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A B S T R A C T

Atomic-resolution protein structural models are prerequisites for many downstream activities like structure-
function studies or structure-based drug discovery. Unfortunately, this data is often unavailable for some of the
most interesting and therapeutically important proteins. Thus, computational tools for building native-like
structural models from less-than-ideal experimental data are needed. To this end, interaction homology ex-
ploits the character, strength and loci of the sets of interactions that define a structure. Each residue type has its
own limited set of backbone angle-dependent interaction motifs, as defined by their environments. In this work,
we characterize the interactions of serine, cysteine and S-bridged cysteine in terms of 3D hydropathic environ-
ment maps. As a result, we explore several intriguing questions. Are the environments different between the
isosteric serine and cysteine residues? Do some environments promote the formation of cystine S–S bonds? With
the increasing availability of structural data for water-insoluble membrane proteins, are there environmental
differences for these residues between soluble and membrane proteins? The environments surrounding serine and
cysteine residues are dramatically different: serine residues are about 50% solvent exposed, while cysteines are
only 10% exposed; the latter are more involved in hydrophobic interactions although there are backbone angle-
dependent differences. Our analysis suggests that one driving force for –S–S– bond formation is a rather sub-
stantial increase in burial and hydrophobic interactions in cystines. Serine and cysteine become less and more,
respectively, solvent-exposed in membrane proteins. 3D hydropathic environment maps are an evolving structure
analysis tool showing promise as elements in a new protein structure prediction paradigm.
1. Introduction

In 1957 and in 1960, Sir John Kendrew and Max Perutz solved the
first structures for myoglobin and hemoglobin, respectively (Kendrew
et al., 1960; Perutz et al., 1960). These extraordinary achievements
awarded them the Nobel Prize in chemistry in 1962. Their structural
models revealed the complexity of protein 3D structure, including the α
helices and β pleats predicted by Linus Pauling in 1951 (Pauling and
Corey, 1951; Pauling et al., 1951). Although Pauling never solved a
protein crystal structure, he discovered the fundamental structural motifs
of proteins. Perhaps most importantly, he proposed that protein structure
should arise from a repetition of stable motifs (Edison, 2001), i.e., the
existence of biological polymers. Therefore, it is crucial to investigate the
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basic units of the protein framework, a knowledge that could unwind its
biochemical mechanism and provide aid to many relevant biological
questions. At the heart of a protein blueprint, there are 20 different
amino acids with a surprising array of distinctive characteristics encoded
in their sidechains. The geometry (Robson and Suzuki, 1976; Shapovalov
and Dunbrack, 2011) and chemistry (Bywater, 2018; Lodish et al., 2000)
of these residues represent the raw material of a complex mosaic of de-
tails organized into a biologically meaningful whole (Richardson, 1981).
A single variation in one of these themes can alter the functionality of a
protein, as well as its structure.

The properties of each of the 20 amino acid residues are likely to be
influenced by the local environment surrounding them: the protein core,
cofactors, water, or the lipid bilayer. In fact, the specific identity of each
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amino acid residue is directed by its environment as the result of evo-
lution. We previously described how, regardless of the localization in the
protein, amino acid hydropathic environments will cluster into limited
sets of three-dimensional microenvironments, each possessing a unique
system of interactions (Ahmed et al., 2015; Ahmed et al., 2019; AL
Mughram et al., 2021; Herrington and Kellogg, 2021). Our core HINT
model classifies interactions in terms of four classes: favorable polar (e.g.,
hydrogen bond, acid-base), unfavorable polar (acid-acid, base-base,
repulsive Coulombic), favorable hydrophobic (hydro-
phobic-hydrophobic, hydrophobic packing, π-π stacking), and unfavor-
able hydrophobic (hydrophobic-polar, desolvation) (Kellogg and
Abraham, 2000; Kellogg et al., 1991; Sarkar and Kellogg, 2010).

This work will focus on the similarity and dissimilarity of two amino
acid residues: serine (SER) and cysteine (CYS). Many intriguing questions
can be posed concerning these two residues. The first is: are the envi-
ronments different between these isosteric residues, or, to turn it around,
why has Nature settled on a serine vs. a cysteine in a particular locus?
Clearly, one reason is cysteine's ability to form CYS-CYS disulfide bridges,
a major structural feature of proteins, which then suggests a second
question: are there discernible environmental differences around cyste-
ines that bridge and those that do not? Third, with the increasing
availability of structural data for water-insoluble membrane proteins,
another question is: are there environmental differences for CYS and SER
residues between soluble and membrane proteins?

1.1. Serine vs. cysteine

Serine is among the most frequently found amino acids in proteins
due to the six codons (9.37% of the genetic code) encoding it, whereas
cysteine is only coded by two (3.12%). Current thinking is that cysteine is
a later addition to the genetic code, accumulating in complex organisms,
ranging from 0.50% in some bacteria to 2.26% in mammals (Brooks and
Fresco, 2002; Foden et al., 2020; Liu et al., 2010; Miseta and Csutora,
2000; Trifonov, 2000). In a broader sense, it has been known for some
time that a relationship exists between the physicochemical properties of
the amino acids and specific aspects of their codon positions and iden-
tities (Sjostrom and Wold, 1985).

Serine and cysteine would seemingly be the two most similar amino
acids. The difference of only a sulfur atom replacing an oxygen yields
only minor differences in bond lengths and angles, and the result is that
these two residues are isosteric and perhaps isostructural. However,
serine, by nature, is highly polar owing to its sidechain hydroxyl, with a
log10Po/w of around �5. While the sidechain is electrically neutral, this
functional group creates an electric dipole giving a partial charge and has
dual characteristics of a hydrogen bond donor and acceptor. This feature
suggests that SER has a high probability of being on the protein surface
and having high solvent accessibility (Tien et al., 2013).

Serine's congener, CYS, has a larger bag of tricks: it is both more
hydrophobic (sidechain log10Po/w ~ �4), but also more acidic with a
pKa < 9 (vs. SER's 13) (Hofer et al., 2020). Its slightly polar nature is due
to the partial negative charge from the four unpaired electrons in the
outer shell of sulfur. Compared with the other polar residues, cysteine is a
very poor hydrogen donor or acceptor but can form weak to intermedi-
ately strong interactions. There are some suggestions that the sulfur σ*
orbital can interact with π electron clouds (Beno et al., 2015; Zhou et al.,
2009). The weak polarity of cysteine is also evidenced by its buriedness
compared to the other polar residues, which is, in this case, probably due
to its thiol being very reactive and easily oxidized (Marino and Glady-
shev, 2010).

Serine is often phosphorylated, glycosylated or N-acetylated. These
post-translational modifications are crucial for organic life (Barzkar et al.,
2021), and is a precursor in the biosynthesis of other amino acids like
glycine, cysteine, and D-serine (Murtas et al., 2020). SER is also essential
in the production of phosphoglycerides, glycerides, sphingolipids and
phosphatidylserine (Hirabayashi and Furuya, 2008; Kent, 1995). Serine
residues are also found in the active site (as a nucleophile) with histidine
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and aspartic acid (i.e., the catalytic triad) of serine protease, the most
abundant type of endopeptidase, in which they perform several functions
(Di Cera, 2009). Although cysteine is the least abundant residue, it still
plays essential physiological roles. For example, it is found in the active
site of cysteine (thiol) protease, an endopeptidase similar to serine pro-
tease in which the cysteine residue takes the role of the nucleophile.
Cysteine and histidine are the most frequent residues to coordinate to
metals, and are often found stabilizing protein structure elements such as
zinc fingers (Klug and Schwabe, 1995), or involved in catalytic reactions
by acting as a redox switch (Klomsiri et al., 2011; Kroncke and Klotz,
2009). Like its counterpart, cysteine is also subject to reversible
post-translational modifications, e.g., participating in S-nitrosylation and
glutathionylation or forming sulfenic acid and most interestingly disul-
fide bonds (Duan et al., 2017). Other functionalizations include thioether
bonds with lipid residues that anchor the protein to the membrane (i.e.,
prenylation) (Casey and Seabra, 1996; Paulsen and Carroll, 2013), and
disulfide bonds with endogenous hydrogen sulfide, a potent signal
molecule (Marino and Gladyshev, 2011). Also, cysteine is an especially
well-known target for covalent (irreversible) inhibition (Singh et al.,
2011; Hallenbeck et al., 2017; Long and Aye, 2017; Heppner, 2021).

As described above, there are many similarities and differences be-
tween serine and cysteine. There have been many studies focusing on one
or the other of these two residues, but surprisingly few rationalizing their
differences, and none to our knowledge exploring the differences be-
tween their environments within proteins. We believe that our unique
approach of sampling interaction environments with 3Dmaps could shed
light on the nature and differences in serine and cysteine structural and
physicochemical properties, and perhaps yield insight into their differ-
ences on a functional basis.

1.2. The mechanism of cysteine bridging

When two cysteines in close proximity are under oxidizing condi-
tions, they can covalently bond, losing two protons and two electrons,
resulting in a disulfide bond, sometimes called cystine. Enzymes often
catalyze this reaction in the endoplasmic reticulum. However, the pro-
pensity of two cysteines to dimerize is due to the size of the sulfur atom;
its large volume can better stabilize the negative charge of the transition
state (Thornton, 1981). Disulfides have a prominent and unique role in
stabilizing a protein structure, and they are typically found in proteins
excreted in harsh, e.g., extracellular, environments. The bridge not only
contributes to protein stability, primarily by decreasing the entropy of
the unfolded state, but also protects the highly reactive thiol group, thus
avoiding cysteine side reactions. The formation of the disulfide bond is
also involved in the sensing and signaling of oxidative stress intracellu-
larly; vice versa, the reduction of the bond may serve as an effector
functioning extracellularly (Bhattacharyya et al., 2004; Bulaj, 2005;
Dombkowski et al., 2014; Fass, 2012; Moomaw et al., 1995; Petersen
et al., 1999).

Understanding the forces driving cysteine bridging has been a major
computational goal for many years. A wide variety of methodologies
have been used, particularly molecular dynamics and related tools, with
a number of parameters (Marino and Gladyshev, 2012; Manteca et al.,
2017; Qin et al., 2015). While all of these studies took into consideration
the influence of the local environment, we believe that our 3D map tools
will probe these interaction environments in a different way, and help
explain the difference between a free cysteine and one participating in a
covalent bond. In particular, the HINT model is very sensitive to small
differences in hydrophobicity.

1.3. Membrane proteins

Membrane proteins (MPs) play a central role in many cellular func-
tions (Coskun and Simons, 2011). They represent ~20% of the human
proteome, and they act as enzymes, transporters, ion channels, and re-
ceptors (Wallin and von Heijne, 1998). The efficiency of these activities
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has been proven to be mainly modulated by specific interactions between
MPs and their local lipid environments (Guo, 2020). Despite intensive
research, the thermodynamics driving this process remains fairly
ambiguous. The barrier to understanding is likely the hydrophobic na-
ture of transmembrane segments of proteins and lipid bilayers (Mac-
Callum et al., 2007; McIntosh and Simon, 2007; White, 2007; Wolfenden,
2007). At an amino acid level, the change in the properties, e.g., elec-
trostatic potential, pressure, pH and dielectric constant, of the membrane
result in a bias for a particular amino acid to be located in a different part
of the protein. Because of the different environments, even the rotamers
of these amino acids could differ if compared with the soluble proteins
(Ramachandran et al., 1963; Ramachandran and Sasisekharan, 1968).
Therefore, our questions arise: a) Are serine, cysteine and cystine disul-
fide bridges in membrane proteins fundamentally different from those in
soluble proteins? b) Are these differences manifested in the hydropathic
interaction environments surrounding these residues? c) If these envi-
ronments are different, are there new principles of protein structure
analysis and prediction to be discerned?

1.4. 3D interaction homology

To explore these phenomena, we characterized the residue environ-
ments by assembling a database of backbone-angle-dependent 3D maps
that fully describe the sets of preferred conformations and interaction
environments surrounding each. We have already analyzed other residue
types, tyrosine (Ahmed et al., 2015), alanine (Ahmed et al., 2019), the
aromatic residues (AL Mughram et al., 2021) and aspartic acid, glutamic
acid and histidine (Herrington and Kellogg, 2021) with this approach.
These reports revealed significant insight about protein structure, largely
due to the initially unexpected fact that there were commonalities in
these maps independent of the identity of the specific molecular species
in the environment. Thus, the maps – sometimes many thousands – could
be clustered into limited sets of distinct and informative environmental
interaction motifs. These maps encode interaction types, interaction
strengths and the 3Dmidpoint of the interacting atoms. Furthermore, the
maps record π-π and donor-π interactions (AL Mughram et al., 2021), and
are responsive to local and global pH effects.

In this contribution, we are using this suite of 3D map-based struc-
tural analysis tools to explore three fundamental structural properties of
serine and cysteine. First, we will mine our protein structure database to
isolate and model with 3D maps the environments surrounding SER and
CYS residues, and identify similarities and differences between the two
residues. We will show that the seemingly small structural and physi-
cochemical differences between SER and CYS produce significantly
divergent environments in proteins. Second, we will also extract bridging
cysteine residues (in this work "CYX") from the structure database to
examine the potential differences in environments that may support
bridge formation. To simulate the pre-bridge environments, we broke the
bridges and protonated both cysteines to create a new data set called
"CYZ". In our analyses, the hydropathic environmental differences be-
tween CYS and CYZ are surprisingly subtle, with CYZ being somewhat
more likely found in polar environments. Third, we extracted serine and
cysteine 3D hydropathic interaction datasets from a structural collection
of membrane proteins that were artificially "solvated" with lipids and
subjected to dynamics. These sets, "SERm", "CYSm" and "CYXm", are ideal
for comparing to soluble protein hydropathic interaction environments,
and several notable differences will be described.

2. Results and discussion

2.1. Structural data

From the dataset of 2703 soluble protein structures used in our pre-
vious studies (Ahmed et al., 2015; Ahmed et al., 2019; ALMughram et al.,
2021), we extracted 46,869 SER, 5500 CYS and 5237 CYX residues. From
the dataset suggested by Grazhdankin et al. (2020) we selected 369
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membrane protein structures from the MemProtMD database (Newport
et al., 2019) with 23,791 serines, 4265 cysteines and 962 S–S bridged
cysteines residues, which we are naming SERm, CYSm and CYXm,
respectively. The process of binning and parsing our residues dataset is
well-documented and thoroughly explained in earlier publications
(Ahmed et al., 2015; Ahmed et al., 2019; AL Mughram et al., 2021).
Briefly, the Ramachandran plot was modified by superimposing an 8 by 8
chessboard, shifted such that each grid square contains higher-density
populations rather than splitting them between two chess squares, with
dimensions of 45� by 45� in φ – ψ (see Fig. 1) (Ramachandran et al.,
1963; Ramachandran and Sasisekharan, 1968). The grid squares were
named as a1 through h8. Each residue was then classified into its square
by its backbone φ andψ angle, superimposed onto the center of that chess
square (Ahmed et al., 2015), and further parsed by their χ1 angles into
three groups corresponding to those typically observed in rotamer li-
braries: ~60�, ~180�, and ~300�. While this parsing is not per se
necessary, it does provide increased computational efficiency although
the map-based clustering (vide infra) generally identified this low level of
detail nearly flawlessly (Ahmed et al., 2015). From here on, the chess
square names will be given in bold italics, e.g., b1, c5, etc. The χ1 parses
will be denoted by the suffixes .60, .180, and .300.

The occupancies of the chess square/parses range from 0 to 3255
(d4.300) for SER, to 3711 (d4.300) for SERm, to 823 (d4.300) for CYS,
to 1388 (d4.300) for CYSm, to 606 (c8.300) for CYX and to 124 (c8.300)
for CYXm. The broken bridge cysteine, CYZ, has an occupancy of 684 in
d4.300. For SER, 119 (of 192) chess square/parses contain 5 or more
residues. For SERm, CYS, CYSm, CYX, CYXm and CYZ, 105, 56, 52, 47, 33
and 51 chess square/parses, respectively, contain 5 or more residues.
Table S2 (Supporting Information) displays the occupancies in the
Ramachandran chessboards for these seven residues. Any parses with less
than 5 members were not clustered. To simplify nomenclature in this
article, we use a numerical schemewherein the sequential number of that
residue in its chess square/parse is its name. Thus, cysteine 100 in chess
square a1.60 is the 100th cysteine in that chess square/parse combina-
tion. Supporting Information Table S1 decodes this nomenclature in
terms of the actual pdbid, residue number and chain ID for each amino
acid residue included in this study. Clusters (vide infra) will be named for
the residue closest to its centroid or exemplar and will be given in bold
numerals.

As in our previous work, we will be focusing the discussion on only
four of the chess squares, sampling three of the common secondary
structure elements β-pleat with b1, right-hand α-helix with c5 and d5 and
left-hand α-helix with f6. The c5, d5 pair allows us to compare
independently-calculated map and environment data between chess
squares within the same right-hand α-helix structural motif region.
However, all numeric data for all chess squares is available as Supporting
Information Tables S4–S10.

2.2. Calculation and clustering of hydropathic environments

Using methods we previously reported, we used the HINT force field
and score model to evaluate interatomic interactions (Kellogg et al.,
1991; Kellogg and Abraham, 2000; Sarkar and Kellogg, 2010). This
forcefield is derived from log Po/w (for 1-octanol and water solute
transfer), a measure of the free energy of interaction, and a term related
to the solvent-accessible surface area. HINT has shown the ability to es-
timate ΔΔG for ligand-protein, protein-protein, and other complexes in
various systems, such that a change of ~500 HINT score
units ¼ �1 kcal mol�1 (Burnett et al., 2001; Cozzini et al., 2004). Using
atom-atom interaction scores applied to three-dimensional Gaussians at
the midpoint between the atoms, maps were constructed by sampling
within rectangular boxes large enough to contain each of the studied
residue types along with their interacting atoms (see Methods). For this
report, we are most interested in the interactions made between the
residue sidechains and the remainder of the protein. Our maps categorize
interactions in "quartets" of four distinct types: favorable polar,



Fig. 1. Ramachandran chessboard displaying the chess square/parse population for each residue type. The Ramachandran φ vs ψ plot is rendered into sixty-
four 45�by 45� (π/4 by π/4) chess squares. The (χ1) parse (~60�, ~180�, ~300�) populations are represented in log10 scale with the lengths of the colored bars. Their
colors reflect the average weighted fraction outside or solvent-exposed, that is, “foutside” a measure of solvent accessibility (see text for definition). The φ vs ψ regions
associated with β-pleat, α-helix, and left-hand α-helix secondary structure motifs are shaded in light purple, light green, and light orange, respectively. A) serine in
soluble proteins (SER), B) cysteine in soluble proteins (CYS), C) cysteine with intact disulfide bridge in soluble proteins (CYX), D) cysteine with “broken” disulfide
bridge in soluble proteins (CYZ), E) serine in membrane proteins (SERm), F) cysteine in membrane proteins (CYSm), and G) cysteine with intact disulfide bridge in
membrane proteins (CYXm). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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unfavorable polar, favorable hydrophobic, and unfavorable
hydrophobic.

As stated above, a major hypothesis in our studies is that, despite
there being thousands of each residue type in our dataset, there will be
only a relatively small number of unique 3D hydropathic interaction
environments that are specific to the residue's chemical properties. We
refer to this as the hydropathic valence, i.e., the constellation of in-
teractions made by the residues. These interactions are characterized by
their type, strength and geometry, but not necessarily molecular or res-
idue identity. To extract the information encoded in the 3D hydropathic
interaction maps, we applied a map-map similarity metric to score two
maps m and n (see Methods) (Ahmed et al., 2015). After loading the
similarities for eachm-nmap pair in each chess square/parse into square
matrices, we performed statistical analysis by clustering these matrices
with k-means within the R programming environment (Hartigan and
Wong, 1979; R Development Core Team, 2013). We set a maximum
number of 6 clusters per chess square/parse for SER and CYS in the
soluble proteins dataset, which was sufficient for capturing the diversity
of residue environments. We expected a greater diversity for these resi-
dues in the membrane protein dataset due to the additional possibility of
interactions with the lipid bilayer. Thus, we set a maximum of 8 clusters
for SERm and CYSm. Finally, both CYX and CYXm were allowed to
cluster with up to 10 clusters to compensate for the flexibility of the di-
sulfide bond. Table S2 (SI) sets out the numbers of clusters found for each
chess square/parse of the seven residue-type datasets in this study.

If clustering failed to reach this predetermined maximum, the opti-
mum number of clusters for a chess square/parse was generally chosen as
the most stable solution available. An average set of maps was then
calculated for each cluster using a Gaussian weighting scheme (Euclidian
distance from the cluster's centroid) reported earlier (Ahmed et al.,
2015). Using the same scheme, the average molecular structure of the
residue for the cluster's members was also calculated. Residue and
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atomistic RMSDs and average χ1 angles were calculated as additional
evaluation metrics to validate the map-based clustering.

2.3. Solvent-accessible surface area (SASA) and foutside

As previously described (AL Mughram et al., 2021), we combined our
modified Ramachandran plot, based on the residue backbones, with the
solvent-accessible surface area (SASA) of each residue, which is depen-
dent not only on the backbone but also on the χ angles. It can be seen that
the solvent exposure is correlated with the backbone protein structure
(Fig. 1). The residue SASAs were estimated using default parameters in
the online software GETAREA (Fraczkiewicz and Braun, 1998), which
utilizes a rolling-ball algorithm with a 1.4 Å water probe. We adapted the
"In/Out" output based on the ratio between the calculated sidechain
SASA and reference random-coil values relative to the Gly-X-Gly (Src,
77.4 Å2 for SER, 102.3 Å2 for CYS). With ratios less than 0.2, the residue
is "In" (buried); greater than 0.5, the residue is "Out" (exposed); between
0.2 and 0.5 is "indeterminate". Our metric "foutside" averages these de-
scriptors recast as 0.0, 1.0, and 0.5, respectively, for a cluster parse or
chess square. The foutside values for each parse are illustrated in Fig. 1 with
the color of the bars. The parse populations are represented by the bar's
lengths.

As expected, these parameters show, overall, that the exposure by
residue type follows this trend: CYX< CYS ~ CYZ < SER; we will discuss
the membrane protein residues later. The Ramachandran plot for SER
(Fig. 1A) shows the lowest foutside in the β-pleat region with most parses
averaging in the range of 0.4–0.6 (green) with a significant number of
parses between 0.2 and 0.4 (yellow). Whereas, in the right-handed
α-helix region, most parses indicate foutside in the 0.4 to 0.6 range, with
a few more exposed parses in the c5 and d5 chess squares in the 0.6–0.8
range (blue). Among the secondary structures, the left-handed α-helix
region is the most exposed with an overall foutside of 0.6–0.8. For cysteine
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(Fig. 1B), the data suggest that this residue likes to be buried, foutside< 0.2
(red), and to be in the β-pleat and right-handed α-helix regions, with very
few showing up in the left-handed helix. The foutside trends for CYX
(Fig. 1C) suggest even more buriedness, with only the a1.300, b4.60,
d1.60, d4.60, d5.60 and d5.180 parses showing foutside > 0.2, but these
also are less populated. Finally, in CYZ (Fig. 1D), the disulfide bond
reduction recasts the populations relative to CYX such that they are more
similar to CYS in terms of buriedness. The SASA and foutside values for all
residues in this study are included in the Supporting Information
Tables S3–S10.

2.4. Serine and cysteine in soluble proteins

Our intent is to exploit these clustered average maps to highlight the
structural roles of the like CB methylene and the unlike OG hydroxyl and
SG sulfhydryl groups of SER and CYS, respectively, as reflected in their
hydropathic environments. Because the role of the environments could
potentially stabilize the ionization of cysteine, particularly in response to
changes in pH, we evaluated this effect by determining the pH titration
curve of the CYS residues in our data set, and developed methodology to
tune the molecular models to particular pH values. A further key envi-
ronmental factor that we calculated for our data is the residue-level
solvent accessibility.

2.4.1. Hydropathic interaction maps of serine
The chessboard schema we use to bin residues by their secondary

structures has previously revealed dramatic differences between side-
chain map sets in β-pleat, right-hand and left-hand α-helix conformations
(Ahmed et al., 2015; Ahmed et al., 2019; AL Mughram et al., 2021) The
additional binning by χ1 parse also – not surprisingly – affects the maps.
We are focusing here, as in previous reports, the analyses on four
particular chess squares, b1, c5, d5 and f6, to survey the environments
from each of the three Ramachandran secondary structural motifs.

Serine's hydroxyl group has the characteristic of being both a donor
and an acceptor (with its two oxygen lone pairs). We expect to see two
things: 1) a plethora of maps indicating strong favorable and perhaps
unfavorable polar interactions localized around the hydroxyl end of the
side chain and 2) strong evidence for SER residues to be highly solvent
accessible. The latter is due to the high presence of serine residues on
protein exteriors, where they can form hydrogen bonds with water
molecules or participate in post-translational modification. For brevity,
we will only discuss the averaged map contour plots for the SER side-
chain clusters of chess square b1 for the .60, .180, and .300 parses
(Fig. 2). Two views are shown for each map to help visualization: the left
element of each pair is rotated such that the x-axis points to the right. The
z-axis (the CA-CB bond) points up, while the second orientation (a
rotation around the x-axis) brings the z-axis to the front. The maps are
superimposed on the exemplar structure for the map. The contour levels
chosen for all map pairs are identical to allow visual comparisons of
relative interaction strengths: favorable polar (blue, þ24); unfavorable
polar (red, �24); favorable hydrophobic (green, þ6); and unfavorable
hydrophobic (purple, �12). In some maps, to illustrate the presence of
weak hydrophobic interactions, contours at þ3 were also plotted in
translucent green. It should be noted that the displayed contours are
showing interactions, and favorable polar interaction contours may arise
from serine hydroxyls acting as either a donor or an acceptor with an
appropriate complement. Noted on each is the cluster name (the ordinal
residue number of the cluster's exemplar), the percentile contribution of
each cluster to the chess square/parse and the average solvent-accessible
surface areas (S) calculated with GETAREA (Fraczkiewicz and Braun,
1998).

The b1 chess square appears to be, comparatively, the least solvent-
exposed of the four we report on here, and collectively contains 3519
(7.5%) maps of the overall SERs in our dataset. Of these, two-thirds are in
the .60 parse (Fig. 2A), with the other third split between the .180
(13.3%, Figs. 2B) and .300 (20.0%, Fig. 2C) parses. With these high
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populations, all three parses were successfully clustered into 6 unique
cluster environment map sets. Most interactions are positive polar, which
is expected, given the chemical nature of SER. These are the prominent
blue contours near the hydroxyl group that signifies hydrogen bonds
between this group and its environment. Somewhat surprisingly, the
b1.60 parse (Fig. 2A) – the most populated group – is over-clustered: the
average inter-cluster similarity is 0.9284; three of the clusters (654, 821
and 1970) appear very similar in themaps, have similar average S values,
and have map-map similarities of between 0.9661 and 0.9791. Cluster
1309 is the most different (average similarity with the other
maps ¼ 0.8776), as it shows favorable hydrophobic interactions (green
contours) near the CB atom and is in a buried environment (S � 10 Å2).

In the other two b1 parses, .180 (Figs. 2B) and .300 (Fig. 2C), similar
features can be observed, but the blatantly high inter-cluster similarities
of b1.60 are not as evident in either of these cases. In fact, the average
similarities are 0.7957 and 0.8538, respectively. Clearly, the b1.180map
data (Fig. 2B) present quite differently than either of the others: the S
values are quite a bit smaller, indicating more buriedness, and this
conformation produces unfavorable polar interactions (red contours)
because the more restricted space makes it difficult to satisfy both the
donor and acceptor properties of the hydroxyl. The b1.300 map data
(Fig. 2C) is largely comparable to the b1.60 data.

Our description of the three map sets for b1 above will serve as
guidelines for viewing and interpretation of the other map sets for c5, d5
and f6, which are available as Supporting Information Fig. S1 (for SER
c5.60, c5.180 and c5.300), S2 (for SER d5.60, d5.180 and d5.300) and
S3 (for SER f6.60, f6.180 and f6.300). Contour maps for these three
chess squares show broadly similar map profiles to the previously dis-
cussed chess square. The average similarities for the chess square/parses
are 0.9293, 0.8298 and 0.8921 (c5: .60, .180 and .300, respectively);
0.9217, 0.7661 and 0.8217 (d5); and 0.8263, 0.8116 and 0.8818 (f6).
These are consistent with the b1 average similarities. Another observa-
tion is that serines have larger solvent accessibility (S) in α-helix con-
formations. This is manifested with clusters that appear to be largely or
completely void of interactions, e.g., Fig. S1B (c5.180), clusters 12 and
109. Such clusters represent scenarios where the serine sidechains
interact with water molecules, i.e., on the surface, but these water mol-
ecules are not explicit in the molecular models.

In summary, the examination of the maps illustrates our rationale for
treating the data this way: 1) each map appears to be a backbone-
dependent representation of a unique collection of interactions made
by serine, with respect to type, strength and spatial location; and 2) low
SASA cases where SER shows a few hydrophobic interactions in addition
to hydrogen bonding can be differentiated by map-based clustering,
whereas high SASA cases with few interactions of any type are less
interpretable but still informative.

2.4.2. pKa and the ionization state of cysteine residues
We recognized that a key feature of cysteine that distinguishes it from

serine is that its pKa is within an accessible range. Thus, we were inter-
ested in knowing how the CYS environments affect its ionization state.
The computational titration algorithm we reported in early publications
(Kellogg and Abraham, 2000; Fornabaio et al., 2003; Kellogg et al.,
2004), and recently optimized for our study of aspartic acid, glutamic
acid and histidine (Herrington and Kellogg, 2021), was also applied here
to evaluate the effect of pH on CYS ionization states in each protein local
environment represented by our dataset. We calculated the total fraction
of cysteines expected to be protonated at pHs 7 through 12 in increments
of 1 pH unit, as shown in the titration curve of Fig. 3A. Overall, the
titration curve is centered at pH 9.5814 (a value that we are calling
pH50), which is nearly 1.0 pH units higher than the experimental pKa for
this residue obtained using small peptides (Bulaj et al., 1998). It is
interesting that there is an apparent backbone conformation effect on
protonation: cysteines in the left-hand α-helix conformation are more
easily ionized than those in the right-hand α or the β-pleat regions. Our
model calculates the free energy required for the deprotonation in an



Fig. 2. Hydropathic interaction maps illustrating the Gaussian-weighted average clustered SER sidechain environments for the b1 chess square. A) 60�

parse; B) 180� parse; C) 300� parse. Two views are shown for each map: left) the CA-CB z-axis points out of the page, right) the CA-CB axis points up. The x-axes of
both views point right and the y-axis points up on the left and back on the right. The blue contours represent favorable polar interactions between the hydroxyl and
neighboring residues; red contours are unfavorable polar interactions; green contours are favorable hydrophobic-hydrophobic interactions between the methylene and
neighbors; purple contours are unfavorable hydrophobic-polar interactions. Translucent green contours, when present, are plotted at one-half the map density of the
solid green contours. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. A) Titration curves of CYS residue by secondary structure. The
native pKa for cysteine is indicated. B) Protonation of cysteine as a function
of solvent accessibility. Each marker on the plots represents a cluster in the
data set. The size and gray shade of the marker represents the population of the
clusters in a logarithmic-like scheme, i.e., clusters with fewer members are
depicted with smaller, lighter gray squares. The fit lines are weighted by these
populations. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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environment where heavy atoms are held static, and thus does not ac-
count for any local conformational flexibility. Also, the algorithm does
not take into consideration the presence of metals or water of solvation
not explicit in the models. Therefore, a number of potential interactions
between the –SH/-S- functional groups and neighboring chemical moi-
eties may not be present in our pKa prediction. In our previous applica-
tion of this algorithm, for aspartic acid, glutamic acid and histidine
(Herrington and Kellogg, 2021), we found good agreement with exper-
iment (~0.5 pH units) for the two acids, but poorer agreement for his-
tidine. In that case, and for cysteine as well, the experimental data is
sparser, and many of the experimental cases involve metal coordination.
The goal here, however, was to create a methodology such that the actual
ionization state for each cysteine in our data set could be modeled prior
to calculating its hydropathic interactionmap. As a secondary benefit, we
have the means to "tune" these environments, molecular models and
maps with respect to pH.

In Fig. 3B, we explore the relationship between solvent accessibility
and ionization state. The fprot metric represents the fraction of residues
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protonated in a cluster, parse, chess square, etc. Here, it was calculated
for each residue/map cluster at the pH50 protonation level. We plotted
these values as a function of the corresponding cluster's foutside. The
marker sizes and shading are related to the cluster populations. Note that
the fit curve is not statistically meaningful; it serves only as a visualiza-
tion guide. Clearly, cysteine likes to be buried: most cluster/parses shown
in Fig. 1B indicate foutside < 0.2 and there is a much higher density of
points on the low foutside portion of Fig. 3B. While there does not seem to
be much of an overall trend in this plot, that assessment belies the in-
formation content within each cluster composing this plot.

2.4.3. Hydropathic interaction maps of cysteine
We performed complete studies for CYS at pH 7, 9, and 11, and finally

at the pH at which half of the CYS residues were protonated, i.e., pH50.
However, we only constructed and present here the visual map contour
displays at that latter value, as we believed this pH would best illustrate
the diversity of maps in protonated and deprotonated cases. Considering
cysteine's more modest polar character and its higher tendency to be
buried, we should expect to see more of the CYS maps with favorable and
unfavorable hydrophobic interactions localized around the sulfhydryl
group. The contour levels chosen for CYS are identical to those used for
SER. Now added to each map is the fraction of the members of that
cluster that are protonated (fprot). Again, as the displayed contours are
showing interactions, cases where the CYS is deprotonated (i.e., an H-
bond acceptor) interacting with a donor may be indistinguishable from
cases where the CYS is protonated (donor) interacting with an acceptor.
Our description of CYS maps (see Fig. 4) will focus on the b1 chess square
(like above for SER) in which they were binned into their .60, .180, and
.300 parses; similarly, b1 is the least solvent exposed of the group we are
discussing and accounts for 7.7% of all CYS residues in our dataset.

Cysteine tells a more intriguing story than serine, although some of
the points made for SER apply here, as well. For example, the bulk of the
interactions made with the sulfhydryl group, like those with the hydroxyl
of SER, are of the positive polar type. One aspect of the CYS maps that we
expected to see was much more significant hydrophobicity than the SER
one. Themaps show favorable hydrophobic interactions (green contours)
generally localized around the CB in about two-thirds of the b1 cases, and
a number of unfavorable hydrophobic interactions (purple contours)
signifying mismatches between the sulfhydryl and neighboring hydro-
phobic groups, e.g., cluster 35 (Fig. 4A), or between the methylene and
neighboring polar groups, e.g., cluster 7 (Fig. 4B). The unfavorable hy-
drophobic interactions are somewhat more evident in the clusters with
deprotonated CYS such as 1 and 7 in b1.180 and 150 in b1.300, likely
because CYS is more solvent buried than SER, and deprotonated CYS� is
more polar than CYSH. Maps for the other selected chess squares (c5, d5
and f6) are available as Supporting information (Figs. S4–S6). We
calculated the intracluster similarities for the CYS map set: for b1 these
ranged between 0.7963 and 0.8418, for c5 between 0.7232 and 0.8309,
for d5 they are around 0.777, and for f6 ranging between 0.7756 and
0.9064. This result demonstrates how much more diverse the CYS maps
are compared to those of SER, where we saw numerous cases of similarity
>0.90.

2.4.4. Serine and cysteine: environments and roles
We calculated the fractional environmental characters of each cluster

by summing and normalizing the values of the grid points in the four
interaction type maps for all cluster members (see Methods). The non-
normalized data can be found in Supporting Information Tables S4 and
S5. Fig. 5 show plots of these descriptors as functions of foutside for SER
(5A) and CYS (5B). While it can be seen that the interaction environments
for serines are more polar than for cysteines, a lot of that can be attrib-
uted to its higher solvent exposure.

There are clearly fundamental and substantial electronic differences
between these two more or less isosteric residues that simply cannot be
explained without applying quantum chemistry. However, from a
structural viewpoint, the 3D interaction maps and the associated



Fig. 4. Hydropathic interaction maps illustrating the Gaussian-weighted average clustered CYS sidechain environments for the b1 chess square. A) 60�

parse; B) 180� parse; C) 300� parse. See caption for Fig. 2.
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properties of the underlying molecular structures tell a rather complete
story of the roles for SER and CYS in protein structure. Their small dif-
ferences in hydrophobicity are responsible for a larger and even dramatic
difference in buriedness. The biological accessibility of cysteine's pKa is
an additional factor of structure and key to many biological processes
(Bulaj et al., 1998; Jensen et al., 2009; Zeida et al., 2014a). CYS has been
shown to be a later entrant in the genetic code; its reactivity and func-
tional role in active sites appears to be responsible for its distribution and
abundance in proteins(Marino and Gladyshev, 2010). This fairly facile
ionization also enables cysteine's most important special ability: to form
–S–S– bridges.
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2.5. Cysteine disulfide bridges

When two adjacent cysteines are under oxidizing conditions, they can
covalently bond, losing their two hydrogens, resulting in a disulfide
bond. The cystine is less polar than the free thiol group explaining why
cystines are usually found in the hydrophobic core (Fig. 1C) rather than
the hydrophilic surface. To facilitate our understanding of the underlying
energetics of the interactions in the cystine (disulfide bridged cysteine)
microenvironments, we tackled the problem into two parts: 1) for the
(intact bridge) CYX, where we wanted to evaluate the environment of the
cystine –S–S–, we truncated the cystine as a pseudo-reside composed of



Fig. 5. Hydropathic Interaction Character for SER
and CYS Clusters. A) interaction character for serine;
B) interaction character for cysteine. The green
markers and line represent favorable hydrophobic
interactions, purple represents unfavorable hydro-
phobic, blue represents favorable polar and red rep-
resents unfavorable polar. Each data point plots
interaction character (summed from grid points as
described in the text) as a function of foutside for a map
environment cluster. The sizes of the markers are
log10-scaled by the number of members of the cluster.
The fit lines (y ¼ ax þ b) are the result of weighted
least squares analyses as described in the text. (For
interpretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)
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its CA, CB, SG, SG' and CB' and removing CA' from consideration; and 2)
we broke the disulfide bond adding HG to each sulfur and energy mini-
mized the resulting proteins to build models that simulate the environ-
mental conditions before bridge formation. We refer to this residue
dataset as CYZ. An important point is that a cystine actually has five
dihedral angles (χ1, χ2, χ3, χ2', χ1'), and our truncated CYX model in-
corporates the first three of these. We opted to bin the CYX only by its χ1,
as before for SER and CYX (and now CYZ), but compensated for the
additional flexibility by increasing the maximum allowed clusters to 10
(instead of 6). The alternative approach of two-level parsing (χ1 þ χ2)
could not be supported by the unfortunately sparse CYX dataset.
247
2.5.1. Deconstruction of the CYS93A-CYS116A cystine in 1M8N
To illustrate our approach, we will discuss a single cystine example

from our dataset. The hydropathic environment surrounding a CYX in the
highly active antifreeze protein from Choristoneura fumigerana (CfAFP)
was chosen as a model. Its 9 kDa isoform CfAFP501 was crystallized at
2.45 Å (PDB id 1M8N) (Zeida et al., 2014b) in a highly regular β-helical
structure, including a disulfide bond between CYS93 and CYS116, both
in its A chain. The first corresponding CYX is, in our nomenclature, res-
idue 67 of the c8.180 chess square/parse (β-sheet region of the Ram-
achandran plot) and is a member of cluster 223. The second
corresponding CYX is residue 53 of b1.300 and a member (and exem-
plar) of cluster 53. As is evinced from Fig. 6A, this map – from the
CYS93A perspective – is dominated by strong favorable hydrophobic
Fig. 6. Deconstruction of the CYS93A-CYS116A
Cystine in 1M8N. A) Hydropathic environment map
from the perspective of CYS93. Here, the CYX
construct (sphere display) includes SG’ and CB’,
which are the SG and CB of CYS116; B) Hydropathic
environment map from the perspective of CYS116.
Here, the CYX construct includes the SG and CB of
CYS93 as SG’ and CB’; C) Hydropathic environment
map from the perspective of the CYZ93 construct
(sphere display), which is a simulation of the pre-
bridging cysteine residue; and D) Hydropathic envi-
ronment map from the perspective of the CYZ116
construct. The contours are colored: purple – unfa-
vorable hydrophobic, green – favorable hydrophobic,
red – unfavorable polar, blue – favorable polar. Notes:
1 – The CYX environments are dominated by strong
hydrophobic interactions, are largely symmetric and
lastly, as expected, are complementary; 2 – unfavor-
able hydrophobic interactions near the CB’ atoms of
both constructs are likely truncation artifacts; 3 - the
environments surrounding CB in both CYX116 and
CYZ116 are very similar and largely favorable hy-
drophobic; 4 - the environments surrounding CB in
CYX93 and CYZ93 are also very similar; and 5 – the
large favorable and unfavorable polar interactions
around the two CYZ constructs, as they transition to
the highly favorable interaction environment depicted
by (1) is a very dramatic indication of the hydro-
phobic effect as a key factor driving cystine bridge
formation. (For interpretation of the references to
color in this figure legend, the reader is referred to the
Web version of this article.)
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interactions between the disulfide bond and its microenvironment ILE76,
ILE88, GLY90, ILE95, ILE113 and LEU118. Also seen are unfavorable
hydrophobic interaction likely caused by interactions between CYS93's
CB' with CYS116's and GLY115’s backbones. Fig. 6B illustrates the
environment from the CYS116A perspective. With this orientation what
is captured are strong favorable hydrophobic interactions between the
CYX and ILE76, ILE88, ILE113, GLY115 and LEU118 with other clear
unfavorable hydrophobic interactions with the backbones of CYS93 and
GLY90.

After deleting the S–S bond of this cystine, adding the hydrogens and
performing the energy minimization described in Methods, the back-
bone φ and ψ and the χ1 angles for CYX93A and CYX116A changed. The
minimization caused the two residues to be parsed into different chess
squares of the β-sheet region of the Ramachandran plot and reformed the
χ1 and χ2 angles of both. CYX(Z)93A is now residue 51 in the b7.180
chess square/parse of CYZ (cluster 9) whereas CYX(Z)116A is 232 in the
c1.300 (cluster 31). The CYZ data set was subjected to the same
computational titration protocol as CYS (above): in this case the pH50 was
9.496 (see Fig. S7). All CYZ maps were calculated at this pH. From
Fig. 6C, CYZ93 is making favorable hydrophobic interactions with ILE76,
GLY90, PRO91 and GLY92 and favorable polar interactions with SER89
and, of course, CYZ116. These interactions are counterbalanced, if not
dominated, by unfavorable hydrophobic and polar interactions with
ILE88, GLY90, CYZ116 and SER117. Similarly (Fig. 6D), CYZ116 has
favorable hydrophobic interactions with ILE113 and LEU118, favorable
polar with CYZ93 and SER114, and unfavorable interactions with ILE95,
SER114, GLY115 and SER117.
Fig. 7. Hydropathic interaction maps illustrating the Gaussian-weighted averag
See caption for Fig. 2.
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2.5.2. CYX and CYZ hydropathic interaction maps
With this orientation to what is captured by the CYX maps, it can be

seen (Fig. 7) that the interactions described above are common in all 9
clusters of b1.300: strong hydrophobic interactions around the disulfide
bond, unfavorable hydrophobic interactions associated with the CYX CB
and the backbone of its bonded CYX, and only a few, generally small,
favorable polar interactions. However, note the diversity of conforma-
tions in χ2 and χ3 exhibited by the molecules underlying these maps.
Although there are 5500 CYX residues in our dataset, comprising 2750
cystines, once binned into their chess squares and χ1 parses, only a
handful of such bins were populated sufficiently for robust clustering at
our conservative target of 10 clusters per bin (see Supporting Information
Tables S2 and S3). The numerically data describing the clusters and their
memberships, properties, etc. are in Table S6. A few additional CYX
contoured map sets are available in Fig. S8 for b1.60, and S9 for c5.60,
c5.180 and c5.300.

Maps for the CYZ environmental constructs are generally analogous
in appearance to those of CYS, and are not shown. There are a handful of
map-map similarities (CYS-to-CYZ) around 0.9 in most of the chess
square χ1 parses. Numerical data for CYZ is available in Table S7, and is
also similar to that of CYS (Table S5).

2.5.3. CYX environments and insight into cysteine bridging
Similar to Fig. 5 above, Fig. 8 shows plots of the hydropathic char-

acter as functions of foutside for the CYX (A) and CYZ (B) constructs (see
also Tables S6 and S7). The interaction environment for CYX (Fig. 8A) is
dramatically different than any of the other three – most notably, the
major interaction class contribution is unfavorable hydrophobic, fol-
lowed by favorable hydrophobic, and virtually no favorable polar
e clustered CYX sidechain environments for the b1.300 chess square/parse.



Fig. 8. Hydropathic Interaction Character for CYX and CYZ Clusters. A) interaction character for CYX (cysteine, intact bridge); B) interaction character for CYZ
(cysteine, broken bridge). See Fig. 5 caption.
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interactions. Also obvious is that CYX residues are only very rarely
solvent-exposed. On the other hand, CYZ data (Fig. 8B) are remarkably
similar to CYS data (Fig. 5B), with CYZ showing somewhat less favorable
and unfavorable hydrophobic characters than CYS. As noted above, we
created the CYZ data set by double protonation and energy minimization
of the resulting models. Clearly a molecular dynamics protocol would
have been preferable, but with over 2700 structures in-play, MD was not
practical. We expected a larger difference in pH50 than observed, i.e.,
ionization of a CYZ construct would be much easier with a readily
available –S–H from its formerly bonded cystine partner. However, while
that was not observed – pH50 for CYZ is only 0.09 less than pH50 for CYS –
poorly optimized structures would be probably much easier to ionize,
which is additional evidence that our models are probably reliable.

The small difference in pH50 was surprising for another reason: we
had expected that differences in the bridged CYX-CYX environment,
when wound back to a pair of CYS residues in close proximity (as in our
CYZ construct models) would suggest obvious deprotonation of one of the
CYZs (Poole, 2015). Paired cysteines cannot react spontaneously, but
they required oxidants or enzyme to catalyze the dimerization of the two
thiol groups (Fass and Thorpe, 2018). For example, protein disulfide
isomerase (PDI) acts via the thiol-disulfide exchange mechanism, a pro-
cess in which a disulfide bond donates to a substrate and in turn becomes
reduced. This process is pH-dependent, because it affects the deproto-
nation of the cysteine thiol group to form the active thiolate, which is
required for starting the nucleophilic attack on the cysteine in the active
site of PDI (Hatahet and Ruddock, 2009). Despite huge advances in un-
derstanding cystine formation, the precise mechanism via which correct
dimerization is achieved remains not fully understood (Robinson and
Bulleid, 2020). The larger atomic volume of sulfur better stabilizes the
negative charge of the transition state (Zeida et al., 2014a). Certainly,
ionization remains a contributing factor, and even the small pH50 change
we calculated corresponds to pKas that increase the fraction of CYS� by
about 25%. However, another factor, which is clearly shown in Fig. 8A, is
that a key driving force for the formation of the disulfide bridge is the
hydrophobic effect concomitant with better burial (Cadenas and Packer,
2010). Proximal cysteines prefer to form a bridge at the expense of their
hydrogens to reduce their conformational entropy, while increasing the
system's entropy. Another advantage is that the reactivity of free thiol
groups is ameliorated by burial.
2.6. Are there environmental differences between soluble and membrane
SER and CYS?

2.6.1. Membrane proteins dataset
Using as starting point the snapshots of coarse-grained molecular
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dynamics simulations created and catalogued in the MemProtMD data-
base by Newport, Sansom, and Stansfeld, we calculated the hydropathic
maps of SER, CYS and CYX (that we are calling SERm, CYSm and CYZm)
from 369 such proteins in the presence of the reported artificial lipid set
based on dipalmytoylphosphatidylcholine (DPPC) (Newport et al., 2019;
Stansfeld et al., 2015). In our soluble protein data set, SER, CYS and CYX
accounted for 6.21%, 0.73% and 0.69% of residues; in the membrane
protein set, 6.05%, 1.09% and 0.24% of the residues are SERm, CYSm,
and CYXm, respectively. The major difference seems to be that propor-
tionately fewer cysteines form cystine bridges in the membrane proteins.
While we are accounting for some degree of membrane protein in-
teractions with this approach, this dataset still has significant limitations
due to the absence of native lipids. Biological membranes are typically
crowded, and their lipids compositions vary in terms of composition
character. It is probable that the local properties in the lipid bilayer are
different region by region (Engelman, 2005; MacCallum and Tieleman,
2011). Biological membranes are thus more complicated than the
single-component lipid bilayer simulated within the MemProtMD data-
base, but this analysis is still helpful in conceptualizing the local hydro-
pathic environments and roles for the individual amino acids in
membranes.

We calculated the maps using the same conditions as reported above
and inMethods for the soluble protein data set. We treated the DPPC as a
residue, and this new interaction set was accounted for in the final maps.
A complete summary of all the data for the membrane protein dataset can
be found in Tables S1-S3 and S8-S10.

2.6.2. Solvent-accessible surface area (SASA) and foutside
With SASA calculations for the soluble proteins, we can safely equate

accessibility with water; in the case of membrane proteins, accessibility
could be either with lipid or water. The GETAREA algorithm currently
has no scope to differentiate these two cases. Thus, some care must be
taken in evaluating these results. Fig. 1E, F and G show the Ramachan-
dran plot superposed with foutside for SERm, CYSm, and CYXm. As noted
above, the fractions of serine and cysteine residues are consistent be-
tween soluble and membrane proteins. However, the latter is structurally
confined in space by the lipid environment, causing them to follow
different conformational principles than in globular proteins (MacCallum
and Tieleman, 2011). They fall into two classes: those α-helical and those
considered to be β-barrel proteins. This behavior can explain the
increased percentage of SER and CYS in the Ramachandran α-helix re-
gion of membrane proteins (62%–73%) than in the water-soluble pro-
teins (44%–47%). However, the notion that these fractions are fluxional
due to the evolving availability of membrane protein structural data
should not be ignored. Another aspect that is quite clear in Fig. 1E is the
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increased buriedness of SERm, particularly in the helical regions. This
may be explained by serine protecting its hydroxyl group from the lipid
environment by instead making intra- or inter-helical hydrogen bonds in
the membrane protein's core. The opposite behavior is seen for CYSm, as
this residue seems to prefer more exposure than CYS to the solvent. For
CYXm, the small amount of data available compared to CYX (<1:5) does
not allow for many confident comparisons, but in general, it seems that
CYXm exposure is slightly higher than CYX.

2.6.3. Clustering and hydropathic environment maps for SERm, CYSm, and
CYXm

To explore the role of lipid interactions in the hydropathic environ-
ment of CYSm and SERm, we calculated 3D interaction maps. To ensure
we account for the expected additional interaction profiles, we increased
the maximum number of clusters to 8 (instead of 6) for CYSm. We also
introduced a new metric, flipid, representing the fractional environmental
character of interaction types between each residue and lipid-related to
all interactions made by that residue in the resulting clusters. The contour
levels chosen for CYSm and SERm are identical to those used for SER and
CYS. Our description of SERm and CYSm maps will focus on the b1.60
and c5.300 chess square/parses. These were chosen to highlight the
differences in sidechain burial between SERm and CYSm by secondary
structure. The SERm and CYSm b1 chess squares are no longer the most
buried, and they account for only 3.23% and 2.25% of the total residues,
slightly more than one-third of that seen in the soluble proteins. The c5
chess squares have 8.71% and 7.95% of the SERm and CYSm pop-
ulations, respectively, closer to the count in their soluble counterparts.
During the following discussion, recall that highly solvent-exposed
sidechains do not necessarily mean that they are in water environ-
ments, but may be in lipid. To distinguish these two situations, we can
correlate the SASA values with the flipid descriptors. High SASA and flipid
values mean that the residue or, in this case, cluster is interacting with,
i.e., exposed to, the lipid bilayer. In contrast, high SASA and low flipid
indicate that the cluster is water exposed.

As shown in Fig. 9A, we can see that clusters 259 and 432 in SERm
b1.60 do not show any strong interactions between these sets of residues
and their environments. This pair may be an example of over-clustering
Fig. 9. Hydropathic interaction maps illustrating the Gaussian-weighted avera
b1.60 chess square/parse; B) c5.300 chess square parse. flipid values are the fraction o
models by type (green-favorable hydrophobic, purple-unfavorable hydrophobic, blu
pretation of the references to color in this figure legend, the reader is referred to th
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this parse, but including cluster 142, defines a collection (20%) of cases
where the hydroxyl group is solvent-accessible, based on high SASA
(39–52 Å2) and very low flipid values displayed on the maps. In contrast,
cluster 472 shows a moderate SASA and intermediate flipids. The hy-
droxyl group is likely making unfavorable hydrophobic interactions with
the phospholipid tail, supported by the small purple contours (unfavor-
able hydrophobic) near the OG-HG. The two lower SASA clusters, 3 and
415, while mostly buried, suggest that their CB methylenes are lipid
accessible, to a larger degree for 3. The c5.300 maps for SERm are dis-
played in Fig. 9B. The most interesting observation is that 62% of the
residues have a SASA lower than 20 Å2 compared to the only 25% in SER,
confirming that serine in membrane proteins likes to be buried, espe-
cially in the helical secondary structure motifs. Interpretation of these
maps parallels rather closely the b1.60 maps: while mostly buried, the
methylenes of 205 and 528 are interacting with the phospholipid tail;
247 and 467 have moderate SASAs and are interacting with the lipids
likely through both the CB and OG-HG; and 252 and 322 are likely
solvent (water) exposed with relatively high SASAs (�60 Å2). While the
SER maps (Figs. 2A and S1C) and SERm maps (Fig. 9) illustrate similar
features, they are also quantitatively similar: several map pairs have map-
map similarities larger than 0.9, e.g., SER cluster 1309 and SERm cluster
3 in b1.60 (0.9266). It remains to be determined whether these corre-
spondences are only a consequence of over-clustering serine environ-
ments or indicative of these environments being truly indistinct. See
Supporting Information Fig. S10 (SERm d5.300 maps), Fig. S11 (f6.300
maps), and Table S8 (SERm data summary).

With CYSm possessing a pH50 of 9.4506, it is ~35% more likely to be
protonated at a given pH than CYS. To emphasize diversity, CYSm maps
were calculated at pH50. As illustrated in Fig. 10A, excepting 47, which
appears to be somewhat exposed to the lipid bilayer, all clusters have a
flipid value of 0, emphasizing that they are very buried (clusters 5, 6, 28,
and 31) or modestly water exposed (8 and 44). The overall buriedness of
b1.60 residues in CYSm is the same as in the water-soluble b1.60
(Fig. 4A). CYSm tends to form more unfavorable hydrophobic in-
teractions than CYS and makes stronger favorable hydrophobic in-
teractions. The relatively rare clusters 8 and 44 display unfavorable polar
interactions (red contours), indicating structural errors in the small
ge clustered SERm (serine, membrane protein) sidechain environments. A)
f all interaction scores arising from residue-to-lipid interactions in the molecular
e-favorable polar, red-unfavorable polar) See also caption for Fig. 2. (For inter-
e Web version of this article.)



Fig. 10. Hydropathic interaction maps illustrating the Gaussian-weighted average clustered CYSm (cysteine, membrane protein) sidechain environments.
A) b1.60 chess square/parse; B) c5.300 chess square parse. See captions for Figs. 2 and 9.
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number of structures contributing to these clusters. The differences in
buriedness for the c5.300 chess square/parse in CYSm vs. CYS are dra-
matic. For the latter (Fig. S4C), only 8% were solvent-exposed (SASA
>20 Å2), but in CYSm, 43% are exposed. Also, all c5.300 maps indicate
interactions with the lipid, e.g., cluster 81 with its strong favorable hy-
drophobic interactions, likely with the lipid tail. Cluster-cluster similar-
ities between the CYS and CYSm clusters are far more supportive of them
having distinct hydropathic environments. With the exception of simi-
larities involving a likely to be "extra" and unneeded cluster in CYS
c5.300 (218, Fig. S4C), there are none greater than 0.9, and quite a few
less than 0.7. See also Supporting Information Fig. S12 (CYSm d5.300
maps), Fig. S13 (CYSm f6.300 maps) and Table S9 (CYSm data
summary).

Unfortunately, we do not have enough structural data to perform full
analyses on CYXm. Disulfide bridges are more often found in shorter
proteins (<200 residues) (Bosnjak et al., 2014) than those we had
available for this study, or are generally not found as membrane proteins.
Thus, only three of the chess square/parses contained more than 100
residues. The data we did collect and calculate is available in Table S10.

2.6.4. The triumph of subtlety?
In keeping with their relative positions in the periodic table, oxygen

and sulfur have – at first look – similar properties, but their differences in
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electronegativity, atomic radii and sulfur’s ability to utilize its d shell,
yield significantly different chemistries. While serine and cysteine have
similar structures, their differences in atomic properties are magnified in
residue properties. These differences are accentuated by environments –
serine in membrane proteins overall has a notably higher tendency to be
buried (foutside ~35%) than in soluble proteins (~50%), while cysteine
shows the opposite trend (membrane proteins, foutside ~18%; soluble
proteins, ~10%). The associated character plots are displayed as Fig. 11
(see also Tables S8 and S9). Comparing Figs. 11 and 5, one can see that
there is modestly higher favorable hydrophobic character in the mem-
brane proteins for both SER and CYS, more unfavorable hydrophobic
(especially for SERm), but less unfavorable polar. These data, combined
with the flipid analysis (examining interactions between the SER and CYS
residues and the artificial DPPC lipid set in the MemProtMD models)
(Newport et al., 2019) is filling in the pieces of an understanding of how
interaction environment affects these residues. For example, some highly
solvent exposed SERm and CYSm residues are interacting favorably with
the lipids (Fig. 11A and B, lower right corners). Nevertheless, despite
their different protein structures and their varied structural roles, most
measurable differences between the membrane and soluble protein
serine and cysteine residues are quite subtle. One flaw in our analyses is
that we need more structural data, particularly for the disulfide cystine.
Also, as membrane protein structure solution is an emerging field, it is



Fig. 11. Hydropathic Interaction Character for SERm and CYSm Clusters. A) interaction character for SERm (serine, membrane protein); B) interaction character
for CYSm (cysteine, membrane protein). See Fig. 5 caption.
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difficult to say whether the structures solved to date are representative,
although multiple technological and methodological developments have
led to the deposition of 5045 membrane protein structures in the Protein
Data Bank with 1286 unique structures according to White’s mpstruc
database (https://blanco.biomol.uci.edu/mpstruc/) as of June 2021.

3. Summary and conclusions

The hydropathic environment of each residue can be mapped in terms
of its backbone and influenced by its surroundings, like water exposure,
protein core, and membrane bilayer (Ahmed et al., 2015; Ahmed et al.,
2019; ALMughram et al., 2021) We analyzed andmapped the interaction
environments of more than 85,000 amino acid residues (serine, cysteine,
and cystine) in a diverse collection of globular and a separate collection
of integral membrane protein structures. With these analyses, we have
produced backbone-dependent libraries of sidechain rotamers and their
3D residue interaction preferences encoded in maps by type, strength and
position. Accordingly, the residue maps for serine and cysteine contained
similar polar features representing hydrogen bonding, etc., but addi-
tional favorable and unfavorable hydrophobic interactions were often
observed in the latter. One additional aspect of this study is that we
explored the ionization of cysteine by applying a computational tool that
adjusts the ionization states of cysteine and other residues like aspartatic
acid, glutamic acid and histidine (Herrington and Kellogg, 2021) based
on their specific environments and solution pH. Our backbone-dependent
rotamer library and map set incorporates this feature as well. The maps
are critically dependent on the pH at which they are calculated, and they
can be pH-tuned.

Although serine and cysteine are isosteric, their slight difference in
hydrophobicity significantly impacts their solvent exposure. One expla-
nation is that Nature has applied a negative selection to remove cysteine
residues from the protein surface due to their relatively high reactivity,
which is, for example, responsible for formation of cystine. We explored
this phenomenon by evaluating the 3D hydropahic interaction environ-
ment maps for cystine and a broken-bridge construct of two protonated
cysteines. The residues of the latter construct were not significantly
easier to ionize than other cysteines. However, their environments and
that of the intact-bridge cystine strongly suggest that a key driving force
for bridge formation is that it parallels one of the classical dogmas for
protein folding, i.e., the hydrophobic effect. The environments sur-
rounding disulfide bridges are somewhat surprisingly dominated by both
favorable and unfavorable hydrophobic interactions, rather than the
polar interactions observed in non-bridging cysteine environments.
Further refinement of these data may lead to a strategy for identifying
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cysteines and cystines that can be targeted by selective covalent in-
hibitors (Long and Aye, 2017; Heppner, 2021).

Lastly, we applied our analyses to a comparison of serine and cysteine
in soluble and membrane protein environments. We did not know what
to expect, i.e., whether our serine and cysteine rotamer/map sets would
be applicable for the membrane proteins. In some respects, there are
substantial differences: first, while the frequencies of serine and cysteine
remain more or less consistent in these protein sets, the number of cys-
teines involved in –S–S– (cystine) bridging drops dramatically; second,
there are notable shifts in the frequency of finding serine and cysteine
from the β-pleat to the α-helix motifs, although it is unknown whether
that is universal or a consequence of the structures solved to-date; and
third, most importantly, there is a shift in the exposure of these two
residues with serine becoming more buried trying to protect its hydroxyl
group from the lipid environment, while cysteine instead becomes more
exposed and willing to make favorable interaction with lipids. These
analyses using DPPC as a stand-in for the true lipid environment are
snapshots of membrane protein structure, but do carry some caveats. The
experimental structure determination of membrane proteins are consid-
erably more difficult than those that are water-soluble, and despite
remarkable advances in the structural elucidation of isolated membrane
proteins, obtaining atomic resolution remains challenging: most struc-
tures are currently in the resolution range of 3.0–5.0 Å. Newer technol-
ogies with higher resolution, e.g., cryo-electron microscopy, are
becoming increasingly available. However, regardless of how the struc-
tures are obtained, extraction of membrane proteins in their active, fol-
ded form is fraught with difficulties. Membrane protein folding and the
resulting activity require the presence of the native lipid environment,
which is often corrupted by the detergents used for extraction(Guo,
2020). The recent developments of detergent-free systems (Gulamhus-
sein et al., 2020; Guo, 2021; Kroeck et al., 2020; Lee et al., 2016; Mar-
connet et al., 2020; Qiu et al., 2018; Simon et al., 2018; Yang et al., 2021)
allows co-extraction and stabilization of membrane proteins and their
associated lipids in their near-to-native conformation. This increases the
environmental diversity of the lipid bilayer, enhancing our understand-
ing of protein structure, and the critical roles of lipids as designed by
Nature.

Our long-term goal is to develop detailed understanding of the full set
of amino acid residues through calculation of 3D hydropathic interaction
maps. In this report we described serine and cysteine in terms of these
maps. This complements our earlier reports on alanine (Ahmed et al.,
2019), phenylalanine, tyrosine and tryptophan (AL Mughram et al.,
2021) and aspartic acid, glutamic acid and histidine (Herrington and
Kellogg, 2021). With the full set of these maps, we envision a scheme for

https://blanco.biomol.uci.edu/mpstruc/
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protein structure building and prediction; with what we have learned
about cysteine, we can very likely anticipate in our predictions the for-
mation (or not) of disulfide bridges, because we have shown that the 3D
hydropathic environments, solvent exposure and ionization propensities
are different. Our paradigm for structure model building and refinement
will clearly benefit from further exploration of membrane protein
structures. However, the disadvantages of the artificial DPPC environ-
ment in our data set compared to the true native lipid environments are
unknown.

4. Methods

4.1. Datasets

From a collection of 2703 randomly selected proteins from the RCSB
Protein Data Bank, using only structures containing no ligand or cofactor,
we extracted all SER, CYS, and CYX residues from each structure,
excluding N- and C-terminal residues. For these structures, we have
previously described our selection criteria (Ahmed et al., 2015). Simi-
larly, we extracted the same residue types from 369 membrane protein
structures in the Grazhdankin et al. dataset (2020), which is a subset of
the MemProtMD database (Newport et al., 2019) of preoriented mem-
brane proteins. Water molecules, ions and lipids more than 6 Å away
from the protein were removed and missing hydrogen atoms were added
to all heavy atoms of all structures based on their hybridization states and
their positions were subjected to conjugate gradient minimizations in
Sybyl X.2.1 (Tripos, St. Louis, MO, USA). A similar procedure was fol-
lowed to create the CYZ (cysteine, broken bridge) dataset: after removal
of the S–S bond from all bridged (CYX) cystines in our soluble protein
dataset, protons were added each thiolate, and the resulting models were
energy minimized. Clearly, a molecular dynamics-powered procedure
would have been preferable, but with over 2700 structures, that was
impractical.

4.2. Alignment calculations

We overlayed an 8 by 8 "chessboard", where each "chess square" has
dimensions of 45� by 45� in φ (phi) – ψ (psi) space, on the standard
Ramachandran plot. The grid of the board was shifted by�20� and�25�

in the φ and ψ directions, respectively, to more closely align higher-
density regions of the plot with the chessboard system. The φ, ψ, and χ
angles were calculated for every residue in our dataset to bin each residue
within its proper chess square with respect to its φ and ψ angles. All
residues were further classified by their χ1 angles into three parse groups:
group A, (0� � χ1 < 120�), group B (120� � χ1 < 240�), and group C
(240� � χ1 < 360�), which we are calling .60, .180, and .300, respec-
tively. Table S1 contains all information for each residue of each type in
our dataset, including their chess squares, parses, PDB IDs, φ, ψ and ω
torsion angles and atom numbers for the backbone atoms and CB of each
residue.

A single model residue of each type was constructed at the center of
each chess square with characteristic φ and ψ angles for that centroid.
The CA of the protein residue’s backbone was placed at the origin with
the CA-CB oriented along the z-axis and the CA-HA bond oriented into
the -y, -z quadrant of the yz-plane. All residues of each type were aligned
to this model, and rotation and translation matrices were calculated by
least-squares fitting of the residue constituent atoms to the model. This
effectively shifted coordinates of every protein structure to align the
residue of interest with the centroid within a common frame and ensures
that all calculated maps and environments are attributable to a residue's
interactions and not misalignments in backbone structure. The average
root-mean square distances (RMSDs) for superimpositions of backbone
atoms in each chess square are close to 0.15 Å, indicating that errors
arising from aligning residue backbones to the centroid model (based on
the CA-CB bond) are minimal. The models for CYX (cysteine, intact
bridge) residues were created differently: in addition to its N, CA, C, O,
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CB and SG atoms (and all bonded hydrogens), the atoms SG’ and CB’
from its –S–S– bonded cysteine were included.

4.3. HINT scoring function

The HINT forcefield (Kellogg et al., 1991; Kellogg and Abraham,
2000; Sarkar and Kellogg, 2010) was used for all scoring of interactions
between protein atoms. HINT relies on atom-focused parameters, namely
the hydrophobic atom constant (a1) and a value for solvent-accessible
surface area (SASA, Si) for atom i. Generally speaking, ai > 0 for hy-
drophobic atoms and ai < 0 for polar atoms.

Si is greater for more solvent-exposed external atoms. The interaction
score between atoms i and j is calculated by:

bij ¼ ai Si aj Sj Tij e
-r þ Lij

where r is the distance in angstroms between atoms i and j. Tij is
equivalent to �1, 0, or 1 to account for acidic, basic, etc. character of
atoms involved and assign the proper sign to the interaction score.
Finally, Lij implements the Lennard-Jones potential function (Kellogg and
Abraham, 2000). bij > 0 for favorable interactions, such as Lewis
acid-base and hydrophobic-hydrophobic interactions, while bij < 0 for
unfavorable interactions, including hydrophobic-polar or Lewis
base-base interactions.

4.4. Computational titration of Ionizable cysteine residues

To determine the optimal ionization state of each cysteine, we
adapted an algorithm that we reported previously for improving protein-
ligand models for scoring (Fornabaio et al., 2003; Spyrakis et al., 2004).
Our algorithm scores all possible ionization states of a model residue with
other residues in its environment. Here, we optimized the ionization
states of cysteine by first calculating the normal (environment-free) cost
for ionizations of thiol group using published data (pKa ¼ 8.66) (Bulaj
et al., 1998) and applying the Henderson-Hasselbalch equation. For CYS,
at pH 7, log ([S�]/[SH]) ¼ 8.66–7.00, which is an equilibrium constant
that can be converted to a ΔG of �2.26 kcal mol�1. Using the previously
reported relation that �1 kcal mol�1 � 500 HINT score units (Kellogg
et al., 1991; Kellogg and Abraham, 2000), the energy cost in HINT score
units for deprotonating cysteine at pH 7, in the absence of local pH effects
is 1132.

The second term, calculated in varying protonation states, also as a
HINT score, measures the effects of the local environment around the
residue. This assessment of the environment scores the interactions of the
residue in question in each accessible protonation state, with those in its
neighborhood. These scores determine the protonation state of the res-
idue. We examined the ionized (thiolate, S�) and neutral states with
protonation at the sulfur atom (SH). If the HINT score was 50 or more
(~0.1 kcal mol�1) than the starting case, the residue's molecular model
was replaced with the (protonated or deprotonated) trial model for that
case. All further calculations at that pH were performed with the
resulting optimized residue structure and coordinates.

4.5. HINT basis interaction maps

Each residue with its CA-CB bond along the z-axis, was placed within
a three-dimensional box large enough to accommodate the structure of a
residue, plus an additional 5 Å on each dimension. These boxes, based on
residue type, are as follows: SER,�8.0 Å� x� 8.0 Å;�8.0 Å� y� 8.0 Å;
�7.5 Å � z � 9.0 Å, (37,026 points, 4224 Å3); and CYS/CYX,
�8.5 Å � x � 8.5 Å; �8.5 Å � y � 8.5 Å; �7.5 Å � z � 9.0 Å, (45,325
points, 4769 Å3); all with a point spacing of 0.5 Å. As described previ-
ously (Ahmed et al., 2015), HINT was used to calculate an interaction
grid representing the 3D interaction space surrounding a residue of in-
terest. In short, these maps interpret sums of pairwise HINT scores into
3D map objects indicating position, intensity, and type of interaction
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between atoms of the residue and those close in proximity (Kellogg and
Abraham, 2000; Sarkar and Kellogg, 2010). Each grid point for a map
was calculated, according to:

ρxyz ¼
P

bij exp (–[(x – xij)
2 þ (y – yij)

2 þ (z – zij)
2] / σ)

where ρxyz is the map interaction score at coordinates (x, y, z), xij, yij and
zij are coordinates of the midpoint of the vector between atoms i and j,
and σ is the width of the Gaussian map peak, 0.5 for our purposes. Map
data were calculated for sidechain atoms of all SER, CYS, CYX, CYZ,
CYSm, SERm and CYXm residues with individual maps for the four
interaction classes: favorable/unfavorable polar and favorable/unfavor-
able hydrophobic.

4.6. Calculation of map-map correlation metrics

The calculation of map-map correlations, i.e., comparison of two
maps, m and n, are based on:

if |Gt|/F > 1.0, At ¼ (Gt/|Gt|) log10 (|Gt|/F); else, At ¼ 0

where each rawmap data point (Gt, for point at index t) is transformed to
log10 space and normalized with a predefined floor value, F ¼ 1.0.
Calculational methods defining the similarity between maps m and n,
defined as D(m,n) was calculated as described previously in detail
(Ahmed et al., 2015). Also, all correlation calculations were performed
with in-house GPU-powered programs that exploit the inherent paral-
lelism of our methods, especially for calculating maps and similarity
matrices.

4.7. Clustering and validation

We utilized the freely available R programming language and envi-
ronment to perform our clustering analysis on the pairwise map simi-
larity matrices calculated above.(R Development Core Team, 2013) We
determined that for our purposes, out of a number of different clustering
methods, the k-means method was most reliable (Ahmed et al., 2015).
We opted to set a uniform maximum number of clusters of 6 for each
chess square-parse combination for SER, CYS and CYZ; 8 for SERm and
CYSm; 10 for CYX and CYXm. This allows for significant map diversity
and facilitates inter-chess square/inter-residue comparisons. A limitation
of the k-means clustering is that it does not form singleton clusters, so we
developed protocols to optionally recover them by reconstructing the
cluster solutions possessing missing singletons. Any chess square-parse
with four or fewer maps was not subjected to clustering, but, was
instead averaged to create what is, effectively, a 1-cluster case.

4.8. Average map, RMSD, and solvent-accessible surface area calculations

Careful consideration must be given to calculation of average maps.
First, to avoid a phenomeon that we described as "brown mapping"
(Ahmed et al., 2015), only maps sharing high similarity should be com-
bined. Second, the average maps are calculated by Gaussian weighting
(w) the contribution of each map with respect to its Euclidean distance
from the cluster centroid, given by:

w ¼ exp [–(d2/σ2)]

where d is the map's distance from the centroid and σ ¼ dmax/8, which is
the average of all maximum distances across all clusters in the chess
square. This weighting ensures that maps closer to the centroid
contribute more significantly to the average map of the cluster, whereas
taking a flat average of all map data would overweight the importance of
maps further from the centroid, of which there are more. While a formal
definition exists for "exemplar" in affinity propagation clustering, for our
purposes, it represents the residue datum closest to the centroid of each
cluster output by the k-means algorithm.

RMSDs (root-mean square distances) for each residue type were
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calculated by weighted averaging, as above, all atomic positions from all
residues in a cluster to construct one average residue structure. For each
non-hydrogen atom, an RMSD was calculated from the average structure,
and then all atomic values were averaged to obtain the reported RMSD
for the cluster.

We calculated SASAs for all residue sidechains using the GETAREA
algorithm (Fraczkiewicz and Braun, 1998) and its default settings. The
protein coordinates in PDB files were submitted as input. Also, from
GETAREA's "In/Out" parameter, we created a new metric "foutside" to
represent the buriedness of the set of residues in a cluster, parse, chess
square, etc. by recasting "In" as 0.0, "Out" as 1.0 and "indeterminant" as
0.5, and averaging the set.

4.9. Calculation of map character and lipid-specific interactions

Map characters were calculated for each residue map from the grid
points values in the associated map quartets – favorable and unfavorable
hydrophobic and polar. For each, the grid point values (v) were summed
[Σvhydro(�), Σvhydro(þ), Σvpolar(�), Σvpolar(þ)], and analyzed. The fractional
interaction character of each residue’s environment was calculated as
these sums normalized by the sum of all interactions, e.g., fhydro(þ) ¼ |Σ
vhydro(þ)|/{ |Σ vhydro(�)| þ |Σ vhydro(þ)| þ |Σ vpolar(�)| þ |Σ vpolar(þ)| }. In
this work, these values were averaged on a cluster-by-cluster basis, but
the individual data are available in Supporting Information
Tables S4–S10.

In order to assess the contribution of the artificial lipids set to the
residue environments in the membrane proteins set (SERm, CYSm,
CYZm), we created a DPPC “residue” for incorporation into the HINT
partition dictionary, i.e., we assigned both hydropathic atom constants
(ai) and solvent-accessible surface areas (Si) for each DPPC atom (vide
supra). These atoms were thus explicitly included in map calculations for
the residues in membrane proteins. Then, for each residue, the ratios of
interaction scores involving the lipid atoms to all interaction scores, for
each interaction type, were calculated. These are reported as flipid values
(fLipHyd(�), fLipHyd(þ), fLipPol(�), fLipPol(þ)) and averaged on a cluster-by-
cluster basis (see Tables S8–S10).
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