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Abstract: Viral myocarditis (VMC) is an inflammatory heart condition which can induce dilated
cardiomyopathy (DCM). However, molecular mechanisms underlying the progression of VMC
into DCM remain exclusive. Here, we established mouse models of VMC and DCM by infecting
male BALB/c mice with Coxsackievirus B3 (CVB3), and performed NMR-based metabonomic
analyses of mouse sera. The mouse models covered three pathological stages including: acute VMC
(aVMC), chronic VMC (cVMC) and DCM. We recorded 1D 1H-NMR spectra on serum samples
and conducted multivariate statistical analysis on the NMR data. We found that metabolic profiles
of these three pathological stages were distinct from their normal controls (CON), and identified
significant metabolites primarily responsible for the metabolic distinctions. We identified significantly
disturbed metabolic pathways in the aVMC, cVMC and DCM stages relative to CON, including:
taurine and hypotaurine metabolism; pyruvate metabolism; glycine, serine and threonine metabolism;
glycerolipid metabolism. Additionally, we identified potential biomarkers for discriminating a VMC,
cVMC and DCM from CON including: taurine, valine and acetate for aVMC; glycerol, valine and
leucine for cVMC; citrate, glycine and isoleucine for DCM. This work lays the basis for mechanistically
understanding the progression from acute VMC to DCM, and is beneficial to exploitation of potential
biomarkers for prognosis and diagnosis of heart diseases.

Keywords: viral myocarditis; dilated cardiomyopathy; metabolomics; 1H-NMR; coxsackievirus;
B3 virus

1. Introduction

Viral myocarditis (VMC) is characterized by myocardial inflammation. About 10–20%
of patients with VMC may progress to dilated cardiomyopathy (DCM), a frequent cause of
cardiac failure and a terminal heart condition requiring transplantation [1]. As two distinct
pathological stages of heart diseases, VMC and DCM cause significant health problems
worldwide with an estimated incidence rate of myocarditis up to 1–2% [2–4].

Previous works have indicated that Coxsackievirus B3 (CVB3) acts as one of the pri-
mary pathogens of VMC [3,4]. CVB3 is a member of the family Picornaviridae and genus
Enterovirus with nonenveloped, linear and positive-sense ssRNA. The CVB3 infection can
trigger persistent immune responses in acute VMC (aVMC), and induce autoimmunity
and chronic cardiac inflammation, thereby resulting in DCM [5,6]. As reported previously,
infection of the susceptible BALB/c mice with CVB3 could well mimick human CVB3
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infection, which could develop aVMC from week 1–2 post-infection, and chronic VMC
(cVMC) from week 3–8 after infection, and then a dilation of the heart ventricle (DCM)
several months after the CVB3 infection [7]. These mouse models have been extensively
used to study the progression of VMC into DCM, and provide mechanistic understandings
of pathogenic immune and inflammation responses related to VMC and DCM [7,8]. How-
ever, efficient therapeutic measures have not been developed to alleviate the progression
from acute VMC to DCM due to both the unclear molecular mechanisms underlying the
pathological progression and the lacks of specific diagnostic and prognostic biomarkers at
an early stage [9,10].

Recently, metabolomic analyses have been emerging as useful and efficient tools for
accessing metabolic processes in heart tissues, identifying potential biomarkers for diag-
nosis and prognosis of heart diseases, and addressing primary metabolic alterations in
disease onset and progression, as well as clarifying molecular mechanisms underlying the
pathogenesis of heart diseases [11,12]. For example, Halade et al. showed that lipoxyge-
nase drives lipidomic and metabolic reprogramming with significantly changed plasma
amino acids and biogenic amines in ischemic heart failure (HF) after myocardial infarc-
tion, facilitates cardiac healing and thereby improve survival [13]. Diguet et al. exhibited
that the Nicotinamide riboside treatment increases myocardial levels of three metabolites
(nicotinic acid adenine dinucleotide, methyl-nicotinamide, and N1-methyl-4-pyridone-
5-carboxamide), which can be exploited as biomarkers for evaluating the treatment of
DCM [14].

Furthermore, Müller et al. indicated that circulating metabolites, particularly fatty
acids, can reflect cardiac metabolic defects which deteriorate heart functions. Increasing
carnitine can significantly improve ejection fraction and reduce interstitial fibrosis in mice
subjected to transverse aortic constriction (TAC) [15]. More importantly, rat models dis-
play apparent metabolic shifts in different pathological stages of HF from compensated
hypertrophy stage to decompensated hypertrophy stage. Similarly, patients with HF also
show obvious metabolic changes from stage A to stage B and subsequently stage C. For
example, glycolysis metabolism acts as core nodes in stage A; both alanine metabolism and
fatty acid metabolism are key nodes in stage B; both glucose-alanine cycle and cysteine
metabolism are central connections in stage C. Significantly disturbed metabolic pathways
with profoundly altered metabolite levels potentially contribute to molecular mechanisms
of the HF pathogenesis, and provide potential biomarkers and therapeutic intervention
targets for HF treatments [16].

Therefore, few works have been reported on metabolomic analysis for the progression
of VMC into DCM. In the present work, we established the mouse models of VMC and
DCM by infecting BALB/c mice with CVB3 following the procedure described in published
references [7,8]. We selected mice without infection at week 2, week 6 and week 24 as
normal controls (CON-w2, CON-w6, CON-w24), corresponding to these three pathological
stages (aVMC, cVMC and DCM), respectively. We performed NMR-based metabonomic
analyses of mouse sera, compared metabolic profiles and significantly disturbed metabolic
pathways in these pathological stages relative to their metabolite levels, and identified
significant metabolites and counterparts. This work may be beneficial to mechanistically
understanding the progression of VMC into DCM and exploring potential biomarkers for
prognosis and diagnosis of heart diseases.

2. Materials and Methods
2.1. Mouse Models of Viral Myocarditis and Dilated Cardiomyopathy

Inbred male BALB/c mice (4–5 weeks of age) were supplied by Hunan Laboratory
Animal Centre, Chinese Academy of Sciences (Changsha, Hunan, China). This study was
performed in accordance with protocols approved by the Guangxi Medical University
Animal Ethics Committee, China. All animals were maintained in a specific pathogen-
free facility in the Experimental Animal Center (Guangxi Medical University, Nanning,
Guangxi, China), under controlled conditions (20–24 ◦C and 40–70% humidity) with a
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12 h light cycle, and fed standard rodent chow and water. Mice were randomly divided
into MODEL mice (n = 28) and normal control (CON) mice (n = 20). The MODEL mice
were divided into three groups: aVMC (n = 10); cVMC (n = 8); DCM (n = 10). The control
mice were divided into three group: CON-w2 (n = 7); CON-w6 (n = 8); CON-w24 (n = 5),
corresponding to the three pathological stages of aVMC, cVMC and DCM, respectively. The
first day when mice were injected intraperitoneally (i.p.) was defined as day 0. Thereafter,
the MODEL mice were injected monthly i.p. with 100 L of CVB3 (median tissue culture
infective dose TCID50 = 10−8, Nancy strain) diluted in phosphate buffered saline (PBS), to
establish the mouse models of aVMC, cVMC and DCM. At the same time, PBS was given
monthly for the CON mice. The three groups of MODEL mice were separately sacrificed at
three time points: week 2 for aVMC; week 6 for cVMC; week 24 for DCM. Correspondingly,
the three groups of CON mice were also separately sacrificed at the three time points: week
2 for CON-w2; week 6 for CON-w6; week 24 for CON-w24. Both sera and hearts of the
mice were removed aseptically as fresh specimens for the following experiments (Figure 1).
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2.2. Histology

Hearts were fixed in 10% buffered formalin and stained with hematoxylin and eosin
(HE) to assess inflammatory cells or Masson’s trichrome for detecting collagen deposition.
Myocarditis was evaluated as the percentage of the size of the heart section (i.e., ventricles)
with hematoxylin staining, necrosis, and/or fibrosis to that of the overall heart section at low
power (×25 magnification) using a microscope eyepiece grid, as previously described [17].
Additionally, the collagen volume fraction (CVF) was calculated as the ratio of the area of
interstitial fibrosis to the total area of connective and myocardial tissue, using the Motic Med
6.0 image (Xiamen, China) analysis software to assess the severity of myocardial fibrosis [18].
Sections were scored by at least two individuals blinded to analyzed subjects [17,18].

2.3. Plaque-Forming Assay

Viral titers were determined by standard plaque formation assay and expressed per
organ weight (in grams). After part of the heart was weighed and homogenized, three
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freeze-thaw cycles and centrifuging were conducted. The HeLa cell monolayers were
incubated with the supernatant for 1 h at 37 ◦C, 5% CO2, washed in PBS, and covered
with 2 mL of 0.4% agar, DMEM, and 5% FCS. After 72 h of cultivation, the monolayers
were fixed in para formaldehyde and stained in crystal violet, and the numbers of plaques
were counted.

2.4. RNA Extraction and Real Time-PCR

The total RNA of homogenized heart tissues was extracted with TRIZOL
Reagent (Invitrogen, Carlsbad, USA), and then reversely transcribed into cDNA with
a Reverse Transcription Kit (catalog RR047A, Takara, Tokyo) according to the manufac-
turer’s instructions. Primers were designed by Primer Premier 5.0. The following spe-
cific primers were used: CVB3: Sense: 5′-CGGTACCTTTGTGCGCCTG T-3′; Anti-sense:
5′-CAGGCCGCCAACGCAGCC-3′. The housekeeping gene β-actin: Sense:
5′-AATTCCATCATGAAGTGTGA-3′; Anti-sense: 5′-ACTCCTGCTTGCTGATCCAC-3′.
RT-PCR was performed with an initial denaturation step for 3 min at 94 ◦C, a three-step
cycling procedure (denaturation at 94 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension
at 72 ◦C for 60 s) for 35 cycles. The gene expressions were normalized to the level of β-actin
transcripts and quantified by the CT method using the 7500 System Sequence Detection
software (Applied Biosystems, Waltham, MA, USA). All reactions were performed in
duplicate for each sample.

2.5. Sample Preparation and 1H-NMR Spectroscopic Analysis

Serum samples were thawed on the ice prior to NMR experiments. Then, 250 µL
of the sera was mixed with 250 µL of 50 mM phosphate buffer containing 20% D2O
(pH 7.4) in Eppendorf tubes. These tubes were centrifuged at 12,000 g for 10 min at 4 ◦C.
Thereafter, 500 µL of the sample was transferred into 5-mm NMR tube. All 1H-NMR
experiments were conducted on a Bruker AVANCE III HD 600 MHz spectrometer at 298 K.
1D 1H-NMR spectra of serum samples were acquired using the Carr-Purcell-Meiboom-
Gill (CPMG) pulse sequence [RD-90◦-(τ-180◦-τ)n-ACQ] with water suppression. A fixed
total spin—spin relaxation delay of 80 ms were used to attenuate broad NMR signals of
slowly tumbling macromolecules with short T2 relaxation times and to retain signals of
metabolites with low molecular weights. Experimental parameters were shown as follows:
spectral width = 12 KHz; number of time domain data points (TD) = 64 K; relaxation delay
(RD) = 4 s; acquisition time (ACQ) = 2.73 s; number of scans (NS) = 256. These NMR spectra
were multiplied by an exponential function with a line-broadening factor of 0.3 Hz prior to
Fourier transformation, manually phased and corrected for baseline distortion carefully.
The NMR spectra of the serum samples were referenced to the methyl group of lactate
(1.33). Resonances of aqueous metabolites derived from mouse sera were assigned by a
combination of Chenomx NMR Suite (Version 8.3, Chenomx Inc., Edmonton, AB, Canada),
Human Metabolome Data Base (HMDB, http://www.hmdb.ca/ accessed on 6 January
2022) and relevant literatures [19]. The resonance assignments were confirmed by using 2D
NMR spectra, including 1H-1H TOCSY and 1H-13C HSQC spectra.

2.6. Multivariate Statistical Analysis

The NMR spectral data were preprocessed prior to the multivariate statistical analysis.
Each NMR spectrum was segmented to regions with a width of 0.002 ppm (bin) and
integrated using the MestRova software (Version 9.0, Mestrelab Research S.L., La Coruña,
Spain). The spectral region was 9.00–0.20, while the region of 5.7–4.6 was excluded to
eliminate distorted baseline from imperfect water saturation. The remaining integrals in
each NMR spectrum were probabilistic quotient normalized [20,21]. Hierarchical clustering
analysis (HCA) was conducted on the binned spectral data, which is one of multivariate
statistical analyses for sample classification without training sample set. In HCA, each
sample act as a separate cluster initially and the algorithm proceeds to combine them
until all samples belong to one cluster. The unsupervised principal component analysis

http://www.hmdb.ca/
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(PCA) was performed to reveal trends, highlight outliers and show clusters among the
observations with the SIMCA-P+ 14.0 software (Umetrics AB, Umea, Sweden). Then,
both partial least squares discriminant analysis (PLS-DA) and orthogonal signal correction
partial least-squares discriminant analysis (OPLS-DA) were used to classify the samples and
extract the correlated variables related to sample belongings. PLS-DA is a PLS regression
where y is a set of binary variables describing the class belonging [22]. OPLS-DA is a
derivative PLS-DA which removes the uncorrelated variables in the within-class using
the orthogonal signal correction (OSC) filter [23]. Most of the variables related to the
class belonging are described on the first principal component in the OPLS-DA model.
Both PLS-DA and OPLS-DA were also executed with SIMCA-P+ 14.0. Thereafter, the
linear classifiers were created on the basis of PLS-DA and OPLS-DA models in MATLAB
(Version MATLAB2011b, MathWorks, Natick, MA, USA) (www.mathworks.com/help/
stats/discriminant-analysis.html, accessed on 6 January 2022). The linear classifiers were
used to verify the accuracy of classification [24].

2.7. Identification of Significant Metabolites and Quantitative Comparison of Metabolite Levels

We validated the robustness of the PLS-DA model by the response permutation tests
(RPTs), and then identified significant metabolites with two criteria based on the validated
PLS-DA models. One criterion is the variable importance in the projection (VIP) [22],
and another criterion is the correlation coefficients (r) of the variables relative to the first
predictive component (tp1) in the OPLS-DA model [25]. The critical values were referred to
the table of critical values of correlation coefficients according to the degrees of freedom (df)
which were determined as n1 + n2− 2 with n1 and n2 as the respective numbers of samples
of the two groups in the OPLS-DA model. The loading plot of the OPLS-DA model with the
two criteria was reconstituted in MATLAB. Relative integrals of metabolites were used to
represent relative levels of metabolites. Means and standard errors of the metabolites were
calculated for each group. We conducted t-test to quantitatively compare metabolite levels
of these three pathologic groups compared with three control groups based on the relative
integrals of serum metabolites (Table 1). Quantitative comparisons of the relative levels of
metabolites among these three pathological groups compared with their control groups
were performed by using One-way ANOVA followed by Tukey’s multiple comparisons
tests (Table S2). The univariate analysis was conducted with MATLAB Statistics Toolbox.
Metabolites with the p value < 0.05 were identified to be differential metabolites. Metabolites
with VIP > 1 from the PLS-DA model and p < 0.05 from the univariate analysis were
identified to be characteristic metabolites.

Table 1. Relative levels of metabolites calculated from 1D 1H-NMR spectra of sera derived from the
six groups of mice.

CON-w2 CON-w6 CON-w24 aVMC cVMC DCM

Amino acid metabolism
leucine 0.814 ± 0.114 0.834 ± 0.060 0.866 ± 0.102 0.866 ± 0.123 0.917 ± 0.063↑ 0.677 ± 0.090↓↓

isoleucine 0.148 ± 0.024 0.144 ± 0.015 0.153 ± 0.022 0.125 ± 0.050 0.173 ± 0.028↑ 0.124 ± 0.031
valine 0.397 ± 0.035 0.396 ± 0.034 0.420 ± 0.083 0.267 ± 0.078↓↓↓ 0.514 ± 0.085↑↑ 0.363 ± 0.088

threonine 0.256 ± 0.077 0.227 ± 0.061 0.213 ± 0.056 0.261 ± 0.094 0.248 ± 0.066 0.220 ± 0.052
glycine 0.333 ± 0.020 0.339 ± 0.067 0.327 ± 0.013 0.284 ± 0.037↓↓ 0.346 ± 0.041 0.448 ± 0.087↑↑
lysine 0.508 ± 0.071 0.499 ± 0.057 0.505 ± 0.051 0.465 ± 0.138 0.589 ± 0.070↑ 0.520 ± 0.083

alanine 0.314 ± 0.020 0.351 ± 0.044 0.348 ± 0.034 0.285 ± 0.055 0.372 ± 0.046 0.401 ± 0.061
taurine 1.622 ± 0.192 1.511 ± 0.103 1.537 ± 0.104 1.246 ± 0.148↓↓↓ 1.641 ± 0.096↑ 1.926 ± 0.143↑↑↑

glutamine 0.767 ± 0.142 0.723 ± 0.055 0.761 ± 0.091 0.906 ± 0.245 0.647 ± 0.072↓ 1.007 ± 0.168↑↑
Carbohydrate metabolism

creatine 0.384 ± 0.070 0.364 ± 0.039 0.382 ± 0.074 0.320 ± 0.074 0.326 ± 0.048 0.498 ± 0.092↑
acetate 0.231 ± 0.057 0.223 ± 0.072 0.189 ± 0.037 0.154 ± 0.025↓↓ 0.311 ± 0.084↑ 0.282 ± 0.073↑
glucose 3.421 ± 0.425 3.066 ± 0.353 3.342 ± 0.113 2.971 ± 0.399↓ 2.596 ± 0.285↓ 3.855 ± 0.324↑↑↑
lactate 4.266 ± 0.772 4.529 ± 0.389 4.632 ± 0.767 4.356 ± 0.475 4.215 ± 0.511 5.468 ± 0.513↑

succinate 0.195 ± 0.108 0.196 ± 0.075 0.160 ± 0.062 0.221 ± 0.076 0.166 ± 0.025 0.328 ± 0.128↑
citrate 0.224 ± 0.060 0.253 ± 0.042 0.243 ± 0.033 0.242 ± 0.078 0.241 ± 0.029 0.586 ± 0.158↑↑↑

www.mathworks.com/help/stats/discriminant-analysis.html
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Table 1. Cont.

CON-w2 CON-w6 CON-w24 aVMC cVMC DCM

Lipid metabolism
LDL/VLDL 7.579 ± 0.462 7.941 ± 0.724 7.240 ± 0.601 8.955 ± 0.801↑↑↑ 8.696 ± 1.911 5.607 ± 0.546↓↓↓

PUFA 2.254 ± 0.382 2.109 ± 0.321 2.086 ± 0.204 2.216 ± 0.471 2.495 ± 0.355↑ 1.526 ± 0.284↓↓
3-HB 0.440 ± 0.109 0.460 ± 0.057 0.482 ± 0.161 0.462 ± 0.100 0.405 ± 0.161 0.760 ± 0.247↑

glycerol 1.430 ± 0.133 1.478 ± 0.239 1.449 ± 0.050 1.399 ± 0.378 1.700 ± 0.113↑ 2.098 ± 0.320↑↑↑
Choline phosphorylation metabolism

GPC 4.104 ± 0.377 4.459 ± 0.700 4.269 ± 0.351 3.470 ± 0.538↓ 4.544 ± 0.440 3.712 ± 0.363↓
Note: ↑↑↑/↓↓↓, ↑↑/↓↓, ↑/↓mean that the changes of relative metabolite levels in the mouse models are highly
significant (p < 0.001), very significant (p < 0.01), significant (p < 0.05) compared with those in the corresponding
normal mice (aVMC vs. CON-w2, cVMC vs. CON-w6, DCM vs. CON-w24). ↑ and↓ denote significant increase
and significant decrease, respectively.

2.8. Multivariate Receiver Operating Characteristic (ROC) Curve Analysis

We performed the multivariate ROC analysis to explore potential biomarkers based
on the significant metabolites identified from the OPLS-DA models. We randomly selected
66.7% serum samples to perform multivariate receiver operating characteristic (ROC) curve
analysis for screening of potential biomarkers in aVMC, cVMC and DCM mice relative
their normal counterparts. The module of Biomarker Analysis provided by MetaboAna-
lyst 5.0 (https://www.metaboanalyst.ca, accessed on 6 January 2022) [26] was used to build
multivariate ROC curves (Figure S4A). We selected the remaining 33.3% serum samples
for multivariate ROC analysis to confirm the effectiveness of the potential biomarkers
(Figure S4B). Potential biomarkers were identified by the feature ranking method with
the Random Forests algorithm [27] (Figure S4C). Multivariate ROC curve analysis was
performed using logistic regression algorithm for classification. The area under the ROC
curve (AUC) value was used to evaluate the predictive performance of a biomarker model.
The significant metabolites with AUC 0.7 and selected frequency > 0.4% were identified to
be potential biomarkers for diagnosing a given pathological state. Concrete details were
described in our previous work [28].

2.9. Metabolic Pathway Analysis

We performed the metabolic pathway analysis to identify significantly disturbed
metabolic pathways (significant pathways) associated with the progression from acute
VMC to DCM compared with normal controls. The metabolic pathway analysis was
conducted based on relative levels of the metabolites using the module of Pathway Analysis
in MetaboAnalyst 5.0 [26]. The metabolic pathway analysis well integrates the metabolite
set enrichment analysis (MESA) and pathway topology analysis. As a metabolomic version
of the popular gene set enrichment analysis [29], MSEA has its own collection of metabolite
set libraries with user-friendly web-interfaces [26]. As a novel way to identify biologically
meaningful metabolic patterns closely associated with metabolite levels, MESA assesses
whether a group of functionally related metabolites are significantly enriched by calculating
statistical p values, which has the potential to identify “subtle but consistent” changes
among a group of related metabolites. On the other hand, metabolic alterations occurring
in important nodes of the metabolic network would potentially trigger significant impacts
on the metabolic pathway than those occurring in marginal or relatively isolated nodes.
We performed the pathway topology analysis through computing pathway impact values
(PIV) with relative-betweenness centrality arithmetic. Significantly disturbed metabolic
pathways were identified with pathway impact values > 0.2 and p < 0.05, using the Pathway
Analysis module provided by MetaboAnalyst 5.0.

3. Results
3.1. Viral Myocarditis and Dilated Cardiomyopathy Induced by CVB3 in Mice

Hearts were cut longitudinally and assessed histologically for dilation at low power.
In the control groups (CON-w2, CON-w6 and CON-w24), HE staining of heart tissues did

https://www.metaboanalyst.ca
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not show profound cardiac necrosis and inflammatory infiltration (Figure 2A,B). Moreover,
interstitial fibrosis did not display significant differences between the three control groups,
as evaluated by the calculated CVF (%) values (Figure 2C). Furthermore, neither cavity
dilatation nor decreased wall thickness in ventricles was observed among the three control
groups. In the three CVB3-infected groups (aVMC, cVMC and DCM), the heart tissues
showed significant degeneration and necrosis of cardiomyocytes, inflammatory infiltration,
collapse of cardiac muscle fibers, and little fibrosis around the necrosis (Figure 2A,B).
During the pathological progression, the aVMC group exhibited the most significant cardiac
inflammatory infiltration, which was thereafter gradually declined. Fibrosis was gradually
increased over the course of experimental time in the CVB3-infected groups (Figure 2C).
No inflammatory infiltration but massively diffused fibrosis was observed in the DCM
group. Moreover, obviously cavity dilation and decreased wall thickness of ventricles were
observed in the DCM group, but not in aVMC and cVMC groups. These data indicated
that the mouse models of aVMC (week 2), cVMC (week 6) and DCM (week 24) were
successfully established by inducing with CVB3 infection. To evaluate the effect of monthly
CVB3 injection on metabolic profiles of the mice, we measured cardiac CVB3 mRNA
levels and viral titers by using RT-PCR and standard plaque formation, respectively. The
cardiac CVB3 mRNA was highly expressed on week 2 in the CVB3-infected group, then
gradually decreased (aVMC: 4.3 ± 2.2, cVMC: 2.1 ± 0.5, DCM: 2.5 ± 0.7). Moreover, the
viral titers in the three pathological groups showed the similar changing tendency along the
course of the experimental time: aVMC, (1.8 ± 0.5) × 106; cVMC, (1.2 ± 0.3) × 102; DCM,
(1.1 ± 0.4) × 102. Given that the cardiac viral was not gradually increased by monthly
CVB3 injection, metabolic disorders associated with the chronic VMC and DCM states
mostly resulted from the pathological progression rather than the monthly CVB3 injection.
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Figure 2. Representative histopathological images of myocardial tissues derived from the established
models of aVMC, cVMC and DCM mice and the normal control mice (CON). (A) Histopatholog-
ical images of the myocardial tissues; (B) Tissue sections stained with hematoxylin-eosin (×400);
(C) Tissue sections stained with Masson (×400).
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3.2. Metabolic Alterations in CVB3-Infected Groups Compared with Controls

Figure S1 illustrates typical 1D 1H-NMR spectrum recorded on the serum derived from
an aVMC mouse. Totally, 28 metabolites were identified in the NMR spectrum (Table S1).
To acquire overall metabolic information and examine metabolic profiles of the six groups
of sera, we performed unsupervised HCA and PCA analyses on the NMR data sets of three
CVB3-infected groups (aVMC, cVMC and DCM) and their control counterparts (CON-w2,
CON-w6 and CON-w24). The three control groups of sera displayed indistinguishable
metabolic profiles (Figure 3A,B). However, the three infected groups exhibited distinctly
different metabolic profiles from the corresponding CON groups, i.e., aVMC vs. CON-w2,
cVMC vs. CON-w6, DCM vs. CON-w24 (Figure 3C–E). To maximize metabolic distinctions
between the infected groups and the normal control groups, we conducted the PLS-DA
analyses on the NMR data sets. Figure S2 exhibits the scores plots of the PLS-DA models
built with the first two predictive principal components (tp1 and tp2). The linear classifier
boundaries in these plots illustrate that the CBV3-infected mice were metabolically dis-
tinguished clearly from their normal counterparts. Furthermore, we performed response
permutation tests (RPTs) with 200 cycles to validate the robustness of the PLS-DA models,
which showed that these three models were not overfitting (Figure S3). Furthermore, we
constructed six pairwise OPLS-DA models with tp1 based on the NMR data sets of the
sera (Figure 4). The OPLS-DA scores plots show distinct metabolic separations between
the CVB3-infected groups and their normal counterparts (Figure 4A–C). Totally, 9, 11 and
12 significant metabolites were identified for aVMC vs. CON-w2, cVMC vs. CON-w6, DCM
vs. CON-w24 from the OPLS-DA loading plots, respectively (Figure 4D–F). In addition, we
conducted t-test to quantitatively compare metabolite levels of the three pathologic groups
compared with the three control groups based on the relative integrals of serum metabo-
lites (Table 1). Totally, 7, 10 and 15 differential metabolites were identified for pair-wise
comparisons of aVMC vs. CON-w2, cVMC vs. CON-w6, DCM vs. CON-w24, respectively.
Finally, we identified characteristic metabolites with VIP > 1 and p < 0.05 (Table S3). Totally,
7, 8 and 11 characteristic metabolites were identified for pair-wise comparisons of aVMC
vs. CON-w2, cVMC vs. CON-w6, DCM vs. CON-w24, respectively.
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Figure 3. Multivariate analyses for 1D 1H-NMR spectra recorded on sera derived from six groups
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groups; (B) PCA scores plot for the six groups; (C–E) PCA scores plots for aVMC and CON-w2 (C);
for cVMC and CON-w6 (D); for DCM and CON-w24 (E). Each point represents a serum sample
derived from an individual mouse.
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Figure 4. OPLS-DA analyses of the mouse sera to identify significant metabolites significantly
responsible for distinguishing metabolic profiles between three pathologic groups (aVMC, cVMC,
DCM) and control groups (CON-w2, CON-w6, CON-w24). (A–C) OPLS-DA scores plots; (D–F) the
corresponding OPLS-DA loading plots. The red color indicates that the variables are very significant
(|r| > 0.482 in (D), |r| > 0.497 in (E), |r| > 0.514 in (F); VIP > 1); orange indicates that the variables
are significant (0.349 <|r| < 0.482 in (D), 0.355 <|r| < 0.492 in (E), 0.361 <|r| < 0.514 in (F); VIP > 1);
blue indicates that the variables are insignificant (NS).

3.3. Levels of the Metabolites Were Changed in the Three Pathological States
3.3.1. Amino Acid Metabolism

Overall, the pathological mice showed significantly changed levels of three branch
chain amino acids (BCAAs) compared with CON mice, including isoleucine, leucine and
valine (Table 1). aVMC mice displayed distinctly decreased valine, and almost unchanged
isoleucine and leucine. cVMC mice showed up-regulated levels of the three BCAAs, and
DCM mice exhibited remarkably decreased leucine. Moreover, the three pathologic groups
showed relative stable levels of threonine compared with their counterparts. Furthermore,
glycine was markedly decreased in aVMC mice but remarkably increased in DCM mice
without observable change in cVMC mice. In addition, lysine was profoundly increased
in cVMC mice but not significantly altered in aVMC and DCM mice. Alanine was not
significantly changed in the three pathologic groups. Taurine was markedly decreased in
aVMC mice and significantly increased in cVMC and DCM mice. Furthermore, glutamine
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was decreased in cVMC mice and obviously increased in DCM mice without observable
change in aVMC mice.

3.3.2. Carbohydrate Metabolism

Compared with CON mice, aVMC and cVMC mice exhibited reduced levels of glucose,
but DCM mice show a significantly enhanced level of glucose. Moreover, two TCA-related
metabolites (succinate and citrate) were significantly increased in DCM mice without
observable changes in aVMC and cVMC mice. Acting as one of the terminal metabolites
of glycolysis, lactate was slightly increased in DCM mice, but kept unchanged in aVMC
and cVMC mice. Furthermore, acetate was markedly decreased in aVMC mice but slightly
increased in cVMC and DCM mice. In addition, creatine was somewhat increased in DCM
mice without observable changes in aVMC and cVMC mice.

3.3.3. Lipid Metabolism

Relative to CON mice, serum levels of LDL and VLDL were remarkably increased in
aVMC mice and distinctly decreased in DCM mice, without detectable change in cVMC
mice. Moreover, PUFA was slightly increased in cVMC mice and profoundly decreased in
DCM mice, but not significantly changed in aVMC mice. Furthermore, 3-hydroxybutyrate
was slightly increased in DCM mice, but remained virtually unchanged in aVMC and
cVMC mice. Additionally, cVMC and DCM mice displayed significantly up-regulated
glycerol levels, while aVMC mice showed an unchanged glycerol level.

3.3.4. Choline Phosphorylation Metabolism

After the CVB3-infection, the choline phosphorylation metabolism of mice became
disorder in sera. GPC was slightly decreased in aVMC and DCM mice but not observably
changed in cVMC mice.

3.4. Potential Biomarkers in the Progression from Acute VMC to DCM

We conducted multivariate ROC analysis to decide potential biomarkers based on
the identified significant metabolites. The screened significant metabolites were ranked
by frequencies of being selected during Monte-Carlo cross validation performed with the
Random Forests algorithm (Figure S4). The top three significant metabolites were identified
to be potential biomarkers with AUC 0.7 and selected frequency 0.4 (Figure 5). The aVMC
stage showed large AUCs of the ROC curves built by using either only one of the following
metabolites or their combination: 0.957 for taurine; 0.957 for valine; 0.857 for acetate; 0.968
for these three metabolites. The cVMC stage also displayed large AUCs by using the
following metabolites: 0.821 for glycerol; 0.875 for valine; 0.821 for leucine; 0.873 for these
three metabolites. Finally, the DCM stage exhibited large AUCs too by using the following
three metabolites: 1.000 for citrate; 0.960 for glycine; 0.974 for isoleucine; 0.965 for these
three metabolites.
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3.5. Significantly Disturbed Metabolic Pathways in the Three Pathological Stages

We performed metabolic pathway analysis to select significantly disturbed metabolic
pathways (significant pathways) in the progression of VMC into DCM based on metabolite
levels in aVMC, cVMC and DCM groups relative to their normal counterparts. Two criteria
of PIV > 0.2 and p < 0.05 were used to identify significant pathways (Figure 6). The aVMC
stage showed three significant pathways: glycine, serine and threonine metabolism; pyru-
vate metabolism; taurine and hypotaurine metabolism (Figure 6A). The cVMC stage dis-
played only one significant pathway: taurine and hypotaurine metabolism (Figure 6B). The
DCM stage exhibited four significant pathways: glycine, serine and threonine metabolism;
pyruvate metabolism; taurine and hypotaurine metabolism; glycerolipid metabolism
(Figure 6C). The three pathological stages shared a significant pathway (taurine and
hypotaurine metabolism) with the highest PIV values.
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Figure 6. Significantly disturbed metabolic pathways identified from pathway analyses based on
serum levels of metabolites. (A) aVMC vs. CON-w2; (B) cVMC vs. CON-w6; (C) DCM vs. CON-w24.
Pathway impact values (PIVs) were calculated from pathway topology analysis, and p values were
computed from metabolite set enrichment analysis. Significantly disturbed metabolic pathways were
identified with pathway impact values > 0.2 and p values < 0.05, using the Pathway Analysis module
provided by MetaboAnalyst 5.0 webserver.

4. Discussion

The progression from acute VMC to DCM is related to several pathological stages.
Until now, few metabolomic analyses have been conducted to explore metabolic profiles
during this progression. In the present study, we established three mouse models of VMC
progressing into DCM by infecting the mice with CVB3. Cardiac pathological examination
showed that these three models reflected three pathological stages: acute VMC (aVMC),
chronic VMC (cVMC) and DCM, similar to those of VMC progressing into DCM in human.
We performed NMR-based metabolomic analyses of these three pathological stages, which
showed distinctly altered metabolic profiles, dramatically changed metabolite levels, and
significantly disturbed metabolic pathways compared with their normal counterparts.

As the most metabolically demanding organ in the body, the heart relies preferen-
tially on fatty acid metabolism to sustain sufficient ATP supply. Furthermore, the heart
possesses a unique capability to metabolize a variety of substrates besides fatty acids, such
as carbohydrates (glucose and lactate), ketone bodies and amino acids. This capability
allows the heart to sustain constant contractile function [30]. Our work demonstrates that
several energy-related metabolic pathways are significantly disturbed in the progression
from acute VMC to DCM, including glycine, lysine, alanine and threonine metabolism and
Krebs cycle. Obviously, glycine was decreased in aVMC but increased in DCM, which was
identified to be a potential biomarker in the DCM stage. Furthermore, we revealed that
glycine, serine and threonine metabolism is the significantly disturbed metabolic pathways
in the DCM stage. Previously, Maneikyte et al. showed that glycine can protect the heart
against chemotherapy- induced injury during the treatment of colorectal liver metastasis,
by preserving the left ventricle ejection fraction (LVEF) and reducing the levels of fibrosis
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and apoptosis [31]. Thus, it seems that glycine might contribute to protecting DCM from
heart remodeling.

In the DCM stage, the decreased levels of PUFA and LDL/VLDL indicated down-
regulated mitochondrial oxidation of fatty acids, the most important pathway for cardiac
energy supply. In contrast, 3-HB, the most important ketone, was increased dramatically in
the DCM stage. It was previously reported that cardiac mitochondrial oxidative metabolism
and glucose oxidation are suppressed in an energy starved heart in cardiomyopathy and
heart failure [32]. Thus, the up-regulated level of 3-HB might be an adaptive response to
lessen the severity of heart failure and increase energy supply in cardiomyopathy [32,33].

Glycerolipid metabolism was identified to a significantly disturbed metabolic pathway
in the DMC stage. Up-regulated levels of glycerol were observed in the cVMC and DCM
stages. Previous study suggested that glycerol release acts as an indicator of arrhythmias
in ischemic myocardium [34]. Further study should be performed to exam whether the
up-regulated glycerol levels in the cVMC and DCM stages are associated with arrhythmias.

Notably, carbohydrate metabolism was promoted dramatically in the DCM stage, with
enhanced levels of creatine, acetate, glucose, lactate, succinate and citrate. This suggests
that the impaired carbohydrate metabolism might contribute to the promoted supply of
energy in the DCM stage. Furthermore, our work identified acetate to be a potential
biomarker in the aVMC stage, and citrate in the DCM stage. Magnusson et al. have applied
isotopic tracers including 11C-acetate, 15O-water and 11C-HED as risk markers of positron
emission tomography, with regard to non-sustained ventricular tachycardia (NSVT) in
hypertrophic cardiomyopathy [35]. NSVT provides a marker for sudden cardiac death. It
remains to be elucidated whether the profoundly enhanced level of citrate in the DCM
stage is associated with NSVT and sudden cardiac death.

As described above, both glucose metabolism and fatty acid metabolism play impor-
tant roles in the DCM stage. Note that the levels of branched chain amino acids are also
significantly altered in this stage [36]. As is known, BCAAs (valine, leucine and isoleucine)
also play crucial roles in many metabolic pathways such as protein synthesis. Our study
showed that valine was significantly decreased in the aVMC stage, while leucine was
markedly decreased in the DCM stage potentially due to anorexia-induced decrease in food
intake. However, all of BCAAs were increased in the cVMC stage. Kimura et al. found that
in patients with nonischemic dilated cardiomyopathy (NIDCM), the ratio of BCAAs num-
ber to total amino acid residues number (termed BCAAs/total AAs) is positively correlated
with LVEF and negatively correlated with brain natriuretic peptide (BNP) [37]. The group
of NIDCM patients with the low ratio of BCAAs/total AAs has a lower cardiac event-free
rate. It seems that this ratio could serve as a useful predictor for future cardiac events
in NIDCM patients. Notably, a previous study performed in ischemia/reperfusion (I/R)
mouse has demonstrated that BCAAs exacerbate myocardial I/R vulnerability through
fatty acid oxidation [36]. Those results suggest that BCAAs could either be beneficial or be
harmful in different cardiac disease states. Further study need to be conducted to exploit
the potential roles of BCAAs in the progression of VMC in to DCM.

Furthermore, our study identified taurine to be a potential biomarker in the aVMC
stage, and taurine mechanism to be a significantly disturbed metabolic pathway in these
three pathological stages. Relative to the CON stages, taurine was decreased in the aVMC
stage, but increased in the cVMC and DCM stages. As a nonessential amino acid, tau-
rine shows significant beneficial effects in cardiovascular diseases [38], attributing to its
modulation of Ca2+ homeostasis and its antioxidant properties [39]. However, short-term
exposure to taurine could increase intracellular levels of Na+ and Ca2+ [39], which would
promote stronger contraction of blood vessels. Contrarily, long-term exposure to taurine
could decrease intracellular levels of Na+ and Ca2+ [39]. Thus, the increased taurine in the
cVMC and DCM stages might contribute to decrease in the contractility of blood vessels,
which needs to be confirmed by future study.

In addition, our data showed that glutamine was slightly decreased in the cVMC stage
but significantly increased in the DCM stage. Glutamine metabolism is usually involved in
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oxidation stress. A previous study has demonstrated that glutamine can protect cardiac
cells against the acute cantharidin-induced cardiotoxicity [40]. Thus, the modulation
of glutamine levels in the VMC and DCM stages might be of benefit to protection of
myocardial cells.

Previous studies have shown that glycerophosphocholine (GPC) can reserve mito-
chondrial respiration, reduce ischemia-induced oxidative stress and decrease radical pro-
duction [41–43]. Furthermore, cytoprotective effects of short-term GPC treatment have
been observed in cardiac myocytes [44], including physiological balance of ROS production
and cell viability. In our study, the levels of GPC were down-regulated in the aVMC and
DCM stages. It is thereby expected that GPC treatment in the aVMC and DCM stages might
reduce oxidative stress and enhance cell viability. Further studies are required to confirm
this expectation.

5. Conclusions

We have performed NMR-based metabolomic analyses to explore the progression
from acute VMC to DCM on established mouse models mimicking three pathological stages
(aVMC, cVMC, DCM). The progression of VMC into DCM shows dramatically cardiac
metabolic remodeling. The branched chain amino acids metabolism is disordered, implying
impaired protein synthesis. Furthermore, several metabolic pathways are significantly
disturbed, including taurine and hypotaurine metabolism, glycerolipid metabolism, glycine,
serine and threonine metabolism, indicating impaired antioxidation and antiapoptotic
properties as well as disordered energy metabolism. In this study, we have not measured
expressions and activities of regulatory enzymes involved in the identified significant
pathways. Such work should be carried out in the future to confirm that these pathways
are associated with the progression of VMC into DCM.

Furthermore, compared with the CON stages, we identified several potential biomark-
ers for metabolically discriminating the progression from acute VMC to DCM: taurine,
valine and acetate for the aVMC stage; glycerol, valine and leucine for the cVMC stage;
citrate, glycine and isoleucine for the DCM stage. Further works are required to compre-
hensively evaluate potencies of these potential biomarkers for clinical diagnoses based on
large-scale samples. Our results provide new insights into the metabolic mechanisms un-
derlying these three pathological stages, and may be beneficial to exploitation of potential
biomarkers for clinically diagnosing and monitoring the progression of VMC into DCM.
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Abbreviations
The following abbreviations are used in this manuscript:
VMC Viral myocarditis
DCM Dilated cardiomyopathy
CVB3 Coxsackievirus B3
aVMC Acute viral myocarditis
cVMC Chronic viral myocarditis
CON Normal controls
HF Heart failure
PBS Phosphate buffered saline
HCA Hierarchical clustering analysis
PCA Principal component analysis
RPTs Response permutation tests
ROC Receiver operating characteristic
PIV Pathway impact values
LVEF Left ventricle ejection fraction
BCAAs Branch chain amino acids
PLS-DA Partial least squares discriminant analysis
OPLS-DA Orthogonal signal correction partial least-squares discriminant analysis
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