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Subarachnoid hemorrhage admissions

retrospectively identified using

a prediction model

ABSTRACT

Objective: To create an accurate prediction model using variables collected in widely available
health administrative data records to identify hospitalizations for primary subarachnoid hemor-
rhage (SAH).

Methods: A previously established complete cohort of consecutive primary SAH patients was
combined with a random sample of control hospitalizations. Chi-square recursive partitioning
was used to derive and internally validate a model to predict the probability that a patient had pri-
mary SAH (due to aneurysm or arteriovenous malformation) using health administrative data.

Results: A total of 10,322 hospitalizations with 631 having primary SAH (6.1%) were included in
the study (5,122 derivation, 5,200 validation). In the validation patients, our recursive partition-
ing algorithm had a sensitivity of 96.5% (95% confidence interval [Cl] 93.9-98.0), a specificity
of 99.8% (95% Cl 99.6-99.9), and a positive likelihood ratio of 483 (95% CI| 254-879). In this
population, patients meeting criteria for the algorithm had a probability of 45% of truly having
primary SAH.

Conclusions: Routinely collected health administrative data can be used to accurately identify
hospitalized patients with a high probability of having a primary SAH. This algorithm may allow,
upon validation, an easy and accurate method to create validated cohorts of primary SAH from
either ruptured aneurysm or arteriovenous malformation. Neurology® 2016;87:1557-1564

GLOSSARY

AVM = arteriovenous malformation; Cl = confidence interval; DAD = Discharge Abstract Database; ICD = International
Classification of Diseases; LR+ = positive likelihood ratio; RP = recursive partitioning; SAH = subarachnoid hemorrhage;
TOH = The Ottawa Hospital; TOHDW = Ottawa Hospital Data Warehouse.

Primary subarachnoid hemorrhage (SAH) is an important but rare cause of cerebrovascular
accidents that predominantly results from a ruptured saccular aneurysm or arteriovenous mal-
formation (AVM)'~ and leads to devastating outcomes with less than a third of patients making
a complete recovery.’ Prospectively studying uncommon diseases like primary SAH can be very
costly and time-consuming; this makes the retrospective study of such populations using health
administrative data attractive.

The identification of patients in administrative databases is often accomplished with diagnostic
coding (e.g., ICD codes). This is very problematic in rare diseases because these codes frequently
lack the accuracy required to reliably identify rare cases.”® Few studies have documented the
accuracy of ICD codes in SAH.””"” The positive predictive value of the code ranged among
the studies from 33% to 100% but these studies have questionable utility because they were
small (1-247 patients with SAH). More importantly, the prevalence of SAH in these samples was
much higher than that in the general hospital population; this will result in study positive pre-
dictive values being extensively overestimated, resulting in a high number of cases incorrectly
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labeled as primary SAH. Only one study,
involving 58 patients, reported the sensitivity
and specificity of SAH codes (98% [95% con-
fidence interval (CI) 90%-100%)] and 92%
[84%-96%)], respectively).'* This translates to
a positive likelihood ratio (LR+) of 12.25. As
a rare disease, primary SAH has a prevalence of
only 0.06% among all hospitalizations (appen-
dix e-1A at Neurology.org), resulting in very
low pretest probability of disease. Thus, with
such a low LR+, patients having these codes
will have only a 0.74% probability of truly
having the disease. These results demonstrate
the dire need for better methods to accurately
identify these patients retrospectively.

The objective of this study was to derive
and validate a prediction model to accurately
predict the probability that a patient truly
had a primary SAH using variables widely
available in health administrative data. Such
a model would be widely generalizable and
pertinent to the researcher. The improved
accuracy of subsequent epidemiologic study
has direct relevance to the bedside knowledge
user including his or her understanding of nat-
ural history and prognostication.

METHODS Study setting. The Ottawa Hospital (TOH) is
a tertiary care university hospital with 1,150 beds that provides
all neurosurgical services to the City of Ottawa and the Cham-
plain Local Health Integrated Network (approximate catchment
population of 1.2 million, or 10% of the population of
Ontario'®). The Ottawa Hospital Data Warchouse (TOHDW)
is a collection of health datasets containing clinical and adminis-
trative data for all inpatient encounters at TOH. Included in the
holdings of TOHDW is the Discharge Abstract Database
(DAD), which is available from July 1, 2002." The Discharge
Abstract is an administrative dataset mandated by regulatory bod-
ies that contains diagnostic, procedural, demographic, and
administrative information for every hospitalization in Canada.*
Most developed countries have similar databases for hospitaliza-
tions. The diagnostic codes utilized in the DAD are ICD-10CA.
Procedures are captured according the Canadian Classification of

Health Interventions codes.

Standard protocol approvals, registrations, and patient
consents. Ethics approval for the study was obtained from the
Ottawa Health Sciences Network Research Ethics Board using

a waived consent model for this retrospective analysis.

Patient cohort used to derive and validate the prediction
model. To derive and validate our prediction model, we used
a complete cohort of previously identified primary SAH patients
(reference population) admitted to TOH between July 1, 2002,
and June 30, 2011.>' We defined primary SAH as an SAH (sup-
ported by findings of CT head scan, lumbar puncture, or
autopsy) that was the result of a ruptured aneurysm or AVM
(from findings of angiography or autopsy). For the control group,
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we randomly selected from all TOH inpatient admissions over
the same time period 2.5% of all patients greater than 17 years of
age (figure 1). A random sample of 2.5% of inpatient admissions
provided a cohort of approximately 10,000 admissions, which
was the largest data sample achievable that maintained optimal
function of the statistical software used for the analysis. Specific
case-controls were not used to keep the sample as reflective of all
hospital admissions against which the model is designed to

identify primary SAH patients.

Variable selection for model derivation. The objective of our
model was to predict primary SAH status using administrative data
found in the DAD. Variables considered included demographic
information (including patient age and sex) and hospitalization
information (including admission service, diagnostic codes, hospital
admission type [urgent or not], length of stay, surgical procedures
coded, and transfers to intensive care unit). We also identified diag-
nostic codes and procedural codes that could be associated with
SAH status for consideration of inclusion in the model by the

following:

1. Collecting all diagnostic and procedural codes contained
within the DAD for each encounter identified previously as
primary SAH.

2. All diagnostic codes were grouped in order of frequency. This
was repeated for procedural codes. Each diagnostic or proce-
dural code with a frequency =10 (i.e., was observed in more
than 10 encounters with primary SAH) was considered for
inclusion in the model.

3. For each diagnostic and procedural code identified in (2),
a binomial variable was created for each encounter identified
in the derivation and validation datasets, where 1 represented
the diagnosis or procedure as being present (or having
occurred) and 0 as not. A missing variable would have been

considered not present and assigned a 0.

Analysis. Model derivation and validation. We first con-

structed a multivariate logistic regression model but true cases

were still not identified (results presented in appendix e-1B).
We therefore conducted a recursive partitioning (RP) model. RP
is a nonparametric regression method that clusters responses into
homogenous groups.®* It is useful in situations when the goal of
correctly identifying a specific outcome group with high sensitivity
is more important than overall accuracy.?*** Chi-square tests with
potential predictor variables against the dependent variable (pri-
mary SAH) created successive partitioning. At each step, every
potential variable was considered for entry into the model by per-
forming a X” test. The variable with the highest x* statistic meeting
statistical significance was entered into the model. The Fisher Exact
test was used for variables in which at least one cell in the 2 X 2
contingency table had fewer than 5 observations.

A pvalue of 0.05 was used to determine statistical significance
of the association between the potential predictor variable and
primary SAH. In this fashion, a regression tree was constructed by
creating branches at each splitting variable (node). Thus for each
node, a branch was created for variable presence (variable 1) or
absence (variable 0) of the splitting variables. This was repeated
until no further variables met statistical significance for entry or
each cell contained =1 of either outcome (primary SAH or no
primary SAH). These were defined as terminal nodes. Variables
that lacked clinical sensibility and did not contribute to a terminal
node with at least 50% observed primary SAH events were

removed.

Model performance. We measured model performance by

generating 2 X 2 tables comparing predicted outcome with actual
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[ Figure 1 Derivation and validation of a prediction model study design ]

(-]
(“:(nia:”) Non-SAH
encounters
Cohort
. | |
TOHDW (DAD)
(Variable
selection)
v
l Analytical sample ‘
vl "\
50% (derivation) 50% (validation)
Cohort dataset Cohort dataset
Recursive
partitioning 3
model Model
derivation performance
I measure

This schema depicts the methods used to derive and validate a prediction model that identifies patient admissions with high
probability of being the result of primary subarachnoid hemorrhage (SAH) using routinely collected health administrative
data. DAD = Discharge Abstract Database; TOHDW = The Ottawa Hospital Data Warehouse.

outcome to determine sensitivity, specificity, and likelihood
ratios. Three separate classifications were examined to determine
the expected outcome predicted by the model: (1) the terminal
node was classified as primary SAH if the observed event rate
exceeded or equaled 50%j; (2) the terminal node was classified
as primary SAH if the observed event rate exceeded or equaled
75%; and (3) the terminal node was classified as primary SAH if
the observed event rate exceeded or equaled 90%.

The performance of the algorithm was then tested against the
validation set. We measured model performance (accuracy) by
comparing expected and observed number of patients with pri-
mary SAH based on the classification with 2 X 2 tables to cal-
culate sensitivity, specificity, and LR+ with 95% CIs. All

analyses were completed using SAS 9.2.

RESULTS Patient cohort. In total, 10,322 patient en-
counters were included, 631 of which had primary
SAH (6.1%). These were randomly divided into
2 groups for model derivation (n = 5,122; 315
[6.1%] primary SAH) and validation (n = 5,200;
316 [6.1%] primary SAH).

Predictor variables. A total of 108 potential predictor
variables were considered for inclusion in the model
by considering all of the diagnostic and procedural
codes that appeared more than 10 times in the dis-
charge abstracts (DAD) of patients with primary
SAH. Sixty-three variables were diagnostic codes,
38 were procedural codes, and 7 others were
encounter characteristics (appendix e-1C). In addition
to those variables found in the final models predicting
primary SAH, we considered known risk factors (age,

sex, hypertension), presenting characteristics (headache,

visual disturbances, cardiac arrest), disease course
variables (hydrocephalus, vasospasm, pulmonary edema,
ventriculitis, seizures, stroke), and diagnostic/therapeutic
variables (admitting service, brain imaging, externalized

ventricular drain insertion).”>%’

Logistic regression predictive model. Twelve variables
were included in the multivariate logistic regression
model (appendix e-1B, table e-B1). Using the valida-
tion dataset and predicted probability of primary
SAH of =50%, the model had a sensitivity of
96.8% and specificity of 99.7%, leading to an LR+
of 312 (table 1).

Recursive partitioning model and predictive model
performance. A total of 10 variables entered the final
model with 12 splits and 13 terminal nodes (figure 2).
Each terminal node consisted of patient groups with
varying prevalence of primary SAH. The most highly
discriminative predictor variable was the diagnostic code
for SAH (160). The presence of this code increased the
probability of SAH from 6.1% to 97.6% (figure 2A).
However, 7 patients (2.4%) with the code did not actu-
ally have a SAH diagnosis; none of these people had
a code for therapeutic occlusion of an intracranial vessel
(1JW51) and all had a hospital length of stay equal to or
exceeding 48 hours (figure 2A). In the absence of intro-
ducing other variables, the sole use of the SAH diagnos-
tic code (160) would have missed 35 (11.1%) true cases
of primary SAH (sensitivity of 88.9%). In the absence
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[ Table 1

Prevalence of SAH

Model performance in the validation group

Probability® of truly having SAH if:

required in terminal node Sensitivity, % Specificity, % Meets criteria Does not meet
to indicate SAH (95% CI) (95% ClI) LR+ (95% CI) LR- (95% CI) for SAH (%) criteria for SAH (%)
Logistic regression model

250% 96.8 (94.3-98.3)  99.7(99.5-99.8) 312 (190-523) 0.03 (0.02-0.06) 34.6 0.005

275% 94.0 (90.8-96.1) 99.7 (99.5-99.8) 353 (205-608) 0.06 (0.04-0.09) 371 0.010

290% 81.3 (76.7-85.2) 99.9 (99.7-99.9) 662 (297-1,475) 0.19 (0.15-0.24) 52.6 0.032
Recursive partitioning model

250% 96.5(93.9-98.0) 99.8(99.6-99.9) 483 (254-876) 0.04 (0.02-0.06) 44.7 0.007

275% 96.5 (93.9-98.0) 99.8 (99.6-99.9) 483 (254-876) 0.04 (0.02-0.06) 447 0.007

290% 75.6 (70.6-80.0) 100 (99.9-100) 3,694 (520-26,244) 0.24 (0.20-0.30) 86.1 0.040

Abbreviations: Cl = confidence interval; LR+ = positive likelihood ratio; LR— = negative likelihood ratio; SAH = subarachnoid hemorrhage.

This table compares the performance of the logistic regression and recursive partitioning (RP) model (figure 2) for the identification of patients with primary
SAH using health administrative data. RP models cluster patients into homogenous groups based on the outcome. We used 3 different probability
thresholds (column 1) for classifying patients in each prediction model as expecting to be with or without primary SAH. The probability of truly having
or not having a primary SAH (final 2 columns) is based on the overall prevalence of SAH at the study hospital of 16.7 cases per 10,000 hospitalizations.
2|ndicates posttest probability of having primary SAH assuming an SAH prevalence of 16.7/10,000 hospital admissions at The Ottawa Hospital. There
was no difference in performance between SAH prevalence =50% and =75%.
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of having the diagnostic code 160 (figure 2B), the prob-
ability of SAH in these patients was only 0.7%. How-
ever, the introduction of other diagnostic codes (n = 4),
procedural codes (n = 3), and encounter characteristics
(n = 2) created terminal nodes in which the probability
of SAH varied between 75% and 100% (figure 2B,
table 2).

Performance characteristics of the model in the
validation cohort varied based on the SAH prevalence
required in terminal nodes to delineate SAH (table 1).
Results were identical if the prevalence threshold of
50% or 75% was used in the recursive partitioning
model with a sensitivity of 96.5% and a specificity of
99.8% (which translated to an LR+ of 483). Increas-
ing the threshold to 90% yielded a higher specificity
and increased the LR+ to 3,694; at a cost, however,
of missing a quarter of all cases (sensitivity 75.6%).
The performance of the logistic regression and recur-
sive partitioning models were similar but the latter
had a higher LR+, which led to greater posttest prob-
ability of identifying primary SAH patients (table 1).
At TOH, the prevalence of primary SAH is 16.7/
10,000 hospital admissions (unreported data); thus
the probability of any admission being for primary
SAH is 0.17%. Implementing the recursive partition-
ing model (with the 50% prevalence threshold), iden-
tified patients would have a 44.7% probability of
truly having a primary SAH (table 1). Conversely,
the odds of truly having primary SAH, if not identi-
fied by the model, are 7 in 100,000 admissions.

DISCUSSION We have created a model that uses
health administrative data to accurately identify hos-
pital encounters having a strong likelihood of primary
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SAH. This model can be used to screen large popula-
tions of patients with health administrative data to
identify large cohorts of SAH using primary chart
review. This study demonstrates that complete cohorts
of rare diseases, such as primary SAH, can be identified
using routinely collected health data facilitating timely,
cost-effective, and large-scale epidemiologic studies.

Our study has several notable findings and implica-
tions. First, the methods implemented in this study
were comprehensive, and are necessary to minimize
misclassification that can arise, particularly in rare dis-
eases, from the solitary use of diagnostic codes for case
ascertainment. These methods effectively incorporate
overlapping search strategies. Overlapping strategies
have improved the accuracy of case ascertainment in
other disease processes including all stroke, osteoporo-
sis, and acute kidney injury.?***3! In the current study,
misclassification was minimized by including multiple
variables in a recursive partitioning model. As such, not
having a DAD diagnostic code for primary SAH was
insufficient alone to exclude SAH. Such patients were
still likely to have primary SAH if; for example, they
had undergone occlusion of an intracranial vessel,
thereby improving the sensitivity of the search strategy
compared to diagnostic code alone. With this model,
given a pretest probability of primary SAH of approx-
imately 16.7/10,000 hospital admissions, the probabil-
ity of a patient actually having primary SAH if deemed
positive by the model is 45%, or nearly 1 in 2. This is
a substantial improvement on 0.74% probability from
a diagnostic code alone as demonstrated in the
Introduction.

This leads to the second implication in that accu-
rately and feasibly identifying large complete cohorts



[ Figure 2 Recursive partitioning (RP) model to identify primary subarachnoid hemorrhage (SAH)
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(A, B) Each bolded box represents a splitting variable (which includes the presence or absence of a diagnostic code, a procedural code, or a hospitalization
characteristic; the presence of a splitting variable is indicated by 1 and its absence by 0). Splitting variables successively partition the sample or node (pre-
sented in the ovals) until no further partitions are possible, creating a terminal node (rectangular boxes). Within each splitting node or terminal node, the
number (and respective proportion) of patients truly with (SAH) and without (hoSAH) primary SAH are presented. Corresponding codes for diagnoses or pro-
cedures denoted by superscripted numbers: 1 = 160, 2 = 1JW51, 3 =161, 4 = 1JE51, 5 =167, 6 = 3JW10, 7 = 162, 8 = S06. CV = cerebrovascular
disease; IC = intracranial; ICH = intracranial hemorrhage; LOS = hospital length of stay (days); N = total number of patients.

of rare diseases like primary SAH, retrospectively, is
possible. The ability to identify large, population-
based cohorts of patients with a particular disease is
of paramount importance to understand disease inci-
dence, patient characteristics, risk factors, prognostic
factors, and patient outcomes as well as health care
resource utilization. For example, large-scale epidemi-
ologic studies using cohorts derived from health
administrative data with validated methods have been
essential in our current understanding of severe sep-

Sis32—34 35,36

and cardiovascular disease.”>*® Comprehensive
case ascertainment methods are essential for accurate
epidemiologic study®; we present an accurate
method for primary SAH case ascertainment that
could facilitate large-scale population-based study
and importantly further our understanding of pri-
mary SAH disease epidemiology.

This study’s strengths support its findings. First,
we demonstrate that case identification that includes

but is not solely reliant on diagnostic codes as part of

a case ascertainment strategy may improve accuracy.
However, diagnostic codes cannot be discounted alto-
gether in retrospective case ascertainment. We pre-
viously demonstrated that using ICD codes as part
of a case ascertainment strategy identified additional
cases of SAH
missed.?" This is because the data necessary to posi-

that would have otherwise been

tively identify such a patient were either unavailable
or associated with a separate hospital encounter. In
our validation dataset, use of the diagnostic code for
SAH alone had a sensitivity of 88.9%, which
improved to 96.5% when additional variables are
considered. Others have used ICD codes as part of
an algorithm, including the British SAH study by
Pobereskin,” where multiple overlapping methods
(including diagnostic codes, imaging results, and
operative datasets) were used to identify their cohort.
With the current model, we overcome the poor gen-
eralizability of these case ascertainment methods
given that few institutions have access to and ability
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Table 2 Pathway characteristics leading to high probability of primary subarachnoid hemorrhage (SAH) in the

validation group

Pathway to terminal node

SAH code*

(present or absent) Additional variables

Present

Present + Occlusion of IC vessels? (1)
+ LOS =48 h

Absent + Occlusion of IC vessels? (1)

+ Intracranial hemorrhage code? (1),
+ urgent admission (0)

+ Intracranial hemorrhage code? (0),
+ carotid artery occlusion* (1)

+ Intracranial hemorrhage code?® (0),
+ carotid artery occlusion* (0),

+

+ intracranial vessel imaging® (1)

Intracranial hemorrhage code?® (0),
carotid artery occlusion? (0),

Total patients

other cerebrovascular disease codes (1),

Total patients with primary SAH
in node (proportion, %)
287 97.6

204 100

40 100

g 76.9

B) 100

2 100

2 100

4 75

other cerebrovascular disease code® (0),

intracranial injury code® (1),
urgent admission (0)

+
+
+
+ other nontrauma intracranial hemorrhage code” (0),
+
+

Abbreviations: IC = intracranial; LOS = length of stay.

This table describes the characteristics of patients from the validation set with high probability of having primary SAH
from the recursive partitioning model presented in figure 2. 1 signifies the presence of the diagnostic or procedural code
whereas O represents its absence. Corresponding codes for diagnoses or procedures denoted by superscripted numbers:
1=160,2=1JW51,3=161,4 = 1JE51, 5 =167,6 = 3JW10, 7 = 162, 8 = S06.

to utilize such granular data. In our prediction model,
only variables that are widely available in health
administrative records were used, making the insti-
tuted methods potentially widely generalizable. Sec-
ond, we utilized recursive partitioning methods to
develop the model over logistic regression. This
approach has been previously advocated by prediction
rule experts when trying to completely separate 2
groups (e.g., those with and without a disease) using
a highly sensitive rule.? Further, to avoid overfitting
the data, separate derivation and validation sets were
used, accomplishing the key first steps in developing
a prediction rule.’® Finally, we employed likelihood
ratio formulation of the Bayes theorem to establish
posttest probability of disease, which is less prone to
future overestimations in disease probability caused
by differences in disease prevalence.*

Potential study weaknesses should be kept in mind
when interpreting its results. The retrospective nature
of this study in identifying patients with a specific dis-
ease process will always have inherent limitations that
can only be overcome with a rigorous prospective pro-
tocol. We have attempted to limit any misclassification
bias by using multiple predictive variables in our algo-
rithms. It is possible that center-related systematic
errors in coding or center-specific tendencies in relation
to diagnostic workup and therapeutic approaches
biased the prediction algorithm, limiting its generaliz-
ability to other centers. Certainly, validation of the
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prediction model in other settings is necessary to
ensure its accuracy using datasets generated from other
health care centers.

This study demonstrates how routinely collected
and widely available administrative data can be used
to predict the probability that any given hospital
encounter is the result of a primary SAH (from
either a ruptured aneurysm or AVM), thereby facil-
itating the identification of a complete and accurate
cohort of a rare disease. The validity of our method
must be demonstrated using datasets from other
institutions.
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Call for Nominations: Editor-in-Chief of Neurology
Today

The AAN seeks self-nominations or nominations of other AAN members for the editor-in-chief of
Neurology Today®. The Academy’s official news source publishes twice a month reporting on

breaking news, issues, and trends in the practice and neurology, reaching over 26,000 professionals.

The editor-in-chief serves as the leader setting the future editorial vision and direction for the pub-
lication while continuing the strong tradition of providing reliable, accurate, neurologist edited and

curated news covering the field of neurology.

The initial appointment is five years beginning July 1, 2017, with a two-month transition with the
current editor-in-chief beginning April 1, 2017. The deadline for nominations is October 31, 2016.
A position description, including requirements, is available at AAN.com/view/NTEditorinChief.

How Do YOU Compare? Access New Neurology
Compensation and Productivity Report
The AAN’s 2016 Neurology Compensation and Productivity Report and customizable dashboard is now

available. Whether you are a physician or practice administrator in a large or small practice setting, the
2016 Neurology Compensation and Productivity Report empowers you to:

e Compare and customize your individual practice-related data with your colleagues at local and

national levels

* Determine if you are being compensated fairly relative to your peers

Learn more at AAN.com/view/2016NeuroReport.

Use the data in demonstrating your value to payers and to delivering quality patient care
Discover fair market value based on your subspecialty, region, and practice type

* Create charts and graphs and download them right to your desktop

Assess patient and practice management principals and implement efficiencies that ultimately
can help improve the quality of patient care
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