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Abstract

Background: We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in
determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be
higher in genes associated with disease, unless all genes that could cause disease have already been identified.

Results: Consistent with our predictions we find that genes associated with Mendelian and complex disease are
substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found
in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and
chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that
disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is
controlled for. The effect is small nevertheless.

Conclusions: Our results suggest that gene length contributes to whether a gene is associated with disease. However, the
mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is
associated with disease.
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Introduction

Why do humans suffer from the diseases that we do? In part this

is clearly due to our anatomy and physiology, and that of the

organisms that infect us - we cannot have a disease of an organ

that we do not possess. But why do we suffer from cystic fibrosis

rather than some other disease of the lungs? One simple reason

might be variation in the mutation rate. Those genes and genomic

regions that have high mutation rates are more likely to generate

disease mutations, and hence be associated with a disease. The

rate of mutation of a locus will depend upon two factors: the rate

of mutation per site and the number of sites at which a mutation

can generate a disease phenotype. The per site mutation rate is

known to vary across the human genome at a number of different

scales such that some genes have mutation rates that are several

fold higher than other genes (reviewed in Hodgkinson et al. [1]).

Genes also vary considerably in their length, with some of the

largest, such as the dystrophin gene, being association with disease.

A more subtle factor affecting the likelihood of a gene being

associated with a disease is the genealogy. At each site in the

genome there is an underlying genealogy whereby every

chromosome in the population is related via a bifurcating tree to

every other chromosome at that site. If there is no recombination

between sites then sites share the same genealogy. The shape and

depth of the genealogy depends on several factors. The first is

chance; for example, the average total length of a genealogy for a

neutral locus in a population of stationary size is expected to be

proportional to 4N generations in a diploid species, where N is the

population size, but this is expected to have a variance of at least

(4N)2 generations [2]. Second, the genealogy depends on the

effective population size of the locus (Ne). Ne is thought to vary

across the human genome as a consequence of natural selection

[3,4]. Selection can reduce the Ne of a genomic region through

either a selective sweep caused by the passage of an advantageous

mutation through the population [5], or via background selection

caused by the removal of deleterious mutations [6]. Those regions

of the genome with low rates of recombination or a high density of

selected sites are expected to have low Ne, and this is expected to

reduce the genetic diversity of neutral and weakly selected variants

in these regions (reviewed in [7]). Analyses suggest that Ne varies

across the human genome by a few-fold [4]. The effective

population size is not expected to affect the frequency of

deleterious mutations in which the product of Ne and the strength

selection is greater than one. However, stochastic factors affecting

the genealogy are expected to be important irrespective of the

selection acting upon a mutation.

Previous analyses have shown that Mendelian disease genes are

30% longer than non-disease genes [8,9]. Comparative analyses

have also shown that genes associated with Mendelian diseases

have significantly, but only slightly higher rates of mutation per

site, as inferred from levels of synonymous divergence between

species [8,10]. The rather modest differences between disease and

non-diseases genes in the inferred mutation rate might be due to

time frame over which the mutation rate was inferred: Smith and
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Eyre-Walker [8] considered the divergence between human and

mouse, and Huang et al. [10] considered the divergence between

mouse and rat. This will give a poor estimate of the current

mutation rate at a locus in humans because the relative mutation

rate of a locus appears to have evolved through time [1,11]. The

mutation rate has also recently been predicted, based on a model

fitted to the locations of de novo mutations in humans, to be slightly

higher in disease associated genes [12], but the accuracy of this

model is unproven, and they consider the total mutation rate of the

exon, rather than the rate at non-synonymous sites. Here we

consider the divergence between humans and their most closely

related extant relative, chimpanzee, as our measure of the

mutation rate. We also consider whether the density of single

nucleotide polymorphism (SNP) is greater in disease than non-

disease genes.

Materials and Methods

To estimate mutation rate for each gene, we estimated their

intron divergence between the human and chimpanzee genomes

as follows. Alignments using the NCBI build 36 version of the

Figure 1. CDS length. (A) Mean total CDS length, and (B) Mean average CDS length. Total CDS length is the sum of all constitutive and alternately
spliced exons; average CDS length is the average CDS length of each transcript. Error bars represent the 95% confidence intervals.
doi:10.1371/journal.pone.0090166.g001
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human genome (hg18) and PanTro2 version of the chimp genome

were downloaded from the UCSC website (http://genome.ucsc.

edu/). Alignments were parsed into individual genic sequences

and realigned with MAFFT version 6 (http://mafft.cbrc.jp/

alignment/software/). Exon sequences were masked according

to exon annotation of the NCBI build 36 version of the human

genome from the ensemble database (http://www.ensembl.org/).

We did not correct for multiple hits; this is not necessary since the

average intron divergence between human and chimpanzee

sequences is 1.05% [13]. We calculated the rates of intron

Figure 2. Mutation rates. The mutation rate per site, as inferred from intron divergence between human and chimpanzee. A) Intron divergence
per site between human and chimpanzee; B) the predicted non-synonymous mutation rate per CDS site. Error bars represent the 95% confidence
intervals.
doi:10.1371/journal.pone.0090166.g002
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divergence for CpG and nonCpG sites separately since the former

have much higher rates of mutation. We used these intron

divergences to infer the rate of non-synonymous mutation in

human exons, by calculating the number of CpG and non-CpG

sites in each exon which when mutated would give a non-

synonymous change; in this calculation we assumed that all

mutations at CpGs are transitions, which is a good approximation

[14], and that 60% of mutations at other sites were transitions. If a

gene had multiple transcripts we made these calculations for each

transcript and averaged the result.

DNA sequence diversity data were taken from the 1000 genome

project [15].

Genes were designated as being associated with Mendelian

disease based upon the compilation made by Blekhman et al. [16].

Genes associated with genome-wide association studies (GWAS)

were obtained from the GWAS catalog (http://www.genome.gov/

gwastudies/); a gene in which the strongest GWAS signal was

found within the boundaries of a gene were designated as being a

GWAS gene.

To investigate what factors might influence patterns of genic

mutations, estimated by intron divergence, we considered a

number of variables. Intron GC content, nucleosome occupancy,

replication timing and male and female recombination rates were

downloaded from the UCSC website (http://genome.ucsc.edu/).

We used A365 values to study the influence of nucleosome

occupancy on the distribution of genic mutations rate across the

genome. Recombination rates per MB were from Kong et al [17].

Replication time data were from Chen et al. [18] and Hansen et al.

[19]. Qualitatively similar results were obtained using each of four

replication time datasets, so we only present the analysis using data

from an embryonic stem cell line BG02 [19]. Germ-line expression

data were from a study by McVicker and Green [20].

The dataset for this analysis is available as Table S1.

Results

We predict that unless all possible diseases with a genetic basis,

and all the genes that can cause them, have already been

discovered, then genes associated with diseases should have higher

genic mutation rates than non-disease genes, where the genic

mutation rate is determined by the product of gene length and the

mutation rate per site. We also predict that disease genes should be

in relatively diverse regions of the genome. To investigate these

predictions we compiled data from 17577 nuclear genes with

introns, of which 854 genes are known to cause a Mendelian

disease. We also analysed 1732 genes in which the strongest signal

in a genomic region in a genome wide association study (GWAS)

lay within the boundaries of the gene (i.e. all exons and introns

between the start and stop codon). The presence of an association

signal within the boundaries of the gene does not necessarily mean

that the causative mutation is within the protein coding sequence

or even within the boundaries of the gene, and many of these

associations may be in regulatory sequences [21]. We subsequently

excluded genes on the sex chromosomes since the Y-chromosome

is known to have a higher mutation rate and the X-chromosome a

lower mutation rate than the autosomes [22]. This yielded a

dataset of 17062 autosomal genes including 820 associated with a

Mendelian disease and 1726 with a GWAS signal. Details of the

dataset are given in Table S1.

Gene Length
Consistent with the hypothesis that disease genes should have

higher overall rates of mutation we find, as others have in the past

for genes causing Mendelian disease [8,9], that genes associated

with disease are significantly longer, in terms of their total coding

sequence (CDS) length (i.e. the sum of all constitutive and

alternatively spliced exons), than non-disease genes; Mendelian

disease genes are ,28% and GWAS genes ,44% longer than

non-disease genes (One-way ANOVA p,0.001) (Figure 1a). A

similar pattern is evident for average CDS length; both Mendelian

and GWAS disease genes are 50% longer than non-disease genes

(Figure 1b). The difference in average CDS length is greater than

in previous studies [8,9], but this is likely to be due to the

improvement in genome annotation; the average length of genes is

slightly shorter than in previous analyses.

Strikingly, the difference in length is as great or greater for the

GWAS than the Mendelian disease genes despite the fact that

many of the GWAS signals are likely to be outside the protein

coding sequence [21]. GWAS genes might have longer CDSs for

three reasons. First, genes with longer CDSs have a greater chance

of generating a disease mutation. Second, longer genes are more

likely to have a non-causative marker SNP in the CDS that is

associated with the disease. And finally since intron and total CDS

lengths are correlated (r = 0.36, p,0.001), genes with long CDSs

have longer introns and hence an increase chance of having

causative or non-causative SNPs in their introns. However, if we

control for the correlation between intron and CDS length by

regressing CDS length against intron length and taking the

residuals, we find that GWAS genes have longer CDSs, than non-

disease genes, even given their longer introns (t-test p,0.001;

Table 1. Standardised regression coefficients from multiple regressions.

Factor Intron Divergence

Predicted non-
synonymous mutation
rate Intron SNP density Average genealogy length

GC content 0.525*** 0.325*** 0.192*** 20.212***

Nucleosome occupancy –0.396*** –0.167*** –0.412*** –0.035

Female recombination rate –0.020* 0.018* 0.058*** 0.042***

Male recombination rate 0.202*** 0.143*** 0.129*** –0.048***

Germ-line expression –0.062*** –0.116*** –0.020* 0.032***

Replication time –0.132*** –0.157*** –0.071*** 0.038***

Distance to telomere –0.158*** –0.097*** –0.117*** 0.060***

Distance to centromere –0.018* –0.016 0.020* 0.014

Note that the replication time data is such that a negative slope indicates an increase in the variable through the cell cycle * p,0.05, ** p,0.01 and *** p,0.001.
doi:10.1371/journal.pone.0090166.t001
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similar results are obtained if we regress log CDS length against

log intron length (p,0.001)). This suggests that GWAS genes are

not simply longer because they have longer introns; it therefore

seems that either GWAS genes are more likely to be associated

with disease because some causative mutations are within their

exons, or because there is a greater number of marker SNPs in

exons.

Mutation Rates
However, contrary to our expectations, we find that disease

genes are found in regions of the genome with significantly lower

per site mutation rates, as measured by intron divergence between

human and chimpanzee. The difference is highly significant (one-

way ANOVA p,0.001), but the difference is small with disease

genes having approximately 5% lower intron divergence than

non-disease genes (Figure 2a). The pattern differs between CpG

and non-CpG sites, with disease genes having lower divergence at

CpG sites and either similar or higher divergence at non-CpG sites

(results not shown). If we calculate the expected non-synonymous

mutation rate in the CDS by multiplying the proportion of non-

synonymous sites that are CpG and non-CpG in the CDS by the

respective levels of intron divergence, we still find that both

Mendelian and complex disease genes have slightly lower

mutation rates per site than non-disease genes (p = 0.004)

(Figure 2b). As expected, both Mendelian and complex disease

genes have significantly higher overall predicted rates of non-

synonymous mutation (p,0.001), driven by the fact that disease

genes have longer CDSs.

The fact that disease genes have lower predicted rates of non-

synonymous mutation per site is inconsistent with our hypothesis,

but this might be due to the fact that they have features which

predispose them to lower mutation rates - for example they might

be transcribed at lower levels and hence have lower rates of

mutation [23]. Divergence at intronic and intergenic sites is known

to be significantly correlated to a number of other variables

including GC-content [3,18,24,25], recombination rate

[3,24,26,27,28], replication time [18,29,30], distance to the

telomere and centromere [3,13,18,24], gene density [3,24],

nucleosome occupancy [11] and expression level [23]. We confirm

previous results and show that intron divergence is positive

correlated to GC content and male recombination rate within a

multiple regression; and that intron divergence is negatively

correlated to replication time (later genes have higher divergence),

distance to the telomere, distance to the centromere, female

recombination rate, nucleosome occupancy and germ-line expres-

sion (Table 1). Similar patterns are evident for the predicted non-

synonymous mutation rate (Table 1). If we take the residuals from

a multiple regression of intron divergence against all the genomic

variables above we find that intron divergence and the predicted

rate of non-synonymous mutation do not differ significantly

between disease and non-disease genes.

Genetic Diversity
Although, disease genes are found in regions of the genome with

relatively low rates of intron mutation we find that disease genes

have a significantly greater density of polymorphisms segregating

in their introns than non-disease genes; the difference is 11% and

17% for the Mendelian and GWAS genes respectively (Figure 3a).

If we divide the density of SNPs by the divergence of introns to

estimate a quantity that is proportional to the average length of the

genealogies at the locus, we find that Mendelian and GWAS genes

have significantly longer average genealogy lengths that are 9%

and 12% greater than non-disease genes (ANOVA p,0.001; t-test

of Mendelian versus non-disease p,0.001; t-test of GWAS versus

non-disease p,0.001). It is odd that the difference between disease

Figure 3. Diversity and genealogy estimates. The diversity in
disease and non-disease genes measured as the A) average intron SNP
density, B) the average intron SNP density divided by intron divergence,
C) and the mean minor allele frequency (MAF). Error bars represent the
95% confidence intervals.
doi:10.1371/journal.pone.0090166.g003
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and non-disease genes is less pronounced for average genealogy

length than diversity given that disease genes have lower intron

divergence than non-disease genes. This is probably due to non-

linearities associated with ratios.

Although, we find that disease genes have higher diversities and

average genealogy lengths than non-disease genes, we find no

evidence that the predicted non-synonymous population mutation

rate in the CDS (calculated as the proportion of non-synonymous

sites that are CpG multiplied by the SNP density at CpG sites in

introns plus the proportion of non-synonymous sites that are non-

CpG multiplied by the SNP density at non-CpG in introns) differs

between disease and non-disease genes. However, the calculation

of the predicted non-synonymous population mutation rate is

subject to considerable error because we have relatively few intron

CpG sites and SNP density is very low in humans.

It is possible that disease genes have higher diversities and

average genealogy lengths because disease genes have features that

predispose them to higher values, not because by having higher

values they are more likely to be associated with disease. We find

that intron SNP density is positively correlated to GC content,

female and male rates of recombination and distance to the

centromere and negatively correlated to the time of replication

(late genes have higher diversity), nucleosome occupancy, germ-

line expression and distance to the telomere (Table 1). If control

for these factors by taking the residuals from the multiple

regression we find that SNP density is still significantly greater in

both Mendelian and GWAS genes, than in non-disease genes

(ANOVA p,0.001; individual t-tests p,0.001). Likewise we find

the average genealogy length is positively correlated to all variables

except GC content, nucleosome occupancy and male recombina-

tion rate (Table 1), and that after controlling for these associations,

disease genes still have significantly greater average genealogy

lengths than non disease genes (ANOVA p = 0.019; individual t-

tests Mendelian versus non-disease p = 0.21, GWAS versus non-

disease p = 0.001).

Although disease genes have a greater number of SNPs per bp

than non-disease genes the distribution of the genetic variation

varies in an inconsistent manner between categories of genes; the

average minor allele frequency is ,10% greater in Mendelian,

and ,10% lower in GWAS genes, than in non-disease genes

(ANOVA p,0.01) (Figure 3b).

Discussion

We have found that genes associated with disease are longer and

reside in regions of the genome with greater intron diversities and

average genealogy lengths than non-disease genes. This is

consistent with a role for mutation and genetic variation in

determining whether a gene becomes associated with disease.

However, we find no evidence that the mutation rate per site is

greater in disease than non-disease genes. Nevertheless, what is

ultimately important is the mutation rate of the gene, and we find

that the overall mutation rate of disease genes is greater than non-

disease genes because disease genes are longer (p,0.001). The

effect of gene length may be more conspicuous than for the other

variables, because there is substantially more variation in CDS

length per gene (coefficient of variation (CV) = 0.78) than in intron

divergence (CV = 0.56), intron SNP density (CV = 0.42) and

average genealogy length (CV = 0.47); in reality the differences

in CV are even larger because intron divergence, and in particular

SNP density and average genealogy length, are likely to be subject

to large sampling error variances that CDS length is not.

We have interpreted the fact that disease genes are longer than

non-disease genes as evidence that genes with higher mutation

rates are more likely to generate disease mutations, however, it is

possible that disease genes are longer simply because genes

involved in particular processes that could cause disease to be

longer. It is difficult to test this hypothesis without knowing all the

genes that might cause disease. We have also interpreted the

greater diversity in disease genes as being what causes them to be

associated with disease. However, in the case of the complex

disease genes this might simply reflect a bias towards a better

ability to detect GWAS signals in regions of higher diversity.

Although, we have found that disease genes are longer than

non-disease genes, and that they have greater diversity and

average genealogy lengths, the differences are fairly small. It is

therefore evident that either most disease associated genes have

been discovered, which seems unlikely, or that the function of the

gene is far more important in determining whether a gene causes

disease than its effective mutation rate.

Supporting Information

Table S1 The data matrix used in the analysis. A

description of column headings is provided as a separate worksheet

within the Excel spreadsheet.

(XLSX)
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