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Abstract

Single-cell ATAC-seq (scATAC-seq) is a recently developed approach that provides means to investigate open chromatin at single
cell level, to assess epigenetic regulation and transcription factors binding landscapes. The sparsity of the scATAC-seq data calls
for imputation. Similarly, preprocessing (filtering) may be required to reduce computational load due to the large number of open
regions. However, optimal strategies for both imputation and preprocessing have not been yet evaluated together. We present SAPIEnS
(scATAC-seq Preprocessing and Imputation Evaluation System), a benchmark for scATAC-seq imputation frameworks, a combination of
state-of-the-art imputation methods with commonly used preprocessing techniques. We assess different types of scATAC-seq analysis,
i.e. clustering, visualization and digital genomic footprinting, and attain optimal preprocessing-imputation strategies. We discuss the
benefits of the imputation framework depending on the task and the number of the dataset features (peaks). We conclude that the
preprocessing with the Boruta method is beneficial for the majority of tasks, while imputation is helpful mostly for small datasets. We
also implement a SAPIEnS database with pre-computed transcription factor footprints based on imputed data with their activity scores
in a specific cell type. SAPIEnS is published at: https://github.com/lab-medvedeva/SAPIEnS. SAPIEnS database is available at: https://
sapiensdb.com
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INTRODUCTION
Epigenetic regulation and transcription factor (TF) binding rep-
resent the two critical components of transcription regulation
machinery. Assay of Transposase Accessible Chromatin (ATAC-
seq) [1] is a sequencing-based approach for the global discovery of
open chromatin, a distinctive feature of active regulatory regions,
including TF binding sites (TFBS). However, ATAC-seq does not
allow for the identification of a specific TF or any other regula-
tors. In order for the experimental methods (such as chromatin
immunoprecipitation or ChIP-seq) to detect a specific TF, they
require a high input number of cells [2]. In addition, ChIP-seq
is limited to one TF per assay and is further restricted to those
TFs, for which antibodies are available. Therefore, direct experi-
mental detection methods remain costly, or even impossible, to

study the binding of multiple TFs in parallel. Digital genomic
footprinting (DGF) [3, 4]—a computational approach to process
chromatin accessibility assays such as DNase-seq [5] or ATAC-seq
[6]—can overcome some of the limitations of ChIP-based methods.
DGF is based on the observation that a TF being bound to DNA
protects it from cleavage, resulting in local regions of decreased
accessibility. ATAC-seq protocol could be scaled to a single-cell
level allowing detection of rare cell populations and transition
states. In combination with DGF, scATAC-seq allows the detection
of TFBS at the level of a single cell.

One of the main problems of the single-cell data is sparsity:
single-cell RNA-seq has 70–90% of zero counts and the problem
of the scRNA-seq imputation data has been widely studied [7].
The problem escalates to a larger scale in case of scATAC-seq,
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which typically produces only 3–7% of non-zero values in peak-
cell matrix [8]. However, scATAC-seq data are a valuable source of
information on chromatin regulation and it can in turn be used for
the scRNA-seq data imputation [9]. Thus, scATAC-seq imputation
methods are critical for the downstream analysis.

The term ’imputation’ may refer to the whole procedure of data
transformation for sparsity reduction or can be attributed only
to the key step of this process [10]. In this study, we apply the
term ’imputation framework’ the complete procedure of counts
transformation and refer to the second step of this procedure as
’imputation’. Generally, an imputation framework for scATAC-seq
data involves preprocessing, imputation and postprocessing.

Due to a typically very large number of initially identified
peaks in scATAC-seq, a preprocessing step is sought to reduce
it in order to optimize future steps in terms of computational
memory resources while limiting the inevitable loss of signal.
In this study, we tested Boruta [11], a machine learning method
for feature selection, and Cicero [12], a bioinformatic tool that
detects co-accessible chromatin elements to identify relevant
characteristic chromatin accessibility patterns that can serve as
cell-type-specific markers.

Imputation, a key step of any imputation framework, is a math-
ematical model allowing for data transformation with sparsity
reduction and dropout recovery. Up to date, three approaches are
available for imputation of scATAC-seq data, e.g. SCALE (Single-
Cell ATAC-seq analysis via Latent feature Extraction) [13], scOpen
[8] and cisTopic [10]. scOpen is an unsupervised learning model
for scATAC-seq data imputation. It estimates accessibility scores
to indicate if a region is open in a particular cell based on a non-
negative matrix factorization (NMF), which makes no assump-
tion on the data distribution. SCALE combines a deep genera-
tive framework and a probabilistic Gaussian Mixture Model to
learn latent features that accurately characterize scATAC-seq
data. SCALE uses the latent features to cluster cell mixtures into
subpopulations and to denoise and impute missing values in
scATAC-seq data. SCALE requires a graphics processing unit (GPU)
for training which limits the number of features (peaks) to be
analyzed due to a typically small size of GPU memory. cisTopic
is a Bayesian-based method reported to have an exponential
increase in the running time for an increasing number of reads;
therefore, we excluded it from the benchmarking. Postprocessing
is implemented in some of the recent imputation frameworks
[8, 13] to allow the selection of the optimal candidate trans-
formation out of several produced in the second step in these
frameworks.

Several comparison studies conducted direct [14] or indirect [8,
13] benchmarking, or cross-referencing scATAC-seq results with
relevant scRNA-seq [15–17], driving conclusions on imputation
step quality for scATAC-seq.

Still, the most recent papers [15, 16] employ imputation
frameworks as a preprocessing step for general scATAC-seq
pipeline evaluation (gene scoring [15], single-cell integration
[16]) with no focus on the impact of the different imputation
strategies. Independent benchmark studies [14, 17] and method
presenting papers [8, 13] have provided effective benchmarking
protocols for comparing scATAC-seq imputation methods;
however, these works do not explicitly investigate the contribution
of preprocessing and postprocessing steps, which can have a
significant impact on the imputation framework results. Recent
work from Liu and colleagues [17] benchmarked thoroughly
the effects of imputation on scATAC-seq downstream analysis,
but in this work, only application of scRNA-seq imputation
methods was considered. Thus, the evaluation of imputation
framework performance accounting for the preprocessing

and postprocessing methods using state-of-the-art scATAC-
seq-specific imputation approaches remains an unaddressed
problem.

In this study, we present scATAC-seq Preprocessing and
Imputation Evaluation System (SAPIEnS), a novel benchmarking
approach and instrument, to address missing points in previous
benchmarks. We evaluated two recently introduced imputation
methods: SCALE [13] and scOpen [8] in combination with
several preprocessing approaches (a fixed threshold, Boruta [11]
and Cicero [12]) and postprocessing strategies. To perform an
evaluation of the imputation frameworks, we applied not only
statistical metrics for clustering and visualization but also the
quality of DGF in a well-studied and validated biological system
of haematopoiesis. Results of the DGF based on the imputed data
are provided in SAPIEnS database.

METHODS
Design of the benchmark
In brief, SAPIEnS consists of two components: an scATAC-seq
imputation framework (Figure 1A) and an evaluation procedure
(Figure 1B). In turn, the former component has three major parts:
preprocessing, imputation and fine-tuning (Figure 1A). Prepro-
cessing starts from the count matrices and selects peaks using
one of the three methods: Threshold, Cicero [12] and Boruta
[11]. These matrices can be directly used for the downstream
analysis or can be subjected to the imputation methods: scOPEN
[8] and SCALE [13]. Each imputation method was subjected to the
corresponding postprocessing (fine-tuning of hyperparameters).
Therefore, we obtained and benchmarked nine imputation frame-
works (Figure 1A).

Various approaches may be employed to assess clustering
results quality and properties that typically focus on clusters’
compactness and separation [18, 19], or discriminative power of
the selected features [20, 21]. To balance different quality metrics,
we designed the procedure for assessing the imputation quality
as follows. We projected scATAC-seq imputed matrix using TF-IDF
transformation (Term Frequency - Inverse Document Frequency)
[22] and extracted 150 PCA components, following the protocol
suggested in [23]. After that, we evaluated the features with
the three most common methods for visualization (PCA, UMAP,
tSNE), and three methods for clustering ( Hierarchy, K-Means, Lou-
vain) coupled with 4 common statistical metrics [Silhouette score
for visualization and ARI (Adjusted Rand Index), AMI (Adjusted
Mutual Info) and Homogeneity score for clustering] (Figure 1B).
For the majority of metrics, no major difference between the
original imputed matrix and the one after a PCA was observed
(Supplementary Figure 1a-l). Moreover, in many cases, the original
imputation matrix demonstrated slightly worse results (Supple-
mentary Figure 1m,n), e.g. the Silhouette score reached saturation
at about 50 principal components (see Supplementary Figure 1o),
confirming 150 components to be adequate or even outperform-
ing the complete set of features.

Next, we estimated the TFBS detection improvement after
applying all imputation frameworks using DGF activity scores for
a predefined validated set of transcription factors.

Imputation frameworks
Preprocessing selects N peaks from data with the strongest signal.
We used N = 50 000 peaks for datasets that have more than 100
000 peaks and N = 10 000 peaks for smaller datasets. The thresh-
old approach selects peaks based on the number of cells where
the peak has been detected. Cicero extracts peaks with the top
co-accessibility score with other peaks in the dataset (executed
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Figure 1. (A) Imputation frameworks general structure: one of the three preprocessing methods is followed by one of the three imputation approaches
and the corresponding postprocessing steps. (B) Design of the procedure for the imputation framework quality assessment.

by each chromosome independently to reduce memory package).
Boruta method chooses top peaks based on their impact on the
detection of predefined labels. Annotation was obtained from
FACS-sorting or labels transferred from scRNA-seq depending on
the original dataset. We used perc option to relax the quantile
thresholds and to select N relevant peaks.

The imputation methods were executed with the following
parameters: Raw (no imputation is used), SCALE (–latent
10 –min_peaks 1 -x 0 –encode_dim 1600 600 300 100 –

max_iter 100000, disabled early stopping procedure, dumped
binarized imputation matrix every 10 000 iterations), Parameters
-x and –min_peaks were set to disable preprocessing step in the
SCALE package, –encode_dim was reduced in order to optimize
for the GPU RAM for the large datasets, and the rest are the default
set-up. scOpen was executed with default parameters except the
–binary_quantile parameter, see below.

Imputation methods rely on hyperparameters for modeling
peak representations (embeddings). For SCALE, we compute all
12 statistical metrics at each 10 000 up to 100 000 iterations.
For each metric, we select the iteration with the best score.
For scOpen method, we select a binary quantile threshold as a
hyperparameter varying from 0.0 to 1.0 with step 0.1. The optimal
hyperparameter is selected by majority voting procedure for the
12 winners in both methods (Supplementary Figure 3a).

Data sampling
Data subsampling is most commonly employed to study such
properties as robustness [24, 25] and reproducibility [26, 27]. We
have performed subsampling of peak counts for the large datasets
to confirm the observations made for the large and the small
datasets. Thus, new datasets of a smaller size than the original
one were simulated. Imputation frameworks could provide bias
when selecting different numbers of peaks for small and large
datasets. For three large datasets with different count order of

peaks (100 000 peaks, 230 000 peaks, 467 000 peaks), we performed
sampling of 20, 40, 60 and 80% non-zero peaks of the original
count matrix using a random function. For every subsampled
matrix, we executed SAPIEnS and aggregated the results by every
metric. Sampling dataset to 20% peaks simulates the behaviour
of small datasets.

Footprints-based imputation metrics
Clustering or visualization-based metrics do not reflect all the
impact of the imputation frameworks. They also should lead to
increased biologically interpretability, such as improved DGF out-
put. We designed and applied strategy for estimating DGF quality
based on activity scores of genomic footprints obtained by RGT-
HINT [28] in a well-studied haematopoietic system [23] on pseudo-
bulk data. To match footprints to TFBS, we used HOCOMOCO
motifs [29].

For a set of key TFs linked to haematopoiesis, i.e. ELF1, FLI1,
GATA-family, IKZF1, RUNX1, SPI1, TAL1, LYL, ERG and ETS (11
TFs in total), we calculated ranks of the activity scores for
TF digital footprints in HSC to CLP lineage, i.e. between HSC
(Haematopoietic Stem Cells), MPP (Multipotent progenitors),
LMPP (Lympho-myeloid primed progenitor) and CLP (Common
lymphoid progenitors) pseudo-bulk ATAC-seq (Supplementary
Table 2).

The evaluation procedure was implemented as follows. For
every cell type and every TF, we calculated an activity score with
RGT-HINT tool [28]. Next, for every considered cell type transition
and each TF, we computed the difference in activity scores and
ranked these values. This resulted in a vector of ranks correspond-
ing to the TFs’ relative changes of activity scores. Afterwards, for
every TF, we calculated a difference between the TF’s rank in the
case of imputation and the baseline (a threshold preprocessing
with no specific imputation), resulting in a TF rank improvement
score (TFRIS). Out of 11 TFs, GATA3 and IKZF1 are expected to be
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Table 1: Datasets used in the benchmark

Dataset name Reference Number of cell types Number of cells Number of peaks Reason to be included

BreastTumor [30] 4 384 27 884 Batch effect
Forebrain [31] 8 2088 11 286 Complex subclusters structure
HSC [23] 11 2034 230 000 Used for footprinting analysis
FibroCard [32] 9 79 514 287 000 Complex subclusters structure
MouseAtlas [33] 30 80 000 467 000 Two levels of annotation
T Cells [34] 4 765 8415 Clear cell differentiation
CellLines [35] 6 1224 13 464 Used in scOpen and SCALE original papers
PBMC5K [36] 10 5000 97 998 Labels were transferred from scRNA-seq

markers of more differentiated lymphoid cells, while other nine
TFs are markers of progenitor cells. Therefore, one would expect
nine markers of the progenitor cells to be highly ranked and two
markers of the differentiated cells to be lowly ranked. To produce
a comparable metric, we inverted the ranking for differentiated
lymphoid cell markers, GATA3 and IKZF1. Next, we summed
up rankings of all TFs with a threshold preprocessing and no
imputation as a baseline in comparison with the results of other
imputation frameworks, resulting in a method rank improvement
score (MRIS) (Figure 4A).

The described pipeline allows to rank imputation frameworks.
We split the 11 tested TFs into two groups depending on whether
their rank increased or decreased after the imputation framework
had been applied. For every method, we calculated the sum of the
increase in ranks. The final score for an imputation framework is
the sum of the ranks gained for a specific branch compared with
the baseline method (Maximum MRIS).

Data description
We benchmarked all the imputation frameworks on eight
datasets (Table 1, Supplementary Materials). We deliberately
selected four relatively small datasets (less than 100k peaks) and
four large datasets (at least 100k peaks) to explore the impact of
the dataset feature number on the imputation frameworks.

Implementation of the pipeline
Pipeline wrappers were implemented using Python 3.7, Bash 4.4, R
4.1.3. Clustering metrics were obtained from ‘umap-learn‘ pack-
age [37] and ‘scanpy‘ [38] method ‘louvain‘ [39] with ‘scikit-learn‘
[40] integrated metrics ARI, AMI, Homogeneity Score. Every step
of the imputation framework has been completed on SLURM-
based cluster on computed nodes with 16 CPU and 128GB RAM.
We used the borutaPy package for Boruta implementation [41].
scOpen (version 1.0.0) and SCALE (version 1.0.1) packages were
obtained at github.com. The SAPIEnS code is available at https://
github.com/lab-medvedeva/SAPIEnS.

SAPIEnS database
SAPIEnS database has been implemented with Django Frame-
work. Front-end was implemented in JavaScript with table-

Filter.js and d3.js for visualizing digital footprinting graph
interactions.

RESULTS
Small datasets strongly benefit from imputation
We applied all imputation frameworks to eight datasets, four
small and four large ones. Typically, datasets with a lower
sequencing depth produce a smaller number of peaks due to a
lower statistical power. We consider the threshold preprocessing
with no imputation (column threshold) as a baseline for the

comparisons. Surprisingly, only small datasets benefit from
imputation in terms of both visualization and clustering metrics
(Figures 2 and 3A–C). Although Friedman test results show
a significant difference between groups of metrics derived
for SCALE, scOpen and no imputation for both large and
small datasets, post-hoc pair-wise analysis shows imputation
improvement for small datasets and no improvement for large
datasets (Supplementary Table 1). Boruta preprocessing in
combination with SCALE imputation improves visualization with
UMAP (Figure 2A, Supplementary Figure 4), while in terms of
the clustering metrics, both imputation methods perform rather
well (Figure 2B and C). On the other hand, the preprocessing
without imputation decreases the clustering quality probably
due to suboptimal peak selection.

In more detail, all the label-based metrics (AMI, ARI, homo-
geneity) demonstrate increased quality of Hierarchical and K-
Means clustering when an imputation framework is applied.
However, for the Louvain clustering, the increase is not that
pronounced. Although imputation frameworks with SCALE often
infer the data structure finer, the increase over the results
of imputation frameworks with scOpen is not that dramatic,
suggesting that the choice of imputation method should not be
the main priority for small datasets.

Large datasets typically do not benefit from
imputation but from preprocessing
As expected, the majority of the metrics show that large datasets
have an advantage over small datasets (Figure 2, Supplementary
Figure 4). However, none of the imputation approaches improve
quality metrics significantly. The metric for the Hierarchical
(Figure 2B) and K-Means clustering (Supplementary Figure 4)
remains almost the same. Moreover, the scores in the case of
Louvain clustering dropped after the imputation with scOpen
while remaining the same after the imputation with SCALE
(Figure 2C). Visualization quality also drops after imputation
(Figures 2A and 3D–F).

Additionally, we performed subsampling of 20, 40, 60 and 80%
non-zero peaks of the original dataset to further validate the dif-
ference between small and large datasets. For deeper subsampling
levels, metrics drop significantly holding the originally observed
patterns: for small datasets (20% of the original), imputation
improves both clustering and visualization metrics, while for
bigger datasets (80–100%), imputation is not beneficial for either
clustering or visualization.

Footprinting of well-known haematopoietic
regulators benefits from both preprocessing and
imputation
Although clustering and visualization metrics provide an impor-
tant quality estimate and give insight into the data structure, they
may not validly reflect the optimal parameters for biologically
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Figure 2. Benchmarking results splitted by the size of the datasets (large with more than 50 000 peaks and small with less than 50 000). (A) Silhouette
scores of UMAP embeddings; (B) ARI scores for hierarchical clustering; (C) ARI scores for Louvain clustering; (D) Silhouette scores alterations with peaks
subsampling; (E) ARI scores for hierarchical clustering alterations with peaks subsampling; (F) ARI scores for Louvain clustering alterations with peaks
subsampling.

relevant downstream analysis. One of the key applications of
the scATAC-seq data is the detection of active regulatory regions
where transcription factors can bind. Digital footprinting provides
an illustration of the role of the imputation framework on the
quality of TFBS detection.

We selected a haematopoeisis dataset with an increased share
of progenitor cells [23] and focused on HSC to CLP lineage with
well-known regulators (see Methods). However, a comparison of
HSC and CLP directly may not reflect all the changes in the
lineage. Therefore, we included additional intermediate cell types
of the development branch (MPP and LMPP) and obtained activity
scores for digital footprinting in 4 transitions (HSC to MPP, MPP
to LMPP and LMPP and CLP). The clustering of four lineage stages
based on TF activity scores is in concordance with the similarity
of the cell types (Supplementary Figure 5), suggesting that the set
of the TFs is biologically reasonable.

We detected three TF groups with the highest TFRIS: FLI1,
GATA2, LYL1, ERG for HSC → MPP branch (Figure 4B), ETS1, GATA3,
IKZF1, RUNX1, TAL1 for MPP → LMPP branch (Figure 4C) and ELF1,
SPI1 for LMPP → CLP branch (Figure 4D). Finally, an aggregated
score—maximum MRIS (see Methods)—reveals the improvement
of imputation and preprocessing methods for specific transitions
(Figure 4E).

First, we investigated footprinting profiles between two cell
types with the highest rank improvements (see Methods) for
separate TFs. For FLI1, the profile is increased in HSC [42] (Sup-
plementary Figure 6a), while for IKZF1, the profile is increased in
CLP [43] (Supplementary Figure 6b).

Second, we investigated the rank improvements for all TFs
(Figure 4B–E). Boruta preprocessing with SCALE imputation
provides the highest summarized activity score, while Boruta with
scOpen gives the second-best results. On the other hand, scOpen
imputation with threshold preprocessing reveals downgrade
ranking (Figure 4F).

Third, we repeated the clustering of the cells based only on
peak signal for the 11 selected TFs. The mean label score improve-
ment (MLSI) was calculated as an improvement of average scores
obtained from nine metrics (AMI, ARI, Homogeneity score with
a combination of K-Means, Louvain and Hierarchical Cluster-
ing Methods) over the threshold baseline. The results support
Boruta with SCALE as the most beneficial imputation framework
(Figure 5A).

Fourth, to estimate the concordance between the quality of
the footprinting and the quality of clustering, we correlated the
maximum MRIS with the MLSI. Both Kendall-τ and Pearson
correlation are relatively high suggesting the concordance of
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Figure 3. Sample UMAP visualizations for a small Tcells (A–C) and a large MouseAtlas (D–F) datasets.

clustering and footprinting metrics (Figure 5B). Of note, Kendall-
τ and Pearson are increased for the TF-limited clustering
(Figure 5B and C).

Clustering on the TF-limited peaks emphasizes the success
of the imputation frameworks with Boruta preprocessing
(Figure 5C). However, even if Boruta preprocessing cannot be
applied, Cicero is the second method of choice, while threshold-
based methods should be avoided.

SAPIEnS database simplifies search of
transcription factors after imputation
To present the results of TFBS footprinting, we designed a SAPIEnS
database (Supplementary Figure 7). The database contains the
results of digital footprinting between all cell type pairs, obtained
with all imputation frameworks to allow users to make their own
choices based on biological interpretability.

SAPIEnS provides several modes of data analysis. First, it is
possible to select two clusters in one experiment and compare the
results of various imputation frameworks for a TF of the user’s
choice. This mode allows the user to verify whether the generally
best-performing imputation framework (e.g. Boruta + SCALE) is
indeed the best-performing framework for a TF of interest. Sec-
ond, it is possible to select two clusters from an experiment with
a fixed imputation framework and detect all TFs with significant
footprints between two clusters. This mode may allow a user
to determine novel TF regulators for a contrast of interest. The
second mode of analysis can be expanded to cell lineage that
consists of more than two clusters. Third, it is possible to select
a TF in the experiment with a fixed imputation framework and
find clusters of cells with high or low activity of these TFs. This
mode may provide a hint in which cell types a TF of interest
actually works. Finally, the user can get summary statistics of the

experiments: the number of significant TFs for each experiment
grouped by the HOCOMOCO motif quality type (A, B, C and D). The
database is available at https://sapiensdb.com.

DISCUSSION
scATAC-seq is a recently introduced approach that has been
proved effective for the analysis of a cell regulatory landscape.
Due to a large number of open chromatin regions detected in
the scATAC-seq data, and a limited sequencing depth, imputa-
tion and pre-processing (filtering) are considered critical steps in
scATAC-seq analysis. Several studies have evaluated imputation
approaches and preprocessing techniques separately; however,
assessment of a whole imputation framework, including both
preprocessing methods and the imputation algorithms, has not
yet been carried out.

We introduce SAPIEnS, a comprehensive strategy for scATAC-
seq imputation frameworks benchmarking. SAPIEnS allows for
the combined preprocessing and imputation steps assessment
and optimal hyperparameters estimation that enhance different
types of scATAC-seq data analysis, i.e. clustering, visualization
and TF footprinting analysis.

SAPIEnS demonstrates that the optimal choice of imputation
framework heavily depends on the task to solve and features
(peaks) number. SCALE imputation with Boruta preprocessing
improves clustering and visualization for small datasets. At the
same time, large datasets clustering and visualization typically
benefit more from Boruta preprocessing rather than imputation.

TFBS footprinting for HSC data is in concordance with cluster-
ing and may benefit from preprocessing with Boruta and impu-
tation with either scOpen or SCALE. For this dataset, all impu-
tation frameworks demonstrate simultaneous and proportionate

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad447#supplementary-data
https://sapiensdb.com
https://sapiensdb.com
https://sapiensdb.com
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Figure 4. (A) A sample illustration for a strategy to estimate footprinting quality improvement for one of the transitions (HSC and MPP) for a specific
imputation framework (SCALE + Boruta): for each of the cell populations, a difference of activity scores for each TF is calculated, ranked and inverted
if needed, resulting in a TFRIS; for selected TFs, differences between ranks are summarized, resulting in a MRIS; (B) TFRIS for HSC to MPP branch for all
imputation frameworks; (C) TFRIS for MPP and LMPP cell types for all imputation frameworks; (D) TFRIS for LMPP and CLP cell types for all imputation
frameworks; (E) maximum TFRIS for all imputation frameworks; (F) Maximum MRIS for all imputation frameworks.

Figure 5. An ablation study of the footprinting pipeline for the HSC dataset: (A) an MLSI for peaks selected by preprocessing method and peaks matched
to selected TF motifs; (B) an MLSI and maximum MRIS for peaks selected by preprocessing method; (C) an MLSI and maximum MRIS for peaks matched
with selected TF motifs.

improvement in clustering metric values and digital footprint-
ing results. This convergence and correspondence of analysis
results derived from distant data modalities (peaks signal for
clustering and open regions sequence structure for footprinting),
as well as the fact that this convergence raises for a set of
peaks associated with biologically relevant TFs compared with
all observed peaks endorses the validity of the benchmarking
results.

SAPIEnS has several limitations. For each imputation method,
we had to select one optimal hyperparameter to avoid a
combinatorial explosion. SCALE as a method based on a neural

network benefits vastly from selecting an optimal number of
iterations to avoid under-training or over-training, whereas the
imputation quality could be directly controlled by selecting the
imputation rate.

In addition, scOpen has been originally developed to work on
the whole scATAC-seq dataset. However, to compare the results
of scOpen with SCALE, we had to use preprocessing methods.
We observe that threshold filtering decreased scOpen results
dramatically. However, the change of the preprocessing method
has improved imputation metrics. In this way, scOpen could be
applied to very sparse count matrices.
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Preprocessing with Boruta, a feature selection algorithm,
demonstrated improvement in multiple tests. Boruta searches for
all relevant features that may be efficiently used for prediction
rather than concentrating on finding a restricted group of features
with the lowest classification error. However, to be applied for
scATAC-seq data, it requires cell annotation. In this benchmark,
we employ cell types annotation data based on the FACS sorting,
which is not available for all the datasets. In these cases, other
types of may be used, such as scRNA-seq co-embedding for cell
types. Since Boruta is a general machine-learning method, any
other relevant metadata on cell classes (gender, ethnicity, disease
stage or stage of differentiation, mutation status, etc.) can be
used for Random Forrest classification and subsequent feature
selection making this approach much more flexible than Cicero.
However, if no group annotation information can be fetched,
Cicero preprocessing could be the method of choice significantly
improving the results compared with a simple threshold
method.

Independently considered results of TF footprinting have also
limited validation power. We could not show improved metrics of
footprinting for all of the known key TFs for HSC to CLP lineage,
and some TFs (e.g. LYL1, FLI1, ERG1) do not demonstrate an
expected pattern. Partially, this could be a result of the presence
of such TFs only at the transient stage that has not been captured
in the dataset due to a limited number of cells. The incomplete
set of TFs might lead to a bias in footprinting metrics and affect
the imputation performance.

A recent RNA-seq benchmark [7] has covered the effects of
the imputation strategy on pseudotime analysis among others. In
this work, we chose not to address this issue, given the fact that
currently scATAC-seq data pseudotime-analysis is insufficiently
developed and has very limited means for the analysis’ results
verification as compared with scRNA-seq data. Summing up,
although all recruited validation approaches have limitations, in
combination, given favorable convergence of their results, they
deliver adequate verification power, suggesting that the strategy
used in SAPIEnS may be used for scATAC-seq data imputation
problem.

Key Points

• SAPIEnS is a benchmark for scATAC-seq imputation
frameworks, a combination of state-of-the-art imputa-
tion methods with commonly used preprocessing tech-
niques.

• SAPIEnS shows that the choice of the imputation frame-
work heavily depends on the task to solve and the num-
ber of features (peaks) in the dataset.

• SCALE (Single-Cell ATAC-seq analysis via Latent fea-
ture Extraction) imputation with Boruta preprocessing
improves clustering and visualization for small datasets
while for large datasets either clustering or visualization
do not typically benefit from imputation but only from
preprocessing preferably with Boruta.

• Transcription factor binding sites (TFBS) footprinting is
in concordance with clustering and may benefit from
both preprocessing with Boruta and imputation with
either scOpen or SCALE.

• A SAPIEnS database contains footprints of TFBS, and
their activity scores in a multiple cell types.
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