
approximately represents the length of the ray paths of these
events. Note that the depth scale in Fig. 3b, c is not linear because
it follows the shape of the subduction interface in Fig. 3a.
Offshore, the fast directions relative to local slab strike at each
station exhibit a concentration in the strike direction (i.e., around
zero) (Fig. 3b) and delay times of 0.05–0.15 s. The average fast
directions for every 20 km depth interval are stably within 10° of
the slab strike in the offshore area (blue large circles at 0–40 km
depth in Fig. 3b). The depth-averaged delay times for the offshore
earthquakes are all ~0.1 s (blue large circles in 0–40 km depth in
Fig. 3c). These results show that the offshore splitting parameters
along the Japan and Kuril trenches are not sensitive to the depths
of the earthquakes used.

The splitting parameters from the offshore upper-plate earth-
quakes averaged for each station also exhibit mostly trench-
parallel fast directions (Fig. 2b, white bars). Although the number
of available stations is small for these shallow earthquakes (N=
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maximum for the direction and time shift. (c) Schematic cross-section view of the structure around 39°N [modified from Uchida et al., 201050]. The source
earthquakes are located on the subduction interface and the S-net stations are located above them. The S-net covers a large area in the forearc. Orange
and green circles represent the offshore interplate and upper-plate earthquakes used in this study while crosses represent intraslab earthquakes used in
previous studies.
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31), they clearly show fast directions (Fig. 2b) and delay times
(Fig. 3b, c in green) similar to those of the deeper interplate
sources.

Our study does not involve intraslab earthquakes and therefore
excludes any contribution from the subducting slab (Fig. 3a). We
can exclude significant shear-wave splitting in the forearc mantle
wedge also for the following two reasons. (1) Our observed
splitting parameters for the deeper interplate earthquakes and
shallower upper-plate earthquakes in the offshore area are very
similar (Fig. 3b, c). This suggests that the main source of
anisotropy between the slab and surface is shallower than 35 km,
primarily in the continental crust. (2) If the mantle-wedge part of
the forearc had significant anisotropy, the delay time would
increase with the depth of the subduction interface (Fig. 3a). But
the observed delay times are depth-insensitive, and the splitting
parameters are similar even in the area where the crust is very
near or in direct contact with the slab (interface depth ≤ 35 km)
(Fig. 3a). Therefore, the forearc trench-parallel fast directions

(schematically shown as double-headed arrows at the surface in
Fig. 4) are explained by anisotropy in the overlying (upper-plate)
crust (spheroids in Fig. 4). There is little shear-wave splitting
within the forearc mantle wedge.

Comparison with onshore forearc and back-arc. Our offshore
splitting parameters are consistent with those previously obtained
onshore using the same method but with local intraslab
earthquakes16,17 (Fig. 2). The shear waves from intraslab earth-
quakes travel not only above but also within the subducting slab.
However, their observed delay times do not depend on the length
of the ray paths in the slab, and therefore the splitting in the slab
is negligible if present at all [Fig. 4b of Nakajima and Hasegawa,
200416]. Therefore, we can directly compare our results based on
interplate earthquakes with those reported by Nakajima and
Hasegawa [2004]16 and Nakajima et al. [2006]17 based on
intraslab earthquakes.
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The fast directions are predominantly trench-parallel in both
the onshore and offshore parts of the forearc (Fig. 2, to the east of
the thick pink line). The frequency distribution of the fast
directions offshore (the rose diagrams with blue background in
Fig. 2b) and those for the narrow land area of the forearc (the rose
diagrams with pink background in Fig. 2a) have similar peak
azimuth of the directions. This azimuthal preference can also be
seen from the fast direction relative to the slab strike plotted as a
function of the subduction interface depth (Fig. 3b; there is no

systematic difference between the red and offshore black circles).
Not only the azimuths of the fast directions but also the delay
times (Fig. 2, length of bars) show similar values between the
offshore and onshore parts of the forearc. The delay times plotted
against the depth of the subduction interface (Fig. 3c) show little
change in the depth range of 0–80 km, including both the land
and offshore stations.

The volcanic front, the boundary dividing the forearc and
back-arc areas, is located above where the slab is at depths of
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90–100 km (Figs. 1a and 2). The splitting pattern in the back-arc
is entirely different from the forearc, with the fast directions being
trench-normal and the delay time being ~0.2 s (Figs. 2 and 3).

Discussion
The most important finding of this work is the lack of significant
shear-wave splitting in the forearc mantle wedge which indicates
a lack of anisotropy. Anisotropy with a sub-vertical symmetry
axis may also be invoked to explain the lack of splitting, but the
consistency of this pattern over the entire ~700 km of the margin
including the kink between the Kuril and Japan trenches makes
this possibility extremely unlikely.

Our new results together with earlier results based on land
stations thus identify a sharp anisotropy contrast between the
forearc and back-arc parts of the mantle wedge (Figs. 2 and 4).
The back-arc features trench-normal fast direction (Fig. 2a) with
the source of the anisotropy residing in the mantle wedge
(spheroids in Fig. 4)17. The trench-normal fast direction is most
logically explained as reflecting lattice-preferred orientation of
olivine minerals caused by slab-driven mantle wedge flow (Fig. 4,
large arrows). In the forearc, however, the S-net results suggest no
or very weak anisotropy in the mantle wedge.

In a previous study17, limited to land areas, the forearc ani-
sotropy was speculated to be due to the presence of B-type olivine
in the mantle wedge. It was assumed that the forearc mantle
wedge was also involved in the slab-driven wedge flow which

would produce the same lattice-preferred orientation of olivine as
in the back-arc mantle wedge. In this situation, abundant pre-
sence of the B-type olivine, expected for a high-water content and
high-stress condition, would produce a fast direction perpendi-
cular to the flow direction32. Since the forearc mantle wedge is
known to be cold and thus unlikely to engage in vigorous ther-
mally activated creep, Kneller et al. [2005]14 assumed that it
deformed very slowly due to coupling with the slab to allow
olivine minerals to be oriented in the trench-normal direction, so
that the B-type olivine could still produce trench-parallel fast
directions.

In contrast, Wada and Wang (2009)33 and Wada et al. (2011)34

inferred from heat flow and other geophysical observations that
the slab and the mantle are fully decoupled until a depth of 70–80
km (pink arrows along plate interface in Fig. 4) but fully coupled
at greater depths (yellowish arrow pairs in Fig. 4), a notion that is
supported by other studies35–39. Consequently, the back-arc
mantle wedge is expected to engage in full-speed viscous wedge
flow producing trench-normal fast directions, but the forearc
mantle wedge is expected to be fully stagnant producing no flow-
related anisotropy. The lack of anisotropy in the stagnant forearc
mantle wedge in contrast with the presence of strong strike-
normal anisotropy in the flowing back-arc is not only observed in
NE Japan where the subducting slab is very old and cold but also
consistent with observations from Cascadia which is an end-
member warm-slab subduction zone5,40. Therefore, the mantle
wedge dynamics inferred from the mapping of mantle wedge
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anisotropy in NE Japan is likely ubiquitous for subduction zones
regardless of their thermal state.

The origin of the offshore crustal anisotropy delineated in this
study is of secondary significance to the mantle-wedge focus of
this paper, although it is important in the study of crustal
dynamics. The predominantly trench-parallel direction is similar
to previous estimates beneath the land area using crustal
earthquakes15,41,42 and a 3D model of azimuthal anisotropy
tomography43. Crustal anisotropy is often explained by stress-
controlled crack alignment or by structural fabrics6,41,44. Fig-
ure 2b shows that the fast directions determined in this work are
consistent with the prevalence of trench-parallel-striking active
crustal faults45. Exceptions near the boundary of regions F1 and
F2 are compatible with the presence of NNW-SSE trending trust
faults due to arc-arc collision in this corner by the sliver motion
of the Kuril forearc46. The comparison supports the notion that
the structural fabrics are responsible for the overall trench-
parallel crustal anisotropy. Nevertheless, some contribution from
horizontal stress cannot be fully excluded.

Methods
The selection of the source earthquakes. We used interplate and upper-plate
earthquakes to determine the location of the main splitting. For the interplate
earthquakes, we used earthquakes with interplate type focal mechanism and those
identified as repeating earthquakes. The focal mechanisms are provided by the Full
Range Seismograph Network of Japan (F-net)26. To select interplate earthquakes
we employ the criteria used by Asano et al. [2011]47 and Hasegawa et al. [2012]48:
rake angle of > 0°, and three-dimensional (3-D) rotation angle49 of the focal
mechanism relative to that of the reference interplate earthquake of < 35°; and
depth separation of the centroid from the plate interface of < 20 km. The repeating
earthquakes are selected based on waveform similarity at land stations and
represent an update of the catalog of Uchida and Matsuzawa [2013]28. We use 40 s
window to calculate waveform coherence, and select repeater pairs if the coherence
is 0.8 or larger in the frequency range around their corner frequencies28. For the
earthquakes in the upper plate, we also used earthquakes that have focal
mechanisms by F-net. They have selected if the focal depths are shallower than the
subduction interface or 35 km, whichever is shallower, and if the focal mechanisms
are not the interplate type according to the criteria described above.

Waveform rotation. The original S-net data provided by National Research
Institute for Earth Science and Disaster Resilience are velocity waveforms for the X,
Y, and Z axes. The X-axis is along the long axis of the cable and Y and Z axes are
perpendicular to that direction. Since we need horizontal components to perform
shear-wave splitting analysis, we rotated the waveforms to East, North, and Up
(ENU) directions. The rotation matrix which is estimated from the gravity and
teleseismic long-period Rayleigh waves observed by accelerometer24 was used for
the conversion from the XYZ to ENU components. The accuracy of the azimuth of
the seismometers are estimated to be 3–12°24. Takagi et al.24 also found that some
large earthquakes resulted in the rotation of the observation pressure vessel. The
MW 6.0 off-Sanriku earthquake on August 20, 2016 and the MW 6.9 off-Fukushima
earthquake on November 22, 2016, caused rotation with 1 degree or more for
1 station and 3 stations, respectively. Considering these changes, we used daily
estimates of the rotation matrix when converting the waveforms.

Estimation of the splitting parameters. The estimation of the fast directions and
delay times is performed using a cross-correlation method30 that takes advantage
of the similarity of fast and slow shear waves when the waveforms are rotated to the
vibration direction of the fast and slow shear waves. We used the bandpass filtering
of 2–8 Hz which is the same as used in Nakajima et al. [2006]17. The waveforms are
rotated in 5° steps in the 0 to 175° range, and the rotated waveforms are shifted in
0.01-s steps in the 0 to 1 s range, to find the largest cross-correlation value. The
amount of time shift and rotation angle when the cross-correlation value is largest
are regarded as the delay time and the fast direction, respectively. The time window
is 1–1.5 cycles of the waveform oscillations. We visually checked the seismograms
one by one carefully and only used those that showed clear enough S arrival to be
used for the shear-wave splitting analysis. Figure 1b shows an example of the
procedure as described in the main text. The horizontal particle motion of the
original waveforms exhibits an elliptical shape, and the waveform after the removal
of the effect of anisotropy is almost linear (Fig. 1b). Typical uncertainties for
individual fast direction and delay time estimated by the t-test are less than 30° and
0.03 s, respectively. The fast directions and delay times for each station show a
standard deviation of 33° and 0.06 s, respectively, on average for the interplate
events (Supplementary Data 1). The upper-plate events show similar values on
average (31° and 0.06 s for the fast direction and delay time, respectively, Sup-
plementary Data 2).

Data availability
The S-net data are available at https://hinetwww11.bosai.go.jp/auth/ subject to the
policies of National Research Institute for Earth Science and Disaster Prevention (NIED).
The focal mechanism catalog used in this study is available at http://www.fnet.bosai.go.
jp/ subject to the policies of the NIED. The splitting data generated and analyzed during
this study are included in the Supplementary Data.

Code availability
The analysis codes used in this study are available from the corresponding author upon
request.
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