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Abstract: Big data and streaming data are encountered in a variety of contemporary applications
in business and industry. In such cases, it is common to use random projections to reduce the
dimension of the data yielding compressed data. These data however possess various anomalies
such as heterogeneity, outliers, and round-off errors which are hard to detect due to volume and
processing challenges. This paper describes a new robust and efficient methodology, using Hellinger
distance, to analyze the compressed data. Using large sample methods and numerical experiments,
it is demonstrated that a routine use of robust estimation procedure is feasible. The role of double
limits in understanding the efficiency and robustness is brought out, which is of independent interest.

Keywords: compressed data; Hellinger distance; representation formula; iterated limits;
influence function; consistency; asymptotic normality; location-scale family

1. Introduction

Streaming data are commonly encountered in several business and industrial applications leading
to the so-called Big Data. These are commonly characterized using four V’s: velocity, volume, variety,
and veracity. Velocity refers to the speed of data processing while volume refers to the amount of data.
Variety refers to various types of data while veracity refers to uncertainty and imprecision in data. It is
believed that veracity is due to data inconsistencies, incompleteness, and approximations. Whatever
be the real cause, it is hard to identify and pre-process data for veracity in a big data setting. The issues
are even more complicated when the data are streaming.

A consequence of the data veracity is that statistical assumptions used for analytics tend to be
inaccurate. Specifically, considerations such as model misspecification, statistical efficiency, robustness,
and uncertainty assessment-which are standard part of a statistical toolkit-cannot be routinely carried
out due to storage limitations. Statistical methods that facilitate simultaneous addressal of twin
problems of volume and veracity would enhance the value of the big data. While health care industry
and financial industries would be the prime benefactors of this technology, the methods can be
routinely applied in a variety of problems that use big data for decision making.

We consider a collection of n (n is of the order of at least 106) observations, assumed to be
independent and identically distributed (i.i.d.), from a probability distribution f (·) belonging to a
location-scale family; that is,

f (x; µ, σ) =
1
σ

f
(

x− µ

σ

)
, µ ∈ IR, σ > 0.
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We denote by Θ the parameter space and without loss of generality take it as compact
since otherwise it can be re-parametrized in a such a way that the resulting parameter space is
compact (see [1]).

The purpose of this paper is to describe a methodology for joint robust and efficient estimation
of µ and σ2 that takes into account (i) storage issues, (ii) potential model misspecifications, and
(iii) presence of aberrant outliers. These issues-which are more likely to occur when dealing with
massive amounts of data-if not appropriately accounted in the methodological development, can lead
to inaccurate inference and misleading conclusions. On the other hand, incorporating them in the
existing methodology may not be feasible due to a computational burden.

Hellinger distance-based methods have long been used to handle the dual issue of robustness
and statistical efficiency. Since the work of [1,2] statistical methods that invoke alternative objective
functions which converge to the objective function under the posited model have been developed
and the methods have been shown to possess efficiency and robustness. However, their routine use
in the context of big data problems is not feasible due to the complexity in the computations and
other statistical challenges. Recently, a class of algorithms-referred to as Divide and Conquer—have
been developed to address some of these issues in the context of likelihood. These algorithms
consist in distributing the data across multiple processors and, in the context of the problem
under consideration, estimating the parameters from each processor separately and then combining
them to obtain an overall estimate. The algorithm assumes availability of several processors,
with substantial processing power, to solve the complex problem at hand. Since robust procedures involve
complex iterative computations-invoking the increased demand for several high-speed processors
and enhanced memory-routine use of available analytical methods in a big data setting is challenging.
Maximum likelihood method of estimation in the context of location-scale family of distributions
has received much attention in the literature ([3–7]). It is well-known that the maximum likelihood
estimators (MLE) of location-scale families may not exist unless the defining function f (·) satisfies
certain regularity conditions. Hence, it is natural to ask if other methods of estimation such as minimum
Hellinger distance estimator(MHDE) under weaker regularity conditions. This manuscript provides a
first step towards addressing this question. Random projections and sparse random projections are
being increasingly used to “compress data” and then use the resulting compressed data for inference.
The methodology, primarily developed by computer scientists, is increasingly gaining attention among
the statistical community and is investigated in a variety of recent work ([8–12]). In this manuscript,
we describe a Hellinger distance-based methodology for robust and efficient estimation after the use
of random projections for compressing i.i.d data belonging to the location-scale family. The proposed
method consists in reducing the dimension of the data to facilitate the ease of computations and
simultaneously maintain robustness and efficiency when the posited model is correct. While primarily
developed to handle big and streaming data, the approach can also be used to handle privacy issues in
a variety of applications [13].

The rest of the paper is organized as follows: Section 2 provides background on minimum
Hellinger distance estimation; Section 3 is concerned with the development of Hellinger distance-based
methods for compressed data obtained after using random projections; additionally, it contains the
main results and their proofs. Section 4 contains results of the numerical experiments and also describes
an algorithm for implementation of the proposed methods. Section 5 contains a real data example
from financial analytics. Section 6 is concerned with discussions and extensions. Section 7 contains
some concluding remarks.

2. Background on Minimum Hellinger Distance Estimation

Ref. [1] proposed minimum Hellinger distance (MHD) estimation for i.i.d. observations
and established that MHD estimators (MHDE) are simultaneously robust and first-order efficient
under the true model. Other researchers have investigated related estimators, for example, [14–20].
These authors establish that when the model is correct, the MHDE is asymptotically equivalent to the
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maximum likelihood estimator (MLE) in a variety of independent and dependent data settings. For a
comprehensive discussion of minimum divergence theory see [21].

We begin by recalling that the Hellinger distance between two probability densities is the L2

distance between the square root of the densities. Specifically, let, for p ≥ 1, || · ||p denote the Lp norm
defined by

||h||p =

{∫
|h|p

}1/p
.

The Hellinger distance between the densities f (·) and g(·) is given by

H2( f (·), g(·)) = || f 1/2(·)− g1/2(·)||22.

Let f (·|θ) denote the density of IRd valued independent and identically distributed random
variables X1, · · · , Xn, where θ ∈ Θ ⊂ IRp; let gn(·) be a nonparametric density estimate (typically a
kernel density estimator). The Hellinger distance between f (·|θ) and gn(·) is then

H2 ( f (·|θ), gn(·)) = || f 1/2(·|θ)− g1/2
n (·)||22.

The MHDE is a mapping T(·) from the set of all densities to IRp defined as follows:

θg = T(g) = argmin
θ∈Θ

H2 ( f (·|θ), g(·)) . (1)

Please note that the above minimization problem is equivalent to maximizing A ( f (·|θ), g(·)) =∫
f 1/2(x|θ)g1/2(x)dx. Hence MHDE can alternatively be defined as

θg = argmax
θ∈Θ

A ( f (·|θ), g(·)) .

To study the robustness of MHDE, ref. [1] showed that to assess the robustness of a functional
with respect to the gross-error model it is necessary to examine the α-influence curve rather than the
influence curve, except when the influence curve provides a uniform approximation to the α-influence
curve. Specifically, the α-influence function (IFα(θ, z)) is defined as follows: for θ ∈ Θ, let fα,θ,z =

(1− α) f (·|θ) + αηz, where ηz denotes the uniform density on the interval (z− ε, z + ε), where ε > 0 is
small, α ∈ (0, 1), z ∈ IR; the α-influence function is then defined to be

IFα(θ, z) =
T( fα,θ,z)− θ

α
, (2)

where T( fα,θ,z) is the functional for the model with density fα,θ,z(·). Equation (2) represents a complete
description of the behavior of the estimator in the presence of contamination, up to the shape of
the contaminating density. If IFα(θ, z) is a bounded function of z such that limz→∞ IFα(θ, z) =

0, for every θ ∈ Θ, then the functional T is robust at f (·|θ) against 100%α contamination by
gross errors at arbitrary large value z. The influence function can be obtained by letting α → 0.
Under standard regularity conditions, the minimum divergence estimators (MDE) are first order
efficient and have the same influence function as the MLE under the model, which is often unbounded.
Hence the robustness of these estimators cannot be explained through their influence functions.
In contrast, the α-influence function of the estimators are often bounded, continuous functions of
the contaminating point. Finally, this approach often leads to high breakdown points in parametric
estimation. Other explanations can also be found in [22,23].

Ref. [1] showed that the MHDE of location has a breakdown point equal to 50%. Roughly speaking,
the breakdown point is the smallest fraction of data that, when strategically placed, can cause an
estimator to take arbitrary values. Ref. [24] obtained breakdown results for MHDE of multivariate
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location and covariance. They showed that the affine-invariant MHDE for multivariate location and
covariance has a breakdown point of at least 25%. Ref. [18] showed that the MHDE has 50% breakdown
in some discrete models.

3. Hellinger Distance Methodology for Compressed Data

In this section we describe the Hellinger distance-based methodology as applied to the
compressed data. Since we are seeking to model the streaming independent and identically
distributed data, we denote by J the number of observations in a fixed time-interval (for instance,
every ten minutes, or every half-hour, or every three hours). Let B denote the total number
of time intervals. Alternatively, B could also represent the number of sources from which
the data are collected. Then, the incoming data can be expressed as {Xjl , 1 ≤ j ≤ J;
1 ≤ l ≤ B}. Throughout this paper, we assume that the density of Xjl belongs to a location-scale family

and is given by f (x; θ∗) = 1
σ∗ f ( x−µ∗

σ∗ ), where θ∗ = (µ∗, σ∗). A typical example is a data store receiving
data from multiple sources, for instance financial or healthcare organizations, where information from
multiple sources across several hours are used to monitor events of interest such as cumulative usage
of certain financial instruments or drugs.

3.1. Random Projections

Let Rl = (rijl) be a S× J matrix, where S is the number of compressed observations in each time
interval, S� J, and rijl’s are independent and identically distributed random variables and assumed
to be independent of {Xjl , j = 1, 2, · · · , J; 1 ≤ l ≤ B}. Let

Ỹil =
J

∑
j=1

rijlXjl

and set Ỹl = (Ỹ1l , · · · , ỸSl)
′; in matrix form this can be expressed as Ỹl = RlXl . The matrix Rl is

referred to as the sensing matrix and {Ỹil , i = 1, 2 · · · , S; l = 1, 2, · · · , B} is referred to as the compressed
data. The total number of compressed observations m = SB is much smaller than the number of
original observations n = JB. We notice here that Rl’s are independent and identically distributed
random matrices of order S× J. Referring to each time interval or a source as a group, the following
Table 1 is a tabular representation of the compressed data.

Table 1. Illustration of Data Reduction Mechanism, Here r∗il = (ri·l , ωil).

Grp 1 Grp 2 · · · Grp B Grp 1 Grp 2 · · · Grp B

Original X11 X12 · · · X1B Compressed (Ỹ11, r∗11) (Ỹ12, r∗12) · · · (Ỹ1B, r∗1B)

Data X21 X22 · · · X2B Data (Ỹ21, r∗21) (Ỹ22, r∗22) · · · (Ỹ2B, r∗2B)
...

...
...

... S�J
=⇒

...
...

...
...

XJ1 XJ2 · · · XJB (ỸS1, r∗S1) (ỸS2, r∗S2) · · · (ỸSB, r∗SB)

In random projections literature, the distribution of rijl is typically taken to be Gaussian;
but other distributions such as Rademacher distribution, exponential distribution and extreme
value distributions are also used (for instance, see [25]). In this paper, we do not make any strong
distributional assumptions on rijl . We only assume that E

[
rijl

]
= 1 and Var

[
rijl

]
= γ2

0, where E[·]
represents the expectation of the random variable and Var [·] represents the variance of the random
variable. Additionally, we denote the density of rijl by q(·).

We next return to the storage issue. When S = 1 and rijl = 1, Ỹil is a sum of J random
variables. In this case, one retains (stores) only the sum of J observations and robust estimates
of θ∗ are sought using the sum of observations. In other situations, that is when rijl are not degenerate
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at 1, the distribution of Ỹil is complicated. Indeed, even if rijl are assumed to be normally distributed,
the marginal distribution of Ỹil is complicated. The conditional distribution is Ỹil (given rijl) is a
weighted sum of location scale distributions and does not have a useful closed form expression.
Hence, in general for these problems the MLE method is not feasible. We denote by ω2

il = ∑J
j=1 r2

ijl

and work with the random variables Yil ≡ ω−1
il Ỹil . We denote the true density of Yil to be hJ(·|θ∗, γ0).

Also, when γ0 = 0 (which implies rijl ≡ 1) we denote the true density of Yil by h∗J(·|θ∗) to emphasize
that the true density is a convolution of J independent and identically distributed random variables.

3.2. Hellinger Distance Method for Compressed Data

In this section, we describe the Hellinger distance-based method for estimating the parameters
of the location scale family using the compressed data. As described in the last section, let {Xjl , j =
1, 2, · · · , J; l = 1, 2, · · · , B} be a doubly indexed collection of independent and identically distributed
random variables with true density 1

σ∗ f
(
·−µ∗

σ∗

)
. Our goal is to estimate θ∗ = (µ∗, σ2∗) using the

compressed data {Yil , i = 1, 2, · · · , S; l = 1, 2, · · · , B}. We re-emphasize here that the density of Yil
depends additionally on γ0, the variance of the sensing random variables rijl .

To formulate the Hellinger-distance estimation method, let G be a class of densities metrized by
the L1 distance. Let {hJ(·|θ, γ0); θ ∈ Θ} be a parametric family of densities. The Hellinger distance
functional T is a measurable mapping mapping from G to Θ, defined as follows:

T(g) ≡ arg min
θ

∫
IR

(
g

1
2 (y)− h

1
2
J (y|θ, γ0)

)2
dy

= arg min
θ

HD2 (g, hJ(·|θ, γ0)
)
= θ∗g(γ0).

When g(·) = hJ(·|θ∗, γ0), then under additional assumptions θ∗g(γ0) = θ∗(γ0). Since minimizing
the Hellinger-distance is equivalent to maximizing the affinity, it follows that

T(g) = arg max
θ

A
(

g, hJ(·|θ, γ0)
)

, where

A(g, hJ(·|θ, γ0)) ≡
∫

IR
g

1
2 (y)h

1
2
J (y|θ, γ0)dy.

It is worth noticing here that

A(g, hJ(·|θ, γ0)) = 1− 1
2

HD2(g, hJ(·|θ, γ0)). (3)

To obtain the Hellinger distance estimator of the true unknown parameters θ∗, expectedly we
choose the parametric family hJ(·|θ, γ0) to be density of Yil and g(·) to be a non-parametric L1

consistent estimator gB(·) of hJ(·|θ, γ0). Thus, the MHDE of θ∗B is given by

θ̂B(γ0) = arg max
θ

A
(

gB, hJ(·|θ, γ0)
)
= T(gB).

In the notation above, we emphasize the dependence of the estimator on the variance of the
projecting random variables. We notice here that the solution to (1) may not be unique. In such cases,
we choose one of the solutions in a measurable manner.

The choice of the density estimate, typically employed in the literature is the kernel density
estimate. However, in the setting of the compressed data investigated here, there are S observations
per group. These S observations are, conditioned on rijl independent; however they are marginally
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dependent (if S > 1). In the case when S > 1, we propose the following formula for gB(·). First, we
consider the estimator

g(i)B (y) =
1

BcB

B

∑
l=1

K
(

y−Yil
cB

)
, i = 1, 2, · · · , S.

With this choice, the MHDE of θ∗B is given by, for 1 ≤ i ≤ S,

θ̂i,B(γ0) = arg max
θ

A
(

g(i)B , hJ(·|θ, γ0)
)

. (4)

The above estimate of the density chooses ith observation from each group and obtains the kernel
density estimator using the B independent and identically distributed compressed observations. This
is one choice for the estimator. Of course, alternatively, one could obtain SB different estimators by
choosing different combinations of observations from each group.

It is well-known that the estimator is almost surely L1 consistent for hJ(·|θ∗, γ0) as long as cB → 0
and BcB → ∞ as B→ ∞. Hence, under additional regularity and identifiability conditions and further
conditions on the bandwidth cB, existence, uniqueness, consistency and asymptotic normality of
θ̂i,B(γ0), for fixed γ0, follows from the existing results in the literature.

When γ0 = 0 and rijl ≡ 1, as explained previously, the true density is a J−fold convolution
of f (·|θ∗), it is natural to ask the following question: if one lets γ0 → 0, will the asymptotic results
converge to what one would obtain by taking γ0 = 0. We refer to this property as a continuity property
in γ0 of the procedure. Furthermore, it is natural to wonder if these asymptotic properties can be
established uniformly in γ0. If that is the case, then one can also allow γ0 to depend on B. This idea
has an intuitive appeal since one can choose the parameters of the sensing random variables to achieve
an optimal inferential scheme. We address some of these issues in the next subsection.

Finally, we emphasize here that while we do not require S > 1, in applications involving streaming
data and privacy problems S tends to greater than one. In problems where the variance of sensing
variables are large, one can obtain an overall estimator by averaging θ̂i,B(γ0) over various choices of
1 ≤ i ≤ S; that is,

θ̂B(γ0) =
1
S

S

∑
i=1

θ̂i,B(γ0). (5)

The averaging improves the accuracy of the estimator in small compressed samples (data not
presented). For this reason, we provide results for this general case, even though our simulation and
theoretical results demonstrate that for some problems considered in this paper, S can be taken to
be one. We now turn to our main results which are presented in the next subsection. The following
Figure 1 provides a overview of our work.

Figure 1. MLE vs. MHDE after Data Compression.
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3.3. Main Results

In this section we state our main results concerning the asymptotic properties of the MHDE
of compressed data Yil . We emphasize here that we only store {(Ỹil , ri·l , ω2

il) : i = 1, 2, · · · , S; l =

1, 2, · · · , B}. Specifically, we establish the continuity property in γ0 of the proposed methods by
establishing the existence of the iterated limits. This provides a first step in establishing the double
limit. The first proposition is well-known and is concerned with the existence and uniqueness of
MHDE for the location-scale family defined in (4) using compressed data.

Proposition 1. Assume that hJ(·|θ, γ0) is a continuous density function. Assume further that if θ1 6= θ2.
Then for every γ0 ≥ 0, hJ(y|θ1, γ0) 6= hJ(y|θ2, γ0) on a set of positive Lebesgue measure, the MHDE in (4)
exists and is unique.

Proof. The proof follows from Theorem 2.2 of [20] since, without loss of generality, Θ is taken to be
compact and the density function hJ(·|θ, γ0) is continuous in θ.

Consistency: We next turn our attention to consistency. As explained previously, under regularity
conditions for each fixed γ0, the MHDE θ̂i,B(γ0) is consistent for θ∗(γ0). The next result says that
under additional conditions, the consistency property of MHDE is continuous in γ0.

Proposition 2. Let hJ(·|θ, γ0) be a continuous probability density function satisfying the conditions of
Proposition 1. Assume that

lim
γ0→0

sup
θ∈Θ

∫
IR
|hJ(y|θ, γ0)− h∗J(y|θ)|dy = 0. (6)

Then, with probability one (wp1) the iterated limits also exist and equals θ∗; that is, for 1 ≤ i ≤ S,

lim
B→∞

lim
γ0→0

θ̂i,B(γ0) = lim
γ0→0

lim
B→∞

θ̂i,B(γ0) = θ∗.

Proof. Without loss of generality let Θ be compact since otherwise it can be embedded into a compact
set as described in [1]. Since f (·) is continuous in θ and g(·) is continuous in γ0, it follows that
hJ(·|θ, γ0) is continuous in θ and γ0. Hence by Theorem 1 of [1] for every fixed γ0 ≥ 0 and 1 ≤ i ≤ S,

lim
B→∞

θ̂i,B(γ0) = θ∗(γ0).

Thus, to verify the convergence of θ∗(γ0) to θ∗ as γ0 → 0, we first establish, using (6), that

lim
γ0→0

sup
θ∈Θ

|A(hJ(·|θ, γ0), h∗J(·|θ))− 1| = 0.

To this end, we first notice that

sup
θ∈Θ

HD2(hJ(·|θ, γ0), h∗J(·|θ)) ≤ sup
θ∈Θ

∫
IR
|(hJ(y|θ, γ0)− h∗J(y|θ)|dy.

Hence, using (3),

sup
θ∈Θ

|A(hJ(·|θ, γ0), h∗J(·|θ))− 1| =
1
2

sup
θ∈Θ

HD2(hJ(·|θ, γ0), h∗J(·|θ))

→ 0 as γ0 → 0.



Entropy 2019, 21, 348 8 of 40

Hence,

lim
γ0→0

A(hJ(·|θ∗(γ0), γ0), h∗J(·|θ∗(γ0))) = 1.

Also, by continuity,

lim
γ0→0

A(h∗J(·|θ∗(γ0), γ0), h∗J(·|θ∗)) = 1,

which, in turn implies that

lim
γ0→0

A(hJ(·|θ∗(γ0), γ0), h∗J(·|θ∗)) = 1.

Thus existence of the iterated limit first as B→ ∞ and then γ0 → 0 follows using compactness of
Θ and the identifiability of the model. As for the other iterated limit, again notice notice that for each
1 ≤ i ≤ S, A(g(i)B , hJ(·|θ, γ0)) converges to A(g(i)B , h∗J(·|θ)) with probability one as γ0 converges to 0.
The result then follows again by an application of Theorem 1 of [20].

Remark 1. Verification of condition (6) seems to be involved even in the case of standard Gaussian random
variables and standard Gaussian sensing random variables. Indeed in this case, the density of hJ(·|θ, γ0) is
a J−fold convolution of a Bessel function of second kind. It may be possible to verify the condition (6) using
the properties of these functions and compactness of the parameter space Θ. However, if one is focused only on
weak-consistency, it is an immediate consequence of Theorems 1 and 2 below and condition (6) is not required.
Finally, it is worth mentioning here that the convergence in (6) without uniformity over Θ is a consequence of
convergence in probability of rijl to 1 and Glick’s Theorem.

Asymptotic limit distribution: We now proceed to investigate the limit distribution of θ∗B(γ0)

as B → ∞ and γ0 → 0. It is well-known that for fixed γ0 ≥ 0, after centering and scaling, θ∗B(γ0)

has a limiting Gaussian distribution, under appropriate regularity conditions (see for instance [20]).
However to evaluate the iterated limits as γ0 → 0 and B→ ∞, additional refinements of the techniques

in [20] are required. To this end, we start with additional notations. Let sJ(·|θ, γ0) = h
1
2
J (·|θ, γ0) and let

the score function be denoted by uJ(·|θ, γ0) ≡ ∇ log hJ(·|θ, γ0) =
(

∂ log hJ(·|θ,γ0)
∂µ , ∂ log hJ(·|θ,γ0)

∂σ

)′
. Also,

the Fisher information I(θ(γ0)) is given by

I(θ(γ0)) =
∫

IR
uJ(y|θ, γ0)u′J(y|θ, γ0)hJ(y|θ, γ0)dy.

In addition, let ṡJ(·|θ, γ0) be the gradient of sJ(·|θ, γ0) with respect to θ, and s̈J(·|θ, γ0) is the

second derivative matrix of sJ(·|θ, γ0) with respect to θ. In addition, let tJ(·|θ) = h∗J 1
2 (·|θ) and

vJ(·|θ) = ∇ log h∗J(·|θ). Furthermore, let Y∗il denote Yil when γ0 ≡ 0. Please note that in this case,
Yil = Y1l for all i = 1, 2, · · · , S. The corresponding kernel density estimate of Y∗il is given by

g∗B(y) =
1

BcB

B

∑
l=1

K
(

y−Y∗il
cB

)
. (7)

We emphasize here that we suppress i on the LHS of the above equation since g(i)∗B (·) are equal
for all 1 ≤ i ≤ S.

The iterated limit distribution involves additional regularity conditions which are stated in the
Appendix. The first step towards this aim is a representation formula which expresses the quantity
of interest, viz.,

√
B
(
θ̂i,B(γ0)− θ∗(γ0)

)
as a sum of two terms, one involving sums of compressed

i.i.d. random variables and the other involving remainder terms that converge to 0 at a specific rate.
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This expression will appear in different guises in the rest of the manuscript and will play a critical role
in the proofs.

3.4. Representation Formula

Before we state the lemma, we first provide two crucial assumptions that allow differentiating the
objective function and interchanging the differentiation and integration:

Model assumptions on hJ(·|θ, γ0)

(D1) hJ(·|θ, γ0) is twice continuously differentiable in θ.
(D2) Assume further that ||∇sJ(·|θ, γ0)||2 is continuous and bounded.

Lemma 1. Assume that the conditions (D1) and (D2) hold. Then for every 1 ≤ i ≤ S and γ0 ≥ 0,
the following holds:

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0), where (8)

A1B(γ0) = B
1
2 D−1

B (θ̃i,B(γ0))TB(γ0), A2B(γ0) = B
1
2 D−1

B (θ̃i,B(γ0))RB(γ0), (9)

θ̃i,B(γ0) ∈ UB(θ
′(γ0)), UB(θ

′(γ0)) = {θ′ : θ′(γ0) = tθ∗(γ0) + (1− t)θ̂i,B(γ0), t ∈ [0, 1]}, (10)

DB(θ(γ0)) = −1
2

∫
IR

u̇J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

−1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

≡ D1B(θ(γ0)) + D2B(θ(γ0)), (11)

TB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)
(

hJ(y|θ∗, γ0)− g(i)B (y)
)

dy, and (12)

RB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)

(
h

1
2
J (y|θ

∗, γ0)− g(i)
1
2

B (y)
)2

dy. (13)

Proof. By algebra, note that ṡJ(y|θ, γ0) = 1
2 uJ(y|θ, γ0)sJ(y|θ, γ0). Furthermore, the second

partial derivative of sJ(·|θ, γ0) is given by s̈J(y|θ, γ0) = 1
2 u̇J(y|θ, γ0)sJ(y|θ, γ0) +

1
4 uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0). Now using (D1) and (D2) and partially differentiating

HD2
B (θ(γ0)) ≡ HD2(g(i)B (·), hJ(·|θ, γ0)) with respect to θ and setting it equal to 0, the estimating

equations for θ∗(γ0) is

∇HD2
B (θ∗(γ0)) = 0. (14)

Let θ̂i,B(γ0) be the solution to (14). Now applying first order Taylor expansion of (14) we get

∇HD2
B (θ∗(γ0)) = ∇HD2

B
(
θ̂i,B(γ0)

)
+ DB(θ̃i,B(γ0))

(
θ̂i,B(γ0)− θ∗(γ0)

)
,
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where θ̃i,B(γ0) is defined in (10), and DB(·) is given by

DB(θ(γ0)) = −1
2

∫
IR

u̇J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

−1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)g(i)
1
2

B (y)dy

≡ D1B(θ(γ0)) + D2B(θ(γ0)),

and ∇HD2
B(·) is given by

∇HD2
B(θ(γ0)) = −

1
2

∫
IR

uJ(y|θ, γ0)sJ(y|θ, γ0)

(
h

1
2
J (y|θ

∗, γ0)− g(i)
1
2

B (y)
)

dy.

Thus, (
θ̂i,B(γ0)− θ∗(γ0)

)′
= D−1

B (θ̃i,B(γ0))∇HD2
B(θ
∗(γ0)).

By using the identity, b
1
2 − a

1
2 = (2a

1
2 )−1

(
(b− a)− (b

1
2 − a

1
2 )2
)

, ∇HD2
B(θ
∗(γ0)) can be

expressed as the difference of TB(γ0) and RB(γ0), where

TB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)
(

hJ(y|θ∗, γ0)− g(i)B (y)
)

dy,

and

RB(γ0) ≡
1
4

∫
IR

uJ(y|θ∗, γ0)

(
h

1
2
J (y|θ

∗, γ0)− g(i)
1
2

B (y)
)2

dy.

Hence,

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0),

where A1B(γ0) and A2B(γ0) are given in (9).

Remark 2. In the rest of the manuscript, we will refer to A2B(γ0) as the remainder term in the
representation formula.

We now turn to the first main result of the manuscript, namely a central limit theorem for θ̂i,B(γ0)

as first B → ∞ and then γ0 → 0. As a first step, we note that the Fisher information of the density
h∗J(·|θ) is given by

I(θ) =
∫

IR
vJ(y|θ)v′J(y|θ)h∗J(y|θ)dy. (15)

Next we state the assumptions needed in the proof of Theorem 1. We separate these conditions as
(i) model assumptions, (ii) kernel assumptions, (iii) regularity conditions, (iV) conditions that allow
comparison of original data and compressed data.

Model assumptions on h∗J(·|θ)

(D1’) h∗J(·|θ) is twice continuously differentiable in θ.
(D2’) Assume further that ||∇tJ(·|θ)||2 is continuous and bounded.
Kernel assumptions

(B1) K(·) is symmetric about 0 on a compact support and bounded in L2. We denote the support of
K(·) by Supp(K).
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(B2) The bandwidth cB satisfies cB → 0, B
1
2 cB → ∞, B

1
2 c2

B → 0.

Regularity conditions

(M1) The function uJ(·|θ, γ0)sJ(·|θ, γ0) is continuously differentiable and bounded in L2 at θ∗.
(M2) The function u̇J(·|θ, γ0)sJ(·|θ, γ0) is continuous and bounded in L2 at θ∗. In addition,
assume that

lim
B→∞

∫
IR

(
u̇J(y|θi,B, γ0)sJ(y|θi,B, γ0)− u̇J(y|θ∗, γ0)sJ(y|θ∗, γ0)

)2 dy = 0.

(M3) The function uJ(·|θ, γ0)u′J(·|θ, γ0)sJ(·|θ, γ0) is continuous and bounded in L2 at θ∗; also,

lim
B→∞

∫
IR

(
uJ(y|θ̂i,B, γ0)u′J(y|θ̂i,B, γ0)sJ(y|θi,B, γ0)− uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)sJ(y|θ∗, γ0)

)2
dy = 0.

(M4) Let {αB : B ≥ 1} be a sequence diverging to infinity. Assume that

lim
B→∞

B sup
t∈Supp(K)

Pθ∗(γ0) (|∆− cBt| > αB) = 0,

where Supp(K) is the support of the kernel density K(·) and ∆ is a generic random variable with
density hJ(·|θ∗, γ0).
(M5) Let

MB = sup
|y|≤αB

sup
t∈Supp(K)

∣∣∣∣hJ(y− tcB|θ∗, γ0)

hJ(y|θ∗, γ0)

∣∣∣∣ .

Assume sup
B≥1

MB < ∞.

(M6) The score function has a regular central behavior relative to the smoothing constants, i.e.,

lim
B→∞

(B
1
2 cB)

−1
∫ αB

−αB

uJ(y|θ∗, γ0)dy = 0.

Furthermore,

lim
B→∞

(B
1
2 c4

B)
∫ αB

−αB

uJ(y|θ∗, γ0)dy = 0.

(M7) The density functions are smooth in an L2 sense; i.e.,

lim
B→∞

sup
t∈Supp(K)

∫
IR

(
uJ(y + cBt|θ∗, γ0)− uJ(y|θ∗, γ0)

)2 hJ(y|θ∗, γ0)dy = 0.

(M1’) The function vJ(·|θ)tJ(·|θ) is continuously differentiable and bounded in L2 at θ∗.
(M2’) The function v̇J(·|θ)tJ(·|θ) is continuous and bounded in L2 at θ∗. In addition, assume that

lim
B→∞

∫
IR

(
v̇J(y|θB)tJ(y|θB)− v̇J(y|θ∗)tJ(y|θ∗)

)2 dy = 0.

(M3’) The function vJ(·|θ)v′J(·|θ)tJ(·|θ) is continuous and bounded in L2 at θ∗. also,

lim
B→∞

∫
IR

(
vJ(y|θ̂i,B)v′J(y|θ̂i,B)tJ(y|θ̂i,B)− vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

)2
dy = 0.

Assumptions comparing models for original and compressed data
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(O1) For all θ ∈ Θ,

lim
γ0→0

∫
IR

(
uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)− vJ(y|θ)v′J(y|θ)tJ(y|θ)

)2
dy = 0.

(O2) For all θ ∈ Θ,

lim
γ0→0

∫
IR

(
u̇J(y|θ, γ0)sJ(y|θ, γ0)− v̇J(y|θ)tJ(y|θ)

)2 dy = 0.

Theorem 1. Assume that the conditions (B1)–(B2), (D1)–(D2) , (D1’)–(D2’), (M1)–(M7), (M1’)–(M3’),
and (O1)–(O2) hold. Then, for every 1 ≤ i ≤ S, the following holds:

lim
γ0→0

lim
B→∞

P
(√

B
(
θ̂i,B(γ0)− θ∗(γ0)

)
≤ x

)
= P (G ≤ x) ,

where G is a bivariate Gaussian random variable with mean 0 and variance I−1(θ∗), where I(θ) is defined
in (15).

Before we embark on the proof of Theorem 1, we first discuss the assumptions. Assumptions (B1)
and (B2) are standard assumptions on the kernel and the bandwidth and are typically employed
when investigating the asymptotic behavior of divergence-based estimators (see for instance [1]).
Assumptions (M1)–(M7) and (M1’)–(M3’) are regularity conditions which are concerned essentially
with L2 continuity and boundedness of the scores and their derivatives. Assumptions (O1)–(O2) allow
for comparison of uJ(·|θ, γ0) and vJ(·|θ). Returning to the proof of Theorem 1, using representation
formula, we will first show that limγ0→0 limB→∞ P (A1B(γ0) ≤ x) = P (G ≤ x), and then prove that
limγ0→0 limB→∞ A2B(γ0) = 0 in probability. We start with the following proposition.

Proposition 3. Assume that the conditions (B1), (D1)–(D2), (M1)–(M3), (M1’)–(M3’), (M7) and (O1)–(O2)
hold. Then,

lim
γ0→0

lim
B→∞

P (A1B(γ0) ≤ x) = P (G ≤ x) ,

where G is given in Theorem 1.

We divide the proof of Proposition 3 into two lemmas. In the first lemma we will show that

lim
γ0→0

lim
B→∞

DB(θ̃i,B(γ0)) =
1
4

I(θ∗).

Next in the second lemma we will show that first letting B→ ∞ and then allowing γ0 → 0,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) .

We start with the first part.

Lemma 2. Assume that the conditions (D1)–(D2), (D1’)–(D2’), (M1)–(M3), (M1’)–(M3’) and (O1)–(O2)
hold. Then, with probability one, the following prevails:

lim
γ0→0

lim
B→∞

DB(θ̃i,B(γ0)) =
1
4

I(θ∗).
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Proof. Using representation formula in Lemma 1. First fix γ0 > 0. It suffices to show

lim
B→∞

D1B(θ̃i,B(γ0)) =
1
2

I(θ∗(γ0)), and lim
B→∞

D2B(θ̃i,B(γ0)) = −
1
4

I(θ∗(γ0)).

We begin with D1B(θ̃i,B(γ0)). By algebra, D1B(θ̃i,B(γ0)) can be expressed as

D1B(θ̃i,B(γ0)) = D(1)
1B (θ̃i,B(γ0)) + D(2)

1B (θ̃i,B(γ0)) + D(3)
1B (θ∗(γ0)), where

D(1)
1B (θ̃i,B(γ0)) = −

1
2

∫
IR

u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)

(
g(i)

1
2

B (y)− sJ(y|θ∗, γ0)

)
dy,

D(2)
1B (θ̃i,B(γ0)) = −

1
2

∫
IR

(
u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)− u̇J(y|θ∗, γ0)sJ(y|θ∗, γ0)

)
h

1
2
J (y|θ

∗, γ0)dy,

and D(3)
1B (θ∗B(γ0)) = −

1
2

∫
IR

u̇J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy =
1
2

I(θ∗(γ0)).

It suffices to show that as B→ ∞, D(1)
1B (θ̃i,B(γ0))→ 0, and D(2)

1B (θ̃i,B(γ0))→ 0. We first consider

D(1)
1B (θ̃i,B(γ0)). By Cauchy-Schwarz inequality and assumption (M2), it follows that there exists

0 < C1 < ∞,

∣∣∣D(1)
1B (θ̃i,B(γ0))

∣∣∣ ≤ 1
2

{∫
IR

(
u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)

)2 dy
} 1

2
{∫

IR

(
g(i)

1
2

B (y)− sJ(y|θ∗, γ0)

)2
dy

} 1
2

≤ C1

{∫
IR

(
g(i)

1
2

B (y)− sJ(y|θ∗, γ0)

)2
dy

} 1
2

→ 0,

where the last convergence follows from the L1 convergence of g(i)B (·) and hJ(·|θ∗, γ0). Hence, as B→
∞, D(1)

1B (θ̃i,B(γ0))→ 0. Next we consider D(2)
1B (θ̃i,B(γ0)). Again, by Cauchy-Schwarz inequality and

assumption (M2), it follows that D(2)
1B (θ̃i,B(γ0))→ 0. Hence D1B(θ̃i,B(γ0))→ 1

2 I(θ∗(γ0)). Turning to
D2B(θ̃i,B(γ0)), by similar argument, using Cauchy-Schwarz inequality and assumption (M3), it follows
that D2B(θ̃i,B(γ0))→ − 1

4 I(θ∗(γ0)). Thus, to complete the proof, it is enough to show that

lim
γ0→0

lim
B→∞

D1B(θ̃i,B(γ0)) =
1
2

I(θ∗) and lim
γ0→0

lim
B→∞

D2B(θ̃i,B(γ0)) = −
1
4

I(θ∗). (16)

We start with the first term of (16). Let

J1(γ0) =
∫

IR
u̇J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy−

∫
IR

v̇J(y|θ∗)h∗J(y|θ∗)dy.

We will show that limγ0→0 J1(γ0) = 0. By algebra, the difference of the above two terms can be
expressed as the sum of J11(γ0) and J12(γ0), where

J11(γ0) =
∫

IR

(
u̇J(y|θ∗, γ0)sJ(y|θ∗, γ0)− v̇J(y|θ∗)tJ(y|θ∗)

)
sJ(y|θ∗, γ0)dy, and

J12(γ0) =
∫

IR
v̇J(y|θ∗)tJ(y|θ∗)

(
sJ(y|θ∗, γ0)− tJ(y|θ∗)

)
dy.
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J11(γ0) converges to zero by Cauchy-Schwarz inequality and assumption (O2), and J12(γ0) converges
to zero by Cauchy-Schwarz inequality, assumption (M2’) and Scheffe’s theorem. Next we consider the
second term of (16). Let

J2(γ0) =
∫

IR
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy−

∫
IR

vJ(y|θ∗)v′J(y|θ∗)h∗J(y|θ∗)dy.

We will show that limγ0→0 J2(γ0) = 0. By algebra, the difference of the above two terms can be
expressed as the sum of J21(γ0) and J22(γ0), where

J21(γ0) =
∫

IR

(
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)sJ(y|θ∗, γ0)− vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

)
sJ(y|θ∗, γ0)dy,

and J22(γ0) =
∫

IR
vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

(
sJ(y|θ∗, γ0)− tJ(y|θ∗)

)
dy.

J11(γ0) converges to zero by Cauchy-Schwarz inequality and assumption (O1), and J12(γ0) converges
to zero by Cauchy-Schwarz inequality, assumption (M3’) and Scheffe’s theorem. Therefore the
lemma holds.

Lemma 3. Assume that the conditions (B1), (D1)–(D2), (D1’)–(D2’), (M1)–(M3), (M3’), (M7) and (O1)–(O2)
hold. Then, first letting B→ ∞, and then γ0 → 0,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) .

Proof. First fix γ0 > 0. Please note that using
∫

IR uJ(y|θ∗, γ0)hJ(y|θ∗, γ0)dy = 0, we have that

4B
1
2 TB(γ0) = B

1
2

∫
IR

uJ(y|θ∗, γ0)g(i)B (y)dy

= B
1
2

∫
IR

uJ(y|θ∗, γ0)
1
B

B

∑
l=1

1
cB

K
(

y−Yil
cB

)
dy

= B
1
2

1
B

B

∑
l=1

∫
IR

uJ(Yil + cBt|θ∗, γ0)K(t)dt.

Therefore,

4B
1
2 TB(γ0)− B

1
2

1
B

B

∑
l=1

uJ(Yil |θ∗, γ0) = B
1
2

1
B

B

∑
l=1

∫
IR

(
uJ(Yil + cBt|θ∗, γ0)− uJ(Yil |θ∗, γ0)

)
K(t)dt.

Since Yil ’s are i.i.d. across l, using Cauchy-Schwarz inequality and assumption (B1), we can show
that there exists 0 < C < ∞,

E

[
4B

1
2 TB − B

1
2

1
B

B

∑
l=1

uJ(Yil |θ∗, γ0)

]2

= E
[∫

IR

(
uJ(Yi1 + cBt|θ∗, γ0)− uJ(Yi1|θ∗, γ0)

)
K(t)dt

]2

≤ CE

[{∫
IR

(
uJ(Yi1 + cBt|θ∗, γ0)− uJ(Yi1|θ∗, γ0)

)2 dt
} 1

2
]2

≤ CE
[∫

IR

(
uJ(Yi1 + cBt|θ∗, γ0)− uJ(Yi1|θ∗, γ0)

)2 dt
]

= C
∫

IR

∫
IR

(
uJ(y + cBt|θ∗, γ0)− uJ(y|θ∗, γ0)

)2 hJ(y|θ∗, γ0)dydt,
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converging to zero as B → ∞ by assumption (M7). Also, the limiting distribution of 4B
1
2 TB(γ0)

is N(0, I(θ∗(γ0))) as B → ∞. Now let γ0 → 0. It is enough to show that as γ0 → 0 the density
of N(0, I(θ∗(γ0))) converges to the density of N(0, I(θ∗)). To this end, it suffices to show that
limγ0→0 I(θ∗(γ0)) = I(θ∗). However, this is established in Lemma 2. Combining the results, the
lemma follows.

Proof of Proposition 3. The proof of Proposition 3 follows immediately by combining
Lemmas 2 and 3.

We now turn to establishing that the remainder term in the representation formula converges
to zero.

Lemma 4. Assume that the assumptions (B1)–(B2), (M1)–(M6) hold. Then

lim
γ0→0

lim
B→∞

A2B(γ0) = 0 in probability.

Proof. Using Lemma 2, it is sufficient to show that B
1
2 RB converges to 0 in probability as B→ ∞. Let

dJ(y|θ∗(γ0)) = g(i)
1
2

B (y)− sJ(y|θ∗, γ0).

Please note that

d2
J (y|θ∗(γ0)) ≤ 2

{(
hJ(y|θ∗, γ0)− E

[
g(i)B (y)

])2
+
(

E
[

g(i)B (y)
]
− g(i)B (y)

)2
}

h−1
J (y|θ∗, γ0).

Then

|RB(γ0)| ≤ 1
2

∫
IR
|uJ(y|θ∗, γ0)|d2

J (y|θ∗(γ0))dy

≤ 1
2

∫ αB

−αB

|uJ(y|θ∗, γ0)|d2
J (y|θ∗(γ0))dy +

1
2

∫
|y|≥αB

|uJ(y|θ∗, γ0)|d2
J (y|θ∗(γ0))dy

≡ R1B(γ0) + R2B(γ0).

We first deal with R1B(γ0), which can be expressed as the sum of R1B(γ0) and R2B(γ0), where

R(1)
1B (γ0) =

∫ αB

−αB

|uJ(y|θ∗, γ0)|
(

hJ(y|θ∗, γ0)− E
[

g(i)B (y)
])2

h−1
J (y|θ∗, γ0)dy, (17)

and R(2)
1B (γ0) =

∫ αB

−αB

|u(y|θ∗, γ0)|
(

E
[

g(i)B (y)
]
− g(i)B (y)

)2
h−1

J (y|θ∗, γ0)dy.

Now consider R(2)
1B . Let ε > 0 be arbitrary but fixed. Then, by Markov’s inequality,

P
(

B
1
2 R(2)

1B > ε
)
≤ ε−1B

1
2 E
[

R(2)
1B

]
≤ ε−1B

1
2

∫ αB

αB

|uJ(y|θ∗, γ0)|
(

Var
[

g(i)B (y)
])

h−1
J (y|θ∗, γ0)dy. (18)

Now since Y′ils are independent and identically distributed across l, it follows that

Var
[

g(i)B (y)
]
≤ 1

BcB

∫
IR

K2(t)hJ(y− tcB|θ∗, γ0)dt. (19)
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Now plugging (19) into (18), interchanging the order of integration (using Tonelli’s Theorem),
we get

P
(

B
1
2 R(2)

1B > ε
)
≤ C

(
B

1
2 cB

)−1 ∫ αB

−αB

|uJ(y|θ∗, γ0)|dy→ 0,

where C is a universal constant, and the last convergence follows from conditions (M5)–(M6). We now

deal with R(1)
1B . To this end, we need to calculate

(
E
[

g(i)B (y)
]
− hJ(y|θ∗, γ0)

)2
. Using change of

variables, two-step Taylor approximation, and assumption (B1), we get

E
[

g(i)B (y)
]
− hJ(y|θ∗, γ0) =

∫
IR

K(t)
(
hJ(y− tcB|θ∗, γ0)− hJ(y|θ∗, γ0)

)
dt

=
∫

IR
K(t)

(tcB)
2

2
h
′′
J (y
∗
B(t)|θ∗, γ0)dt. (20)

Now plugging in (20) into (17) and using conditions (M3) and (M6), we get

B
1
2 R(1)

1B (γ0) ≤ CB
1
2 c4

B

∫ αB

−αB

|uJ(y|θ∗, γ0)|dy. (21)

Convergence of (21) to 0 now follows from condition (M6). We next deal with R2B(γ0). To this
end, by writing our the square term of dJ(·|θ∗(γ0)), we have

B
1
2 R2B(γ0) =

∫
|y|≥αB

|uJ(y|θ∗, γ0)|
(

hJ(y|θ∗, γ0) + g(i)B (y)− sJ(y|θ∗, γ0)g(i)
1
2

B (y)
)

dy. (22)

We will show that the RHS of (22) converges to 0 as B → ∞. We begin with the first term.
Please note that by Cauchy-Schwarz inequality,

B
(∫
|y|≥αB

|uJ(y|θ∗, γ0)|hJ(y|θ∗, γ0)dy
)2

≤
{∫

IR
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)hJ(y|θ∗, γ0)dy

}
{BPθ∗(γ0)

(|∆| ≥ αB)},

the last term converges to 0 by (M4). As for the second term, note that, a.s., by
Cauchy-Schwarz inequality,(∫

|y|≥αB

|uJ(y|θ∗, γ0)|g
(i)
B (y)dy

)2
≤
∫
|y|≥αB

uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)g(i)B (y)dy.

Now taking the expectation and using Cauchy-Schwarz inequality, one can show that

BE
[∫
|y|≥αm

|uJ(y|θ∗, γ0)|g
(i)
B (y)dy

]2
≤ aB

∫
IR

K(t)
∫

IR
uJ(y|θ∗, γ0)u′J(y|θ∗, γ0)hJ(y− cBt|θ∗, γ0)dydt,

where aB = B sup
z∈Supp(K)

Pθ∗ (|∆− cBz| > αB). The convergence to 0 of the RHS of above inequality now

follows from condition (M4). Finally, by another application of the Cauchy-Schwarz inequality,

BE
[∫
|y|≥αm

|uJ(y|θ∗, γ0)|g
(i) 1

2
B (y)sJ(y|θ∗, γ0)dy

]
≤ aB

∫
IR

uJ(y− cBt|θ∗, γ0)u′J(y− cBt|θ∗, γ0)hJ(y|θ∗, γ0)dy.

The convergence of RHS of above inequality to zero follows from (M4). Now the
lemma follows.
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Proof of Theorem 1. Recall that

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0),

where A1B(γ0) and A2B(γ0) are given in (9). Proposition 3 shows that limγ0→0 limB→∞ A1B(γ0) =

N(0, I−1(θ∗)); while Lemma 4 shows that limγ0→0 limB→∞ A2B(γ0) = 0 in probability. The result
follows from Slutsky’s theorem.

We next show that by interchanging the limits, namely first allowing γ0 to converge to 0 and
then letting B→ ∞ the limit distribution of θ̂i,B(γ0) is Gaussian with the same covariance matrix as
Theorem 1. We begin with additional assumptions required in the proof of the theorem.

Regularity conditions

(M4’) Let {αB : B ≥ 1} be a sequence diverging to infinity. Assume that

lim
B→∞

B sup
t∈Supp(K)

Pθ∗ (|∆− cBt| > αB) = 0,

where Supp(K) is the support of the kernel density K(·) and ∆ is a generic random variable with
density h∗J(·|θ∗).
(M5’) Let

MB = sup
|y|≤αB

sup
t∈Supp(K)

∣∣∣∣h∗J(y− tcB|θ∗)
h∗J(y|θ∗)

∣∣∣∣ .

Assume that sup
B≥1

MB < ∞.

(M6’) The score function has a regular central behavior relative to the smoothing constants, i.e.,

lim
B→∞

(B
1
2 cB)

−1
∫ αB

−αB

vJ(y|θ∗)dy = 0.

Furthermore,

lim
B→∞

(B
1
2 c4

B)
∫ αB

−αB

vJ(y|θ∗)dy = 0.

(M7’) The density functions are smooth in an L2 sense; i.e.,

lim
B→∞

sup
t∈Supp(K)

∫
IR

(
vJ(y + cBt|θ∗)− vJ(y|θ∗)

)2 h∗J(y|θ∗)dy = 0.

Assumptions comparing models for original and compressed data

(V1) Assume that limγ0→0 supy |uJ(y|θ∗, γ0)− vJ(y|θ∗)| = 0.

(V2) vJ(·|θ) is L1 continuous in the sense that Xn
p→ X implies that E

[
vJ(Xn|θ)− vJ(X|θ)

]
= 0,

where the expectation is with respect to distribution K(·).
(V3) Assume that for all θ ∈ Θ,

∫
IR∇h∗J(y|θ)dy < ∞.

(V4) Assume that for all θ ∈ Θ, limγ0→0 supy

∣∣∣ sJ(y|θ,γ0)

tJ(y|θ)
− 1
∣∣∣ = 0.

Theorem 2. Assume that the conditions (B1)–(B2), (D1’)–(D2’), (M1’)–(M7’), (O1)–(O2) and (V1)–(V4)
hold. Then,

lim
B→∞

lim
γ0→0

P
(√

B
(
θ̂i,B(γ0)− θ∗(γ0)

)
≤ x

)
= P (G ≤ x) ,
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where G is a bivariate Gaussian random variable with mean 0 and variance I−1(θ∗).

We notice that in the above Theorem 2 that we use conditions (V2)–(V4) which are regularity
conditions on the scores of the J− fold convolution of f (·) while (V1) facilitates comparison of the
scores of the densities of the compressed data and that of the J−fold convolution. As before, we will
first establish (a):

lim
B→∞

lim
γ0→0

P (A1B(γ0) ≤ x) = P (G ≤ x) ,

and then (b): limB→∞ limγ0→0 A2B(γ0) = 0 in probability. We start with the proof of (a).

Proposition 4. Assume that the conditions (B1)–(B2), (D1’)–(D2’), (M1’)–(M3’), (M7’), (O1)–(O2), and
(V1)–(V2) hold. Then,

lim
B→∞

lim
γ0→0

P (A1B(γ0) ≤ x) = P (G ≤ x) .

We divide the proof of Proposition 4 into two lemmas. In the first lemma, we will show that

lim
B→∞

lim
γ0→0

DB(θ̃i,B(γ0)) =
1
4

I(θ∗).

In the second lemma, we will show that first let γ0 → 0, then let B→ ∞,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) .

Lemma 5. Assume that the conditions (B1)–(B2), (D1’)–(D2’), (M1’)–(M3’), (O1)–(O2), and (V1)–(V2) hold.
Then,

lim
B→∞

lim
γ0→0

DB(θ̃i,B(γ0)) =
1
4

I(θ∗). (23)

Proof. First fix B. Recall that

DB(θ(γ0)) = −1
2

∫
IR

u̇J(y|θ, γ0)sJ(y|θ, γ0)(g(i)B (y))
1
2 dy

−1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)(g(i)B (y))
1
2 dy

≡ D1B(θ(γ0)) + D2B(θ(γ0)).

By algebra, D1B(θ̃i,B(γ0)) can be expressed as the sum of H(1)
1B , H(2)

1B , H(3)
1B , H(4)

1B and H(5)
1B , where

H(1)
1B = −1

2

∫
IR

[
u̇J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)− v̇J(y|θ̃i,B)tJ(y|θ̃i,B)

]
g(i)

1
2

B (y)dy,

H(2)
1B = −1

2

∫
IR

[
v̇J(y|θ̃i,B)tJ(y|θ̃i,B)− v̇J(y|θ∗)tJ(y|θ∗)

]
g(i)

1
2

B (y)dy,

H(3)
1B = −1

2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)
[

g(i)
1
2

B (y)− h
1
2
J (y|θ

∗, γ0)

]
dy,

H(4)
1B = −1

2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)
[
sJ(y|θ∗, γ0)− tJ(y|θ∗)

]
dy, and H(5)

1B =
1
2

I(θ∗).
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We will show that

lim
γ0→0

D1B(θ̃i,B(γ0)) = H(2)
1B + lim

γ0→0
H(3)

1B + H(5)
1B , (24)

where

lim
γ0→0

H(3)
1B = −1

2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)
[

g∗
1
2

B (y)− tJ(y|θ∗)
]

dy and (25)

g∗B(·) is given in (7). First consider H(1)
1B . it converges to zero as γ0 → 0 by Cauchy-Schwarz inequality

and assumption (O2). Next we consider H(3)
1B . We will first show that

lim
γ0→0

−1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)g(i)
1
2

B (y)dy = −1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)g∗
1
2

B (y)dy.

To this end, notice that by Cauchy-Schwarz inequality and boundedness of v̇J(y|θ∗)tJ(y|θ∗) in L2,
it follows that there exists a constant C such that

∣∣∣∣∫IR
v̇J(y|θ∗)tJ(y|θ∗)

[
g(i)

1
2

B (y)− g∗
1
2

B (y)
]

dy
∣∣∣∣ ≤ C

{∫
IR

(
g(i)

1
2

B (y)− g∗
1
2

B (y)
)2

dy

} 1
2

≤ C
{∫

IR

∣∣∣g(i)B (y)− g∗B(y)
∣∣∣ dy
} 1

2
.

It suffices to show that g(i)B (·) converges to g∗B(·) in L1. Since∫
IR
|g(i)B (y)− g∗B(y)|dy = 2− 2

∫
IR

min
{

g(i)B (y), g∗B(y)
}

dy,

and min
{

g(i)B (y), g∗B(y)
}
≤ g∗B(y), by dominated convergence theorem, g(i)B (·) L1→ g∗B(·). Next we will

show that

lim
γ0→0

−1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)sJ(y|θ∗, γ0)dy = −1
2

∫
IR

v̇J(y|θ∗)tJ(y|θ∗)tJ(y|θ∗)dy.

In addition, by Cauchy-Schwarz inequality, boundedness of v̇J(y|θ∗)tJ(y|θ∗) in L2 and Scheffe’s

theorem, we have that
∫

IR v̇J(y|θ∗)h
1
2
J (y|θ∗, γ0)

(
sJ(y|θ∗|γ0)− tJ(y|θ∗)

)
dy converges to zero as γ0 → 0.

Next we consider H(4)
1B . it converges to zero by Cauchy-Schwarz inequality and assumption (M2’).

Thus (24) holds. Now let B→ ∞, we will show that limB→∞ H(2)
1B = 0 and limB→∞ limγ0→0 H(3)

1B = 0.

First consider limB→∞ H(2)
1B . It converges to zero by Cauchy-Schwarz inequality and assumption (M2’).

Next we consider limB→∞ limγ0→0 H(3)
1B . It converges to zero by Cauchy-Schwarz inequality and L1

convergence of g∗B(·) and h∗J(·|θ∗). Therefore limB→∞ limγ0→0 D1B(θ̃i,B(γ0)) =
1
2 I(θ∗).

We now turn to show that limB→∞ limγ0→0 D2B(θ̃i,B(γ0)) = − 1
4 I(θ∗). First fix B and express

D2B(θ̃i,B(γ0)) as the sum of H(1)
2B , H(2)

2B , H(3)
2B , H(4)

2B , and H(5)
2B , where

H(1)
2B = −1

4

∫
IR

[
uJ(y|θ̃i,B, γ0)u′J(y|θ̃i,B, γ0)sJ(y|θ̃i,B, γ0)− vJ(y|θ̃i,B)v′J(y|θ̃i,B)tJ(y|θ̃i,B)

]
g(i)

1
2

B (y)dy,

H(2)
2B = −1

4

∫
IR

[
vJ(y|θ̃i,B)v′J(y|θ̃i,B)tJ(y|θ̃i,B)− vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)

]
g(i)

1
2

B (y)dy,

H(3)
2B = −1

4

∫
IR

vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)
[

g(i)
1
2

B (y)− h
1
2
J (y|θ

∗, γ0)

]
dy,
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H(4)
2B = −1

4

∫
IR

vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)
[
sJ(y|θ∗, γ0)− tJ(y|θ∗)

]
dy, and H(5)

2B = −1
4

I(θ∗).

We will show that

lim
γ0→0

D2B(θ̃i,B(γ0)) = H(2)
2B + lim

γ0→0
H(3)

2B + H(5)
2B , where (26)

lim
γ0→0

H(3)
2B = −1

2

∫
IR

vJ(y|θ∗)v′J(y|θ∗)tJ(y|θ∗)
[

g∗
1
2

B (y)− tJ(y|θ∗)
]

dy. (27)

First consider H(1)
2B . It converges to zero as γ0 → 0 by Cauchy-Schwarz inequality and

assumption (O1). Next consider H(3)
2B . By similar argument as above and boundedness of

v2
J (y|θ∗)tJ(y|θ∗), it follows that (27) holds. Next consider H(4)

2B . It converges to zero as γ0 → 0
by Cauchy-Schwarz inequality and assumption (M3’). Now let B → ∞, we will show that
limB→∞ H(2)

2B = 0 and limB→∞ limγ0→0 H(3)
2B = 0. First consider H(2)

2B . It converges to zero by

Cauchy-Schwarz inequality and assumption (M3’) as B→ ∞. Finally consider limB→∞ limγ0→0 H(3)
2B .

It converges to zero by Cauchy-Schwarz inequality and L1 convergence of g∗B(·) and h∗J(·|θ∗).
Thus limB→∞ limγ0→0 D2B(θ̃i,B(γ0)) = − 1

4 I(θ∗). Now letting B → ∞, the proof of (23) follows
using arguments similar to the one in Lemma 2.

Lemma 6. Assume that the conditions (B1)–(B2),(D1’)–(D2’), (M1’)–(M3’), (M7’), (O1)–(O2),
and (V1)–(V2) hold. Then, first letting B→ ∞, and then letting γ0 → 0,

4B
1
2 TB(γ0)

d→ N (0, I(θ∗)) . (28)

Proof. First fix B. We will show that as γ0 → 0,

4B
1
2 TB(γ0)

d→
∫

IR
vJ(y|θ∗)g∗B(y)dy.

First observe that

4B
1
2 TB(γ0)−

∫
IR

vJ(y|θ∗)g∗B(y)dy =
∫

IR

[
uJ(y|θ∗, γ0)− vJ(y|θ∗)

]
g(i)B (y)dy (29)

+
∫

IR
vJ(y|θ∗)

[
g(i)B (y)− g∗B(y)

]
dy. (30)

We will show that the RHS of (29) converges to zero as γ0 → 0 and the RHS of (30) converges to
zero in probability as γ0 → 0. First consider the RHS of (29). Since∫

IR

[
uJ(y|θ∗, γ0)− vJ(y|θ∗)

]
g(i)B (y)dy ≤

∫
IR

sup
y
|uJ(y|θ∗, γ0)− vJ(y|θ∗)|g

(i)
B (y)dy,

which converges to zero as γ0 → 0 by assumption (V1). Next consider the RHS of (30). Since

∫
IR

vJ(y|θ∗)
[

g(i)B (y)− g∗B(y)
]

dy =
1
B

B

∑
l=1

∫
IR

[
vJ(Yil + ucB)− vJ(Y∗il + ucB)

]
K(u)du.

By assumption (V2), it follows that as γ0 → 0, (30) converges to zero in probability. Now letting
B→ ∞, we have

B
1
2

∫
IR

vJ(y|θ∗)g∗B(y)dy− B
1
2

1
B

B

∑
l=1

vJ(Y∗il |θ
∗) = B

1
2

1
B

B

∑
l=1

∫
IR

(
vJ(Y∗il + cBt|θ∗)− vJ(Y∗il |θ

∗)
)

K(t)dt,
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and

E

[
B

1
2

∫
IR

vJ(y|θ∗)g∗B(y)dy− B
1
2

1
B

B

∑
l=1

vJ(Y∗il |θ
∗)

]2

= E

[
B

1
2

1
B

B

∑
l=1

∫
IR

(
vJ(Y∗il + cBt|θ∗)− vJ(Y∗il |θ

∗)
)

K(t)dt

]2

≤ CE
[∫

IR

(
vJ(Y∗i1 + cBt|θ∗)− vJ(Y∗i1|θ

∗)
)2 dt

]
= C

∫
IR

∫
IR

(
vJ(y + cBt|θ∗)− vJ(y|θ∗)

)2 h∗J(y|θ∗)dydt

→ 0 as B→ ∞,

where the last convergence follows by assumption (M7’). Hence, using the Central limit theorem for
independent and identically distributed random variables it follows that the limiting distribution of
B

1
2
∫

IR vJ(y|θ∗)g∗B(y)dy is N(0, I(θ∗)), proving the lemma.

Proof of Proposition 4. The proof of Proposition 4 follows by combining Lemmas 5 and 6.

Lemma 7. Assume that the conditions (M1’)–(M6’) and (V1)–(V4) hold. Then,

lim
B→∞

lim
γ0→0

A2B(γ0) = 0 in probability.

Proof. First fix B. Let

HB(γ0) =
∫

IR
uJ(y|θ∗, γ0)

[
h

1
2
J (y|θ

∗, γ0)− g(i)B (y)
]2

dy−
∫

IR
vJ(y|θ∗)

[
tJ(y|θ∗)− g∗B(y)

]2 dy.

we will show that as γ0 → 0,HB(γ0)→ 0. By algebra,HB(γ0) can be written as the sum ofH1B(γ0)

andH2B(γ0), where

H1B(γ0) =
∫

IR

(
uJ(y|θ∗, γ0)− vJ(y|θ∗)

) [
h

1
2
J (y|θ

∗, γ0)− g(i)B (y)
]2

dy, and

H2B(γ0) =
∫

IR
vJ(y|θ∗)

[
h

1
2
J (y|θ

∗, γ0)− g(i)B (y)
]2

dy.

First considerH1B(γ0). It is bounded above by C supy |uJ(y|θ∗, γ0)− vJ(y|θ∗)|, which converges
to zero as γ0 → 0 by assumption (V1), where C is a constant. Next consider H2B(γ0). We will show
thatH2B(γ0) converges to ∫

IR
vJ(y|θ∗)

[
tJ(y|θ∗, γ0)− g∗B(y)

]2 dy.

In fact, the difference ofH2B(γ0) and the above formula can be expressed as the sum ofH(1)
2B (γ0),

H(2)
2B (γ0), andH(3)

2B (γ0), where

H(1)
2B (γ0) =

∫
IR

vJ(y|θ∗)
(

hJ(y|θ∗, γ0)− h∗J(y|θ∗)
)

dy,

H(2)
2B (γ0) =

∫
IR

vJ(y|θ∗)
(

g(i)B (y)− g∗B(y)
)

dy, and

H(3)
2B (γ0) =

∫
IR

vJ(y|θ∗)
(

h
1
2
J (y|θ

∗, γ0)g(i)B (y)− tJ(y|θ∗, γ0)g∗B(y)
)

dy.
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First considerH(1)
2B (γ0). Please note that

∣∣∣H(1)
2B (γ0)

∣∣∣ ≤ ∫
IR
|∇h∗J(y|θ∗)|

∣∣∣∣hJ(y|θ∗, γ0)

h∗J(y|θ∗) − 1
∣∣∣∣ dy

≤


(

sup
y

∣∣∣∣ sJ(y|θ, γ0)

tJ(y|θ)
− 1
∣∣∣∣
)2

+ 2 sup
y

∣∣∣∣ sJ(y|θ, γ0)

tJ(y|θ)
− 1
∣∣∣∣

∫

IR
|∇h∗J(y|θ∗)|dy,

which converges to 0 as γ0 → 0 by assumptions (V3) and (V4). Next we considerH(2)
2B (γ0). Since

H(2)
2B (γ0) =

1
B

B

∑
l=1

∫
IR

(
vJ(Yil + ucB|θ∗)− vJ(Y∗il + ucB|θ∗)

)
K(u)du,

which converges to zero as γ0 → 0 due to assumption (V2). Finally considerH(3)
2B (γ0), which can be

expressed as the sum of L1B(γ0) and L2B, where

L1B(γ0) =
∫

IR
vJ(y|θ∗)

(
h

1
2
J (y|θ

∗, γ0)− tJ(y|θ∗)
)

g(i)
1
2

B (y)dy, and

L2B =
∫

IR
vJ(y|θ∗)tJ(y|θ∗)

(
g(i)

1
2

B (y)− g∗
1
2

B (y)
)

dy.

First consider L1B(γ0). Notice that

|L1B(γ0)| ≤ sup
y

∣∣∣∣ sJ(y|θ, γ0)

tJ(y|θ)
− 1
∣∣∣∣ ∫IR

vJ(y|θ∗)tJ(y|θ∗)g(i)
1
2

B (y)dy→ 0,

where the last convergence follows by Cauchy-Schwarz inequality and assumption (V4). Next we
consider L2B. By Cauchy-Schwarz inequality, it is bounded above by

{∫
IR

vJ(y|θ∗)v′J(y|θ∗)h∗J(y|θ∗)dy
} 1

2
{∫

IR

(
g(i)

1
2

B (y)− g∗
1
2

B (y)
)2

dy

} 1
2

. (31)

Equation (31) converges to zero as γ0 → 0 by boundedness of
∫

IR vJ(y|θ∗)v′J(y|θ∗)h∗J(y|θ∗)dy and

L1 convergence between g(i)B (·) and g∗B(·), where the L1 convergence has already been established in
Lemma 5. Now letting B→ ∞, following similar argument as Lemma 4 and assumptions (M1’)–(M6’),
the lemma follows.

Proof of Theorem 2. Recall that

B
1
2
(
θ̂i,B(γ0)− θ∗(γ0)

)′
= A1B(γ0) + A2B(γ0).

Proposition 4 shows that first letting γ0 → 0, then B → ∞, A1B(γ0)
d→ N(0, I−1(θ∗));

while Lemma 7 shows that limB→∞ limγ0→0 A2B(γ0) = 0 in probability. The theorem follows from
Slutsky’s theorem.

Remark 3. The above two theorems (Theorems 1 and 2) do not immediately imply the double limit exists. This
requires stronger conditions and more delicate calculations and will be considered elsewhere.
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3.5. Robustness of MHDE

In this section, we describe the robustness properties of MHDE for compressed data. Accordingly,
let hJ,α,z(·|θ, γ0) ≡ (1− α)hJ(·|θ, γ0) + αηz, where ηz denotes the uniform density on the interval

(z− ε, z+ ε), where ε > 0 is small, θ ∈ Θ, α ∈ (0, 1), and z ∈ IR. Also, let sJ,α,z(y|θ, γ0) = h
1
2
J,α,z(y|θ, γ0),

uJ,α,z(y|θ, γ0) = ∇ log hJ,α,z(y|θ, γ0), h∗J
α,z(·|θ) ≡ (1− α)h∗J(·|θ)+ αηz, s∗J

α,z(·|θ) = h∗J 1
2

α,z (·|θ), and u∗J
α,z =

∇ log h∗J
α,z(·|θ). Before we state the theorem, we describe certain additional assumptions-which are

essentially L2− continuity conditions-that are needed in the proof.

Model assumptions for robustness analysis

(O3) For α ∈ [0, 1] and all θ ∈ Θ,

lim
γ0→0

∫
IR

(
u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)− u̇∗J

α,z(y|θ)s∗J
α,z(y|θ)

)2
dy = 0.

(O4) For α ∈ [0, 1] and all θ ∈ Θ,

lim
γ0→0

∫
IR

(
uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)− u∗J

α,z(y|θ)u∗J′
α,z(y|θ)s∗J

α,z(y|θ)
)2

dy = 0.

Theorem 3. (i) Let α ∈ (0, 1), and assume that for all θ ∈ Θ, and assume that the assumptions of Proposition
1 hold, also assume that T(hJ,α,z(·|θ, γ0)) is unique for all z. Then, T(hJ,α,z(·|θ, γ0)) is a bounded, continuous
function of z and

lim
γ0→0

lim
|z|→∞

T(hJ,α,z(·|θ, γ0)) = θ; (32)

(ii) Assume further that the conditions (V1), (M2)-(M3), and (O3)-(O4) hold. Then,

lim
γ0→0

lim
α→0

α−1 [T(hJ,α,z(·|θ, γ0))− θ
]
= [I(θ)]−1

∫
IR

[
ηz(y)vJ(y|θ)

]
dy,

Proof. Let θz(γ0) denote T(hJ,α,z(·|θ, γ0)) and let θz denote T(h∗J
α,z(·|θ)) We first show that (32) holds.

Let γ0 ≥ 0 be fixed. Then, by triangle inequality,

lim
|z|→∞

|θz(γ0)− θ| ≤ lim
|z|→∞

|θz(γ0)− θ(γ0)|+ lim
|z|→∞

|θ(γ0)− θ|. (33)

We will show that the first term of RHS of (33) is equal to zero. Suppose that it is not zero, without
loss of generality, by going to a subsequence if necessary, we may assume that θz → θ1 6= θ as |z| → ∞.
Since θz(γ0) minimizes HD2(hJ(·|θ, γ0), hJ(·|θ, γ0)), it follows that

HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) ≤ HD2(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) (34)

for every θ′ ∈ Θ. We now show that as |z| → ∞,

HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0))→ HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0)). (35)

To this end, note that as |z| → ∞, for every y,

hJ,α,z(y|θ, γ0)→ (1− α)hJ(y|θ, γ0), and hJ(y|θz, γ0)→ hJ(y|θ1, γ0)

Therefore, as |z| → ∞,∣∣∣HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0))− HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0))
∣∣∣ ≤ 2(Q1 + Q2),
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where

Q1 =
∫

IR

∣∣∣∣h 1
2
J,α,z(y|θ, γ0)−

(
(1− α)hJ(y|θ, γ0)

) 1
2

∣∣∣∣ (hJ(y|θz, γ0))
) 1

2 dy,

Q2 =
∫

IR

∣∣∣∣h 1
2
J (y|θz, γ0)−

(
hJ(y|θ1, γ0)

) 1
2

∣∣∣∣ ((1− α)hJ(y|θ, γ0)
) 1

2 dy.

Now, by Cauchy-Schwarz inequality and Scheffe’s theorem, it follows that as |z| → ∞, Q1 → 0
and Q2 → 0. Therefore, (35) holds. By Equations (34) and (35), we have

HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0)) ≤ HD2((1− α)hJ(·|θ, γ0), hJ(·|θ′, γ0)) (36)

for every θ′ ∈ Θ. Now consider

HIF(α, hJ(·|θ, γ0), hJ(·|θ′, γ0)) ≡
∫

IR

([
(1− α)δ(hJ(·|θ, γ0), hJ(y|θ′, γ0)) + 1

] 1
2 − 1

)2
hJ(y|θ′, γ0)dy,

where δ(hJ(·|θ, γ0), hJ(y|θ′, γ0)) =
hJ(y|θ,γ0)

hJ(y|θ′ ,γ0)
− 1. Since G∗(δ) =

[
((1− α)δ + 1)

1
2 − 1

]2
is a

non-negative and strictly convex function with δ = 0 as the unique point of minimum. Hence
HIF(α, hJ(·|θ, γ0), hJ(·|θ′, γ0)) > 0 unless δ(hJ(·|θ, γ0), hJ(y|θ′, γ0)) = 0 on a set of Lebesgue measure
zero, which by the model identifiability assumption , is true if and only if θ′ = θ. Since θ1 6= θ, it
follows that

HIF(α, hJ(·|θ, γ0), hJ(·|θ1, γ0)) > HIF(α, hJ(·|θ, γ0), hJ(·|θ, γ0)).

Since HIF(α, hJ(·|θ, γ0), hJ(·|θ′, γ0)) = HD2((1− α)hJ(·|θ, γ0), hJ(·|θ′, γ0))− α. This implies that

HD2((1− α)hJ(·|θ, γ0), hJ(·|θ1, γ0)) > HD2((1− α)hJ(·|θ, γ0), hJ(·|θ′, γ0)),

which contradicts (36). The continuity of θz follows from Proposition 2 and the boundedness follows
from the compactness of Θ. Now let γ0 → 0, the second term of RHS of (33) converges to zero by
Proposition 2.

We now turn to part (ii) of the Theorem. First fix γ0 ≥ 0. Since θz minimizes
H2(hJ,α,z(·|θ, γ0), t(γ0)) over Θ. By Taylor expansion of HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) around θ,
we get

0 = ∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) = HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0))

+(θz − θ)D(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0)),

where θ∗z(γ0) is a point between θ and θz,

∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
2

∫
IR

uJ,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)
(
sJ,α,z(y|θ, γ0)− sJ(y|θ, γ0)

)
dy, (37)

and D(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) can be expressed the sum of D1(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) and
D2(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)), where

D1(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) =
1
2

∫
IR

u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ′, γ0)dy and (38)

D2(hJ,α,z(·|θ, γ0), hJ(·|θ′, γ0)) =
1
4

∫
IR

uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ′, γ0)dy. (39)
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Therefore,

α−1 (θz − θ) = −α−1D−1(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0))∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)).

We will show that

lim
α→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0)) = −
1
4

I(θ(γ0)), and (40)

lim
α→0

α−1∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

[
ηz(y)uJ(y|θ, γ0)

]
dy. (41)

We will first establish (40). Please note that as α → 0, by definition θz(α) → θ. Thus,
limα→0 θ∗z(α) = θ. In addition, by assumptions (O3) and (O4), D(hJ,α,z(·|θ, γ0), hJ(·|θz, γ0)) is
continuous in θz. Therefore, to prove (40), it suffices to show that

lim
α→0

D1(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
2

∫
IR

u̇J,α,z(y|θ, γ0)hJ(y|θ, γ0)dy = −1
2

I(θ(γ0)), and (42)

lim
α→0

D2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)hJ(y|θ, γ0)dy =
1
4

I(θ(γ0)). (43)

We begin with D2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)). Notice that

lim
α→0

sJ,α,z(y|θ, γ0) = sJ(y|θ, γ0), lim
α→0

uJ,α,z(y|θ, γ0) = uJ(y|θ, γ0), and

lim
α→0

u̇J,α,z(y|θ, γ0) = u̇J(y|θ, γ0).

Thus,

lim
α→0

u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ, γ0) = u̇J(y|θ, γ0)hJ(y|θ, γ0).

In addition, in order to pass the limit inside the integral, note that, for every component of matrix
uJ,α,z(·|θ, γ0)u′J,α,z(·|θ, γ0), we have

∣∣∣uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)
∣∣∣ =

∣∣∣∣∣
(

(1− α)∇hJ,α,z(y|θ, γ0)

(1− α)hJ,α,z(y|θ, γ0) + αηz(y)

)(
(1− α)∇hJ,α,z(y|θ, γ0)

(1− α)hJ,α,z(y|θ, γ0) + αηz(y)

)′∣∣∣∣∣
=

∣∣∣∣∣
(

∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0) +
α

1−α ηz(y)

)(
∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0) +
α

1−α ηz(y)

)′∣∣∣∣∣
≤

∣∣∣∣∣
(∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0)

)(∇hJ,α,z(y|θ, γ0)

hJ,α,z(y|θ, γ0)

)′∣∣∣∣∣ = ∣∣∣uJ(y|θ, γ0)u′J(y|θ, γ0)
∣∣∣ ,

where | · | represents the absolute function for each component of the matrix, and

∣∣sJ,α,z(y|θ, γ0)
∣∣ ≤ [hJ(y|θ, γ0) + ηz(y)

] 1
2 .

Now choosing the dominating function

m(1)
J (y|θ, γ0) =

∣∣∣uJ(y|θ, γ0)u′J(y|θ, γ0)
∣∣∣ [hJ(y|θ, γ0) + ηz(y)

] 1
2 sJ(y|θ, γ0)
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and applying Cauchy-Schwarz inequality, we obtain that there exists a constant C such that

∫
IR

∣∣∣m(1)
J (y|θ, γ0)

∣∣∣ dy ≤ C
{∫

IR

(
uJ(y|θ, γ0)u′J(y|θ, γ0)sJ(y|θ, γ0)

)2
dy
} 1

2
,

which is finite by assumption (M2). Hence, by the dominated convergence theorem, (43) holds.
Turning to (42), notice that for each component of the matrix u̇J,α,z(y|θ, γ0),

∣∣u̇J,α,z(y|θ, γ0)
∣∣ =

∣∣∣∣∣ ḧJ(y|θ, γ0)
[
hJ(y|θ, γ0) +

α
1−α ηz(y)

]
−
(
∇hJ(y|θ, γ0)

) (
∇hJ(y|θ, γ0)

)′(
hJ(y|θ, γ0) +

α
1−α ηz(y)

)2

∣∣∣∣∣
≤

∣∣∣∣∣ ḧJ(y|θ, γ0)

hJ(y|θ, γ0)

∣∣∣∣∣+
∣∣∣∣∣
(
∇hJ(y|θ, γ0)

) (
∇hJ(y|θ, γ0)

)′
h2

J (y|θ, γ0)

∣∣∣∣∣ ,

where | · | denotes the absolute function for each component. Now choosing the dominating function

m(2)
J (y|θ, γ0) =

(∣∣∣∣∣ ḧJ(y|θ, γ0)

hJ(y|θ, γ0)

∣∣∣∣∣+
∣∣∣∣∣
(
∇hJ(y|θ, γ0)

) (
∇hJ(y|θ, γ0)

)′
h2

J (y|θ, γ0)

∣∣∣∣∣
) [

hJ(y|θ, γ0) + ηz(y)
] 1

2 sJ(y|θ, γ0),

and applying the Cauchy-Schwarz inequality it follows, using (M3), that∫
IR

∣∣∣m(2)
J (y|θ, γ0)

∣∣∣ dy < ∞.

Finally, by the dominated convergence theorem, it follows that

lim
α→0

D1(hJ,α,z(·|θ, γ0), hJ(·|θ∗z , γ0)) = −
1
2

I(θ(γ0)).

Therefore (40) follows. It remains to show that (41) holds. To this end, note that

∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −1
2

∫
IR

sJ,α,z(y|θ, γ0)uJ,α,z(y|θ, γ0)sJ(y|θ, γ0)dy.

Now taking partial derivative of HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) with respect to α, it can be
expressed as the sum of U1, U2 and U3, where

U1 = −1
4

∫
IR

−hJ(y|θ, γ0) + ηz(y)
sJ,α,z(y|θ, γ0)

uJ,α,z(y|θ, γ0)sJ(y|θ, γ0)dy,

U2 = −1
2

∫
IR

sJ,α,z(y|θ, γ0)
−∇hJ(y|θ, γ0)hJ,α,z(y|θ, γ0)

h2
J,α,z(y|θ, γ0)

sJ(y|θ, γ0)dy, and

U3 = −1
2

∫
IR

sJ,α,z(y|θ, γ0)
−(1− α)∇hJ(y|θ, γ0)(−hJ(y|θ, γ0) + ηz(y))

h2
J,α,z(y|θ, γ0)

sJ(y|θ, γ0)dy.

By dominated convergence theorem (using similar idea as above to find dominating functions),
we have

lim
α→0

∂∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0))

∂α
=

1
4

∫
IR

uJ(y|θ, γ0)ηz(y)dy.
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Hence, by L’Hospital rule, (41) holds. It remains to show that

lim
γ0→0

lim
α→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
4

I(θ), and (44)

lim
γ0→0

lim
α→0

α−1∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

[
ηz(y)vJ(y|θ)

]
dy. (45)

We start with (44). Since for fixed γ0 ≥ 0, by the above argument, it follows that

lim
α→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
4

I(θ(γ0)) = −
1
4

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)hJ(y|θ, γ0)dy,

it is enough to show

lim
γ0→0

∫
IR

uJ(y|θ, γ0)u′J(y|θ, γ0)hJ(y|θ, γ0)dy =
∫

IR
vJ(y|θ)v′J(y|θ)h∗J(y|θ)dy,

which is proved in Lemma 2. Hence (44) holds. Next we prove (45). By the argument used to establish
(40), it is enough to show that

lim
γ0→0

∫
IR

[
ηz(y)uJ(y|θ, γ0)

]
dy =

∫
IR

[
ηz(y)vJ(y|θ)

]
dy. (46)

However, ∫
IR

ηz(y)
[
uJ(y|θ, γ0)− vJ(y|θ)

]
dy ≤ sup

y

∣∣uJ(y|θ, γ0)− vJ(y|θ)
∣∣ ,

and the RHS of the above inequality converges to zero as γ0 → 0 from assumption (V1). Hence (46)
holds. This completes the proof.

Our next result is concerned with the behavior of the α−influence function when γ0 → 0 first and
then |z| → ∞ or α→ 0. The following three additional assumptions will be used in the proof of part
(ii) of Theorem 4.

Model assumptions for robustness analysis

(O5) For α ∈ [0, 1] and all θ ∈ Θ, u̇∗J
α,z(y|θ)s∗J

α,z(y|θ) is bounded in L2.
(O6) For α ∈ [0, 1] and all θ ∈ Θ, u∗J

α,z(y|θ)u∗J′
α,z(y|θ)s∗J

α,z(y|θ) is bounded in L2.
(O7) For α ∈ [0, 1] and all θ ∈ Θ,

lim
γ0→0

∫
IR

(
sJ,α,z(y|θ, γ0)uJ,α,z(y|θ, γ0)− s∗J

α,z(y|θ)u∗J
α,z(y|θ)

)2
dy = 0.

Theorem 4. (i) Let α ∈ (0, 1), and assume that for all θ ∈ Θ, assume that the assumptions of Proposition 1
hold, also assume that T(hJ,α,z(·|θ, γ0)) is unique for all z. Then, T(hJ,α,z(·|θ, γ0)) is a bounded, continuous
function of z such that

lim
|z|→∞

lim
γ0→0

T(hJ,α,z(·|θ, γ0)) = θ;

(ii) Assume further that the conditions (O3)–(O7) hold. Then,

lim
α→0

lim
γ0→0

α−1 [T(hJ,α,z(·|θ, γ0))− θ
]
= [I(θ)]−1

∫
IR

[
ηz(y)vJ(y|θ)

]
dy.
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Proof. Let θz(γ0) denote T(hJ,α,z(·|θ, γ0)) and let θz denote T(h∗J
α,z(·|θ)). First fix z ∈ IR; then by the

triangular inequality,

lim
γ0→0

|θz(γ0)− θ| ≤ lim
γ0→0

|θz(γ0)− θz|+ lim
γ0→0

|θz − θ|. (47)

The first term of RHS of (47) is equal to zero due to proposition 2. Now let |z| → ∞, then the
second term on the RHS of (47) converges to zero using similar argument as Theorem 3 with density
converging to h∗J

α,z(·|θ). This completes the proof of I). Turning to (ii), we will prove that

lim
α→0

lim
γ0→0

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
4

I(θ), (48)

lim
α→0

lim
γ0→0

α−1∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

[
ηz(y)vJ(y|θ)

]
dy. (49)

Recall from the proof of part (ii) of Theorem 3 that

D(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) =
1
2

∫
IR

u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ, γ0)

+
1
4

∫
IR

uJ,α,z(y|θ, γ0)u′J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)sJ(y|θ, γ0)

≡ D1(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) + D2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)).

We will now show that for fixed α ∈ (0, 1)

lim
γ0→0

D1(hJ,α,z(θ, γ0), hJ(·|θ, γ0)) =
1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)tJ(y|θ)dy, and (50)

lim
γ0→0

D2(hJ,α,z(θ, γ0), hJ(·|θ, γ0)) =
1
4

∫
IR

u∗J
α,z(y|θ)u∗J′

α,z(y|θ)s∗J
α,z(y|θ)tJ(y|θ)dy. (51)

We begin with (50). A standard calculation shows that D1(hJ,α,z(θ, γ0), u∗J
α,z(y|θ)) can be expressed

as the sum of D11, D12 and D13, where

D11 =
1
2

∫
IR

(
u̇J,α,z(y|θ, γ0)sJ,α,z(y|θ, γ0)− u̇∗J

α,z(y|θ)s∗J
α,z(y|θ)

)
sJ(y|θ, γ0)dy,

D12 =
1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)
(
sJ(y|θ, γ0)− tJ(y|θ)

)
dy, and

D13 =
1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)tJ(y|θ)dy.

It can be seen thatD11 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality and assumption
(O3); also, D12 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality, assumption (O5) and
Scheffe’s theorem. Hence (50) follows. Similarly (51) follows as γ0 → 0 by Cauchy-Schwarz inequality,
assumption (O4), assumption (O6) and Scheffe’s theorem.

Now let α→ 0. Using the same idea as in Theorem 3 to find dominating functions, one can apply
the dominated convergence Theorem to establish that

lim
α→0

1
2

∫
IR

u̇∗J
α,z(y|θ)s∗J

α,z(y|θ)tJ(y|θ)dy = −1
2

I(θ), and
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lim
α→0

1
4

∫
IR

u∗J
α,z(y|θ)u∗J′

α,z(y|θ)s∗J
α,z(y|θ)tJ(y|θ)dy =

1
4

I(θ).

Hence (48) follows. Finally, it remains to establish (49). First fix α ∈ (0, 1); we will show that

lim
γ0→0

∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) = −
1
2

∫
IR

s∗J
α,z(y|θ)u∗J

α,z(y|θ)tJ(y|θ)dy. (52)

Please ∇HD2(hJ,α,z(·|θ, γ0), hJ(·|θ, γ0)) can be expressed as the sum of T1, T2 and T3, where

T1 = −1
2

∫
IR

(
sJ,α,z(y|θ, γ0)uJ,α,z(y|θ, γ0)− s∗J

α,z(y|θ)u∗J
α,z(y|θ)

)
sJ(y|θ, γ0)dy,

T2 = −1
2

∫
IR

s∗J
α,z(y|θ)u∗J

α,z(y|θ)
(
sJ(y|θ, γ0)− tJ(y|θ)

)
dy, and

T3 = −1
2

∫
IR

s∗J
α,z(y|θ)u∗J

α,z(y|θ)tJ(y|θ)dy.

It can be seen thatr T1 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality and assumption
(O7); T2 converges to zero as γ0 → 0 by Cauchy-Schwarz inequality, boundedness of u∗J

α,z(·)s∗J
α,z(·) in

L2, and Scheffe’s theorem. Therefore, (52) holds. Finally, letting α→ 0 and using the same idea as in
Theorem 3 to find the dominating function, it follows by the dominated convergence theorem and
L’Hospital rule that (49) holds. This completes the proof of the Theorem.

Remark 4. Theorems 3 and 4 do not imply that the double limit exists. This is beyond the scope of this paper.

In the next section, we describe the implementation details and provide several simulation results
in support of our methodology.

4. Implementation and Numerical Results

In this section, we apply the proposed MHD based methods to estimate the unknown parameters
θ = (µ, σ2) using the compressed data. We set J = 10,000 and B = 100. All simulations are based on
5000 replications. We consider the Gaussian kernel and Epanechnikov kernel for the nonparametric
density estimation. The Gaussian kernel is given by

K(x) =
1√
2π

exp
(
− x2

2

)
,

and the Epanechnikov kernel is given by

K(x) =
3
4

(
1− x2

)
1(|x|≤1).
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We generate X and uncontaminated compressed data Ỹ in the following way:

• Step 1. Generate Xl , where Xjl
i.i.d.∼ N(µ, σ2).

• Step 2. Generate Rl , where rijl
i.i.d.∼ N(1, γ2

0).

• Step 3. Generate the uncontaminated Ỹl by calculating Ỹl = RlXl .

4.1. Objective Function

In practice, we store the compressed data (Ỹl , r·l , ωl) for all 1 ≤ l ≤ B. Hence if Xjl follows
Normal distribution with mean µ and variance σ2, the form of the marginal density of the compressed
data, viz., Yil is complicated and does not have a closed form expression. However, for large J,
using the local limit theorem its density can be approximated by Gaussian density with mean

√
Jµ

and variance σ2 + γ2
0(µ

2 + σ2). Hence, we work with Uil , where Uil =
Ỹil−µri·l

ωil
. Please note that with

this transformation, E[Uil ] = 0 and Var[Uil ] = σ2. Hence, the kernel density estimate of the unknown
true density is given by

g(i)B (y|µ) = 1
BcB

B

∑
l=1

K
(

y−Uil
cB

)
.

The difference between the kernel density estimate and the one proposed here is that we include
the unknown parameter µ in the kernel. Additionally, this allows one to incorporate (r·r, ωl) into the
kernel. Consequently, only the scale parameter σ is part of the parametric model. Using the local limit
theorem, we approximate the true parametric model by φ(·|σ), where φ(·|σ) is the density of N(0, σ2).
Hence, the objective function is

Ψ(i, θ) ≡ A(g(i)B (·|µ), φ(·|σ)) =
∫

IR
g(i)

1
2

B (y|µ)φ
1
2 (y|σ)dy;

and, the estimator is given by

θ̂B(γ0) =
1
S

S

∑
i=1

θ̂i,B(γ0), where θ̂i,B(γ0) = argmax
θ∈Θ

Ψ(i, θ).

It is clear that θ̂B(γ0) is a consistent estimator of θ∗. In the next subsection, we use Quasi-Newton
method with Broyden-Fletcher-Goldfarb-Shanno (BFGS) update to estimate θ. Quasi-Newton
method is appealing since (i) it replaces the complicated calculation of the Hessian matrix with
an approximation which is easier to compute (∆k(θ) given in the next subsection) and (ii) gives more
flexible step size t (compared to the Newton-Raphson method), ensuring that it does not “jump” too
far at every step and hence guaranteeing convergence of the estimating equation. The BFGS update
(Hk) is a popular method for approximating the Hessian matrix via gradient evaluations. The step size
t is determined using Backtracking line search algorithm described in Algorithm 2. The algorithms are
given in detail in the next subsection. Our analysis also includes the case where S ≡ 1 and rijl ≡ 1.
In this case, as explained previously, one obtains significant reduction in storage and computational
complexity. Finally, we emphasize here that the density estimate contains µ and is not parameter free
as is typical in classical MHDE analysis. In the next subsection, we describe an algorithm to implement
our method.

4.2. Algorithm

As explained previously, we use the Quasi-Newton Algorithm with BFGS update to obtain
θ̂MHDE. To describe this method, consider the objective function (suppressing i) Ψ(θ), which is twice
continuously differentiable. Let the initial value of θ be θ(0) =

(
µ(0), σ(0)

)
and H0 = I, where I is the

identity matrix.
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Algorithm 1: The Quasi-Newton Algorithm.
Set k = 1.

repeat
1. Calculate ∆k(θ) = −H−1

k−1∇Ψ(θ(k−1)), where ∇Ψ(y; θk−1) is the first derivative of Ψ(θ) with
respect to θ at (k− 1)th step.

2. Determine the step length parameter t via backtracking line search.

3. Compute θ(k) = θ(k−1) + t∆k(θ).

4. Compute Hk, where the BFGS update is

Hk = Hk−1 +
qk−1qT

k−1

qT
k−1dk−1

−
Hk−1dk−1dT

k−1HT
k−1

dT
k−1Hk−1dk−1

,

where

dk−1 = θ(k) − θ(k−1),

qk−1 = ∇Ψ(θ(k))−∇Ψ(θ(k−1)).

5. Compute ek = |Ψ(θ(k))−Ψ(θ(k−1))|.

6. Set k = k + 1.

until (ek) < threshold.

Remark 5. In step 1, one can directly use the Inverse update for H−1
k as follows:

H−1
k =

(
I −

dk−1qT
k−1

qT
k−1dk−1

)
H−1

k−1

(
I −

qk−1dT
k−1

qT
k−1dk−1

)
+

dk−1dT
k−1

qT
k−1dk−1

.

Remark 6. In step 2, the step size t should satisfy the Wolfe conditions:

Ψ
(

y; θ(k) + t∆k

)
≤ Ψ

(
θ(k)

)
+ u1t∇ΨT

(
θ(k)

)
∆k,

∇Ψ
(

θ(k) + t∆k

)
≥ u2∇ΨT

(
θ(k)

)
∆k,

where u1 and u2 are constants with 0 < u1 < u2 < 1. The first condition requires that t sufficiently decrease
the objective function. The second condition ensures that the step size is not too small. The Backtracking line
search algorithm proceeds as follows (see [26]):

Algorithm 2: The Backtracking Line Search Algorithm.

Given a descent direction ∆(θ) for Ψ at θ, ζ ∈ (0, 0.5), κ ∈ (0, 1). t := 1.

while Ψ(θ+ t∆θ) > Ψ(θ) + ζt∇Ψ(θ)T∆θ,
do

t := κt.

end while
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4.3. Initial Values

The initial value for θ are taken to be

µ(0) = median
(

Ỹil

)
/J,

σ(0) = 1.48×median
(
|Ỹil −median(Ỹil)|

)
/B.

Another choice of the initial value for σ is:

σ̂(0) =

√√√√√ (
̂Var[Ỹil ]

J − γ2
0µ)

γ2
0 + µ2

0
, (53)

where ̂Var[Ỹil ] is an empirical estimate of the variance of Ỹ1.
Bandwidth Selection: A key issue in implementing the above method of estimation is the choice

of the bandwidth. We express the bandwidth in the form hB = cBsB, where cB ∈ {0.3, 0.4, 0.5, 0.7, 0.9},
and sB is set equal to 1.48×median

(
|Ỹil −median(Ỹil)|

)
/B.

In all the tables below, we report the average (Ave), standard deviation (StD) and mean square
error (MSE) to assess the performance of the proposed methods.

4.4. Analyses Without Contamination

From Tables 2–5, we let true µ = 2, σ = 1, and take the kernel to be Gaussian kernel. In Table 2,
we compare the estimates of the parameters as the dimension of the compressed data S increases.
In this table, we allow S to take values in the set {1, 2, 5, 10}. Also, we let the number of groups
B = 100, the bandwidth is chosen to be cB = 0.3, and γ0 = 0.1. In addition, in Table 2, S∗ = 1 means
that S = 1 with γ0 ≡ 0.

Table 2. MHDE as the dimension S changes for compressed data Ỹ using Gaussian kernel.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

S∗ = 1 2.000 1.010 0.001 1.016 74.03 5.722
S = 1 2.000 1.014 0.001 1.018 74.22 5.844
S = 2 2.000 1.005 0.001 1.019 73.81 5.832
S = 5 2.000 0.987 0.001 1.017 74.16 5.798

S = 10 2.000 0.995 0.001 1.019 71.87 5.525

From Table 2 we observe that as S increases, the estimates for µ and σ remain stable. The case
S∗ = 1 is interesting, since even by storing the sum we are able to obtain point estimates which are
close to the true value. In Table 3, we choose S = 1, B = 100 and cB = 0.3 and compare the estimates as
γ0 changes from 0.01 to 1.00. We can see that as γ0 increases, the estimate for µ remains stable, whereas
the bias, standard deviation and MSE for σ increase.

Table 3. MHDE as γ0 changes for compressed data Ỹ using Gaussian kernel.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

γ0 = 0.00 2.000 1.010 0.001 1.016 74.03 5.722
γ0 = 0.01 2.000 1.017 0.001 1.015 74.83 5.814
γ0 = 0.10 2.000 1.023 0.001 1.021 72.80 5.717
γ0 = 0.50 2.000 1.119 0.001 1.076 72.59 11.08
γ0 = 1.00 2.000 1.399 0.002 1.226 82.21 57.75
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In Table 4, we fix S = 1, B = 100 and γ0 = 0.1 and allow the bandwidth cB to increase.
Also, c∗B = 0.30 means that the bandwidth is chosen as 0.30 with γ0 ≡ 0. Notice that in this case
when cB = 0.9 B

1
2 cB = 9 while B

1
2 c2

B = 8.1 which is not small as is required in assumption (B2). We
notice again that as cB decreases, the estimates of µ and σ are close to the true value with small MSE
and StD.

Table 4. MHDE as the bandwidth cB changes for compressed data Ỹ using Gaussian kernel.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

c∗B = 0.30 2.000 1.010 0.001 1.016 74.03 5.722
cB = 0.30 2.000 1.014 0.001 1.018 74.22 5.844
cB = 0.40 2.000 1.015 0.001 1.063 79.68 10.26
cB = 0.50 2.000 1.014 0.001 1.108 82.33 18.33
cB = 0.70 2.000 1.004 0.001 1.212 93.96 53.64
cB = 0.90 2.000 1.009 0.001 1.346 110.5 132.2

In Table 5, we let S = 1, cB = 0.3 and γ0 = 0.1 and let the number of groups B increase. This table
implies that as B increases, the estimate performs better in terms of bias, standard deviation and MSE.

Table 5. MHDE as B changes for compressed data Ỹ using Gaussian kernel with γ0 = 0.1.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

B = 20 2.000 2.205 0.005 1.739 378.5 688.6
B = 50 2.000 1.409 0.002 1.136 125.2 34.17
B = 100 2.000 1.010 0.001 1.016 74.03 5.722
B = 500 2.000 0.455 0.000 0.972 32.63 1.873

In Table 6, we set γ0 ≡ 0 and keep other settings same as Table 5. This table implies that as B
increases, the estimate performs better in terms of bias, standard deviation and MSE. Furthermore,
the standard deviation and MSE are slightly smaller than the results in Table 5.

Table 6. MHDE as B changes for compressed data Ỹ using Gaussian kernel with γ0 = 0.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

B = 20 2.000 2.282 0.005 1.749 381.4 706.0
B = 50 2.000 1.440 0.002 1.148 125.2 37.42
B = 100 2.000 1.014 0.001 1.018 74.22 5.844
B = 500 2.000 0.465 0.000 0.973 31.33 1.692

We next move on to investigating the effect of other sensing variables. In the following table,
we use Gamma model to generate the additive matrix Rl . Specifically, the mean of Gamma random
variable is set as α0β0 = 1, and the variance var ≡ α0β2

0 is chosen from the set {0, 0.012, 0.01, 0.25, 1.00}
which are also the variances in Table 3.

From Table 7, notice that using Gamma sensing variable yields similar results as Gaussian sensing
variable. Our next example considers the case when the mean of the sensing variable is not equal to one
and the sensing variable is taken to have a discrete distribution.Specifically, we use Bernoulli sensing
variables with parameter p. Moreover, we fix S = 1 and let pJ = S. Therefore p = 1/J. Hence as J
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increases, the variance decreases. Now notice that in this case the mean of sensing variable is p instead
of 1. In addition, E[Ỹil ] = µ and Var[Ỹil ] = σ2 + µ2(1− 1

J ). Hence we set the initial value as

µ(0) = median
(

Ỹil

)
,

σ(0) = 1.48×median
(
|Ỹil −median(Ỹil)|

)
.

Additionally, we take B = 100, cB = 0.30 and sB to be 1.48×median
(
|Ỹil −median(Ỹil)|

)
.

Table 7. MHDE as variance changes for compressed data Ỹ using Gaussian kernel under Gamma
sensing variable.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

var = 0.00 2.000 1.010 0.001 1.016 74.03 5.722
var = 0.012 2.000 1.005 0.001 1.016 74.56 5.806
var = 0.01 2.000 1.006 0.001 1.018 73.70 5.762
var = 0.25 2.000 1.120 0.001 1.078 73.70 11.56
var = 1.00 2.000 1.438 0.001 1.228 81.94 58.48

Table 8 shows that MHD method also performs well with Bernoulli sensing variable, although
the bias of σ, standard deviation and mean squre error for both estimates are larger than those using
Gaussian sensing variable and Gamma sensing variable.

Table 8. MHDE as J changes for compressed data Ỹ using Gaussian kernel under Bernoulli sensing
variable.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

J = 10 2.000 104.9 11.01 1.215 97.78 55.79
J = 100 1.998 104.5 10.93 1.201 104.5 51.26

J = 1000 1.998 104.7 10.96 1.195 106.6 49.36
J = 5000 2.001 103.9 10.80 1.200 105.7 51.20

J = 10000 1.996 105.1 11.07 1.196 104.4 49.16

4.5. Robustness and Model Misspecification

In this section, we provide a numerical assessment of the robustness of the proposed methodology.
To this end, let

fα,η(x|θ) = (1− α) f (x|θ) + αη(x),

where η(x) is a contaminating component, α ∈ [0, 1). We generate the contaminated reduced data Y in
the following way:

• Step 1. Generate Xl , where Xjl
i.i.d.∼ N(2, 1).

• Step 2. Generate Rl , where rijl
i.i.d.∼ N(1, γ2

0).

• Step 3. Generate uncontaminated Ỹl by calculating Ỹl = RlXl .

• Step 4. Generate contaminated Ỹc
il , where Ỹc

il = Ỹil + η(x) with probability α, and Ỹc
il = Ỹil with

probability 1− α.

In the above description, the contamination with outliers is within blocks. A conceptual issue
that one encounters is the meaning of outliers in this setting. Specifically, a data point which is an
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outlier in the original data set may not remain an outlier in the reduced data and vice-versa. Hence the
concepts such as breakdown point and influence function need to be carefully studied. The tables
below present one version of the robustness exhibited by the proposed method. In Tables 9 and 10,
we set J = 104, B = 100, S = 1, γ0 = 0.1, cB = 0.3, η = 1000. In addition, α∗ = 0 means that α = 0 with
γ0 ≡ 0.

Table 9. MHDE as α changes for contaminated data Ỹ using Gaussian kernel.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

α∗ = 0.00 2.000 1.010 0.001 1.016 74.03 5.722
α = 0.00 2.000 1.014 0.001 1.018 74.22 5.844
α = 0.01 2.000 1.002 0.001 1.022 74.89 6.079
α = 0.05 2.000 1.053 0.001 1.023 77.86 6.599
α = 0.10 2.000 1.086 0.001 1.034 79.30 7.350
α = 0.20 2.000 1.146 0.001 1.073 93.45 14.06
α = 0.30 2.001 7.205 0.054 1.264 688.2 542.5
α = 0.40 2.026 21.60 1.100 3.454 1861 9480
α = 0.50 2.051 14.00 2.600 4.809 1005 15513

Table 10. MHDE as α changes for contaminated data Ỹ using Epanechnikov kernel.

µ̂ σ̂

Ave StD×103 MSE×103 Ave StD×103 MSE×103

α∗ = 0.00 2.000 0.972 0.001 1.008 73.22 5.425
α = 0.00 2.000 1.014 0.001 1.018 74.22 5.844
α = 0.01 2.000 0.978 0.001 1.028 107.4 12.19
α = 0.05 2.000 1.264 0.002 1.025 108.7 12.35
α = 0.10 2.000 1.202 0.001 1.008 114.7 13.09
α = 0.20 2.000 1.263 0.002 1.046 129.8 18.76
α = 0.30 2.001 5.098 0.026 1.104 557.8 318.9
α = 0.40 2.021 21.80 0.900 3.004 1973 7870
α = 0.50 2.051 10.21 3.000 4.893 720.4 15669

From the above Table we observe that, even under 50% contamination the estimate of the mean
remains stable; however, the estimate of the variance is affected at high-levels of contamination (beyond
30%). An interesting and important issue is to investigate the role of γ0 on the breakdown point of
the estimator.

Finally, we investigate the bias in MHDE as a function of the values of the outlier. The graphs
below (Figure 2) describe the changes to MHDE when outlier values (η) increase. Here we
set S = 1, B = 100, γ0 = 0.1. In addition, we let α = 0.2, and η to take values from
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. We can see that as η increases, both µ̂ and σ̂ increase up
to η = 500 then decrease, although µ̂ does not change too much. This phenomenon is because when
the outlier value is small (or closer to the observations), then it may not be considered as an “outlier”
by the MHD method. However, as the outlier values move “far enough” from other values, then the
estimate for µ and σ remain the stable.
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(a) (b)

Figure 2. Comparison of estimates of µ (a) and σ (b) as outlier changes.

5. Example

In this section we describe an analysis of data from financial analytics, using the proposed
methods. The data are from a bank (a cash and credit card issuer) in Taiwan and the targets of analyses
were credit card holders of the bank. The research focused on the case of customers’ default payments.
The data set (see [27] for details) contains 180,000 observations and includes information on twenty five
variables such as default payments, demographic factors, credit data, history of payment, and billing
statements of credit card clients from April 2005 to September 2005. Ref. [28] study machine learning
methods for evaluating the probability of default. Here, we work with the first three months of data
containing 90,000 observations concerning bill payments. For our analyses we remove zero payments
and negative payment from the data set and perform a logarithmic transformation of the bill payments
. Since the log-transformed data was multi-modal and exhibited features of a mixture of normal
distributions, we work with the log-transformed data with values in the range (6.1, 13). Next, we
performed the Box-Cox transformation to the log-transformed data. This transformation identifies the
best transformation that yields approximately normal distribution (which belongs to the location-scale
family). Specifically, let L denote the log-transformed data in range (6.1, 13), then the data after
Box-Cox transformation is given by X =

(
L2 − 1

)
/19.9091. The histogram for X is given in Figure 3.

The number of observations at the end of data processing was 70,000.

Figure 3. The histogram of credit payment data after Box-Cox transformation to Normality.
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Our goal is to estimate the average bill payment during the first three months. For this, we will
apply the proposed method. In this analysis, we assume that the target model for X is Gaussian and
split the data, randomly, into B = 100 blocks yielding J = 700 observations per block.

In Table 11, “est” represents the estimator, “95% CI” stands for 95% confidence interval for the
estimator. When analyzing the whole data and choosing bandwidth as cn = 0.30, we get the MHDE of
µ to be µ̂ = 5.183 with 95% confidence interval (5.171, 5.194), and the MHDE of σ as σ̂ = 1.425 with
confidence interval (1.418, 1.433).

In Table 11, we choose the bandwidth as cB = 0.30. Also, S∗ = 1 represents the case where S = 1
and γ0 ≡ 0. In all other settings, we keep γ0 = 0.1. We observe that all estimates are similar as
S changes.

Table 11. MHDE from the real data analysis.

µ̂ σ̂

S∗ = 1 est 5.171 1.362
95% CI (4.904, 5.438) (1.158, 1.540)

S = 1 est 5.171 1.391
95% CI (4.898, 5.443) (1.183, 1.572)

S = 5 est 5.172 1.359
95% CI (4.905, 5.438) (1.155, 1.535)

S = 10 est 5.171 1.372
95% CI (4.902, 5.440) (1.167, 1.551)

S = 20 est 5.171 1.388
95% CI (4.899, 5.443) (1.180, 1.569)

Next we study the robustness of MHDE for this data by investigating the relative bias and
studying the influence function. Specifically, we first reduce the dimension from J = 700 to S = 1 for
each of the B = 100 blocks and obtain the compressed data Ỹ ; next, we generate the contaminated
reduced data Ỹc

il from step 4 in Section 4.5. Also, we set α = 0.20, γ0 = 0.20; the kernel is taken
to be to be Epanechnikov density with bandwidth cB = 0.30. η(x) is assumed to takes values in
{50, 100, 200, 300, 500, 800, 1000} (note that the approximate mean of Ỹ is around 3600). Let TMHD be the
Hellinger distance functional. The influence function given by

IF(α; T, Ỹ) =
TMHD(Ỹ c)− TMHD(Ỹ)

α
,

which we use to assess the robustness. The graphs shown below (Figure 4) illustrate how the
influence function changes as the outlier values increase. We observe that for both estimates (µ̂
and σ̂), the influence function first increase and then decrease fast. From η(x) = 300, the influence
functions remain stable and are close to zero, which clearly indicate that MHDE is stable.

Additional Analyses: The histogram in Figure 3 suggests that, may be a mixture of normal
distributions may fit the log and Box-Cox transformed data better than the normal distribution. For this
reason, we calculated the Hellinger distance between four component mixture (chosen using BIC
criteria) and the normal distribution and this was determined to be 0.0237, approximately. Thus, the
normal distribution (which belongs to the location-scale family) can be viewed as a misspecified target
distribution; admittedly, one does lose information about the components of the mixture distribution
due to model misspecification. However, since our goal was to estimate the overall mean and variance
the proposed estimate seems to possess the properties described in the manuscript.
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(a) Influence Function of µ̂ (b) Influence Function of σ̂

Figure 4. Influence function of µ̂ (a) and σ̂ (b) for MHDE.

6. Discussion and Extensions

The results in the manuscript focus on the iterated limit theory for MHDE of the compressed
data obtained from a location-scale family. Two pertinent questions arise: (i) is it easy to extend this
theory to MHDE of compressed data arising from non location-scale family of distributions? and (ii) is it
possible to extend the theory from iterated limits to a double limit? Turning to (i), we note that the
heuristic for considering the location-scale family comes from the fact that the first and the second
moment are consistently estimable for partially observed random walks (see [29,30]). This is related to
the size of J and can be of exponential order. For such large J, other moments may not be consistently
estimable. Hence, the entire theory goes through as long as one is considering parametric models
f (·|θ), where θ =W(µ, σ2), for a known functionW(·, ·). The case in point is the Gamma distribution
which can be re-parametrized in terms of the first two moments.

As for (ii), it is well-known that existence and equality of iterated limits for real sequences does
not imply the existence of the double limit unless additional uniformity of convergence holds (see [31]
for instance). Extension of this notion for distributional convergence requires additional assumptions
and are investigated in a different manuscript wherein more general divergences are also considered.

7. Concluding Remarks

In this paper we proposed the Hellinger distance-based method to obtain robust estimates
for mean and variance in a location-scale model using compressed data. Our extensive theoretical
investigations and simulations show the usefulness of the methodology and hence can be applied in a
variety of scientific settings. Several theoretical and practical questions concerning robustness in a big
data setting arise. For instance, the effect of the variability in the R matrix and its effect on outliers are
important issues that need further investigation. Furthermore, statistical properties such as uniform
consistency and uniform asymptotic normality under different choices for the distribution of R would
be useful. These are under investigation by the authors.
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Abbreviations

The following abbreviations are used in this manuscript:
MHDE Minimum Hellinger Distance Estimator
MHD Minimum Hellinger Distance
i.i.d. independent and identically distributed
MLE Maximum Likelihood Estimator
CI Confidence Interval
IF Influence Function
RHS Right Hand Side
LHS Left Hand Side
BFGS Broyden-Fletcher-Goldfarb-Shanno
var Variance
StD Standard Deviation
MSE Mean Square Error
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