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� Abstract: Background: Extracellular vehicles (EVs) contain different proteins that relay information 
between tumor cells, thus promoting tumorigenesis. Therefore, EVs can serve as an ideal marker for 
tumor pathogenesis and clinical application. 
Objective: Here, we characterised EV-specific proteins in hepatocellular carcinoma (HCC) samples 
and established their potential protein-protein interaction (PPI) networks.  
Materials and Methods: We used multi-dimensional bioinformatics methods to mine a network mod-
ule to use as a prognostic signature and validated the model’s prediction using additional datasets. The 
relationship between the prognostic model and tumor immune cells or the tumor microenvironment 
status was also examined. 
Results: 1134 proteins from 316 HCC samples were mapped to the exoRBase database. HCC-specific 
EVs specifically expressed a total of 437 proteins. The PPI network revealed 321 proteins and 938 in-
teraction pathways, which were mined to identify a three network module (3NM) with significant 
prognostic prediction ability. Validation of the 3NM in two more datasets demonstrated that the model 
outperformed the other signatures in prognostic prediction ability. Functional analysis revealed that 
the network proteins were involved in various tumor-related pathways. Additionally, these findings 
demonstrated a favorable association between the 3NM signature and macrophages, dendritic, and 
mast cells. Besides, the 3NM revealed the tumor microenvironment status, including hypoxia and in-
flammation.  
Conclusion: These findings demonstrate that the 3NM signature reliably predicts HCC pathogenesis. 
Therefore, the model may be used as an effective prognostic biomarker in managing patients with 
HCC. 
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1. INTRODUCTION 

 HCC is a common malignancy of the digestive system, 
particularly in Asia. Due to hepatitis virus infections, HCC 
morbidity and mortality have remained persistently high [1]. 
The burden of HCC is complicated because the clinical 
manifestations of HCC are hidden in the early stages, which 
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means that the majority of diagnoses occur in the later stag-
es. Late-stage diagnoses results in a poor prognosis and a 
high rate of post-treatment recurrence, which puts patients' 
lives at risk [2]. Presently, early surgical intervention is the 
most effective treatment for HCC. Following early diagnosis 
and treatment, the 5-year survival rate is approximately 
70%, compared to 16% in patients with advanced stages [3]. 
Therefore, early diagnosis and treatment of HCC patients, 
and accurate monitoring of disease progression, are critical 
in improving the overall survival rate. However, there are 
currently no reliable biomarkers for the early detection and 
management of HCC. 
 Extracellular vesicles (EVs) are tiny membranous vesi-
cles, secreted by nearly all cell types and released into the 
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extracellular matrix [4]. Previously, EVs were believed to be 
responsible for cellular waste disposal. However, research 
indicates that vesicles function as messengers and are im-
portant mediators of cell signal transduction [5]. EVs play 
an important role in tumor development, metastasis, and 
progression [6]. EVs secreted by tumor cells contain onco-
gene virus-derived molecules, pathogenic genetic materials, 
protein components, and other substances [7]. Interactions 
between these EVs and other cells promote tumorigenesis in 
new cells. Furthermore, EVs promote tumor cell diffusion 
by creating a favorable microenvironment at local and dis-
tant metastatic sites [8]. Therefore, EVs contain the overall 
molecular information of the tumor cells, making them ideal 
biomarkers in clinical applications. 
 To date, no large population studies have been conducted 
to assess changes in EV biopsies across clinical stages and 
disease markers [9]. Technically, distinguishing between 
tumor-specific EVs from those released by normal tissues 
has remained a significant challenge due to a lack of specif-
ic biomarkers [10]. EVs carry a variety of small molecules, 
including proteins, non-coding RNA, or enzymes, that ex-
hibit varying cellular expression levels in tumor cells [11]. It 
has been demonstrated that EVs containing proteins-EGFR 
extracted from tumor cells stimulate the formation of a liv-
er-like microenvironment and promote liver-specific metas-
tasis [12]. HCC-derived EVs-related protein-ANGPT2, on 
the other hand, was delivered to human umbilical vein endo-
thelial cells by exosome endocytosis, resulting in enhanced 
angiogenesis [13]. Therefore, we hypothesised that proteins 
carried by EVs could serve as potential HCC-specific bi-
omarkers. 
 In this study, we used a large sample size to examine the 
protein profiles carried by EVs in HCC. We established a 
reliable HCC prognostic signature using a PPI network. Val-
idation experiments demonstrated that the 3NM signature 
was a highly predictive biomarker for disease progression in 
HCC patients. Additionally, the positive correlation between 
the 3NM and tumor immune cells and tumor microenviron-
ment suggested that the 3NM signature was involved in 
HCC pathogenesis. Fig. (1) depicts the overall flow diagram 
of this study. 

2. METHODS 

2.1. Data Preparation and Preprocessing 

 The HCC samples were collected from three datasets; 
transcript sequencing data from TCGA-LIHC (https:// 
www.cancer.gov/about-nci/organization/ccg/research/ struc-
tural-genomics/tcga), Japanese transcript sequencing data 
from ICGC-LIHC-JP (https://dcc.icgc.org/), and chip se-
quencing data of the Singapore Bioinformatics Centre from 
GEO-GSE76427 (https://www.ncbi.nlm.nih.gov/geo/query/ 
acc.cgi?acc=GSE76427). The three distinct cohorts com-
prised two from different populations in Asia and Europe. 
The TCGA-LIHC data were used as a training dataset in this 
study, while the ICGC-LIHC-JP and GEO-GSE76427 data 
were used as validation datasets. We excluded samples with 
an overall survival (OS) of less than 30 days and insufficient 
clinical information. We analysed 317, 161, and 94 HCC 
samples from TCGA-LIHC, ICGC-LIHC-JP, and 
GSE76427, respectively (Supplementary Table S1). The 
clinical information of the three cohorts is summarised in 
Supplementary Table S2. Probe values (log2 intensity) and 
probe annotations were extracted from the downloaded files. 
The Z-transform was used to normalise the Fragments Per 
Kilobase per Million (FPKM) data from the TCGA-LIHC, 
ICGC-LIHC-JP, and GEO-GSE76427 datasets. The TCGA-
LIHC read counts were used to compare the differential 
expression of coding genes in tumor and normal tissues. 
Furthermore, the EV-related proteins associated with HCC 
were collected from exoRBase (http://www.exorbase.org/ 
exoRBase/browse/tomRNAIndex). There were 17211 EV-
specific HCC proteins in the exoRBase database. 

2.2. Establishment of the PPI Network 

 The EBSeq R package analysed the differentially-
expressed proteins between tumor and normal tissues. We 
identified 1134 proteins having a posterior probability of dif-
ferential expression (PPED) >0.99. 1134 differentially-
expressed proteins and 7211 EVs-specific HCC proteins were 
then used to perform intersection operations. A total of 437 
proteins highly expressed by extracellular vesicles in HCC 
were used to conduct PPI analysis and construct a human PPI 
network in STRING (https://string-db.org). STRING experi-
ments were executed using the Bioconductor R package. 

 
Fig. (1). The Flow chart of this study. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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2.3. Selection of a Network Module Signature 

 The Molecular Complex Detection (MCODE) algorithm 
was used to identify significant modules based on the PPI 
network. The algorithm was executed using the Cytoscape 
software, with a degree cutoff=2, node score cutoff=0.2, K-
score=2, and Max-depth =100. To identify the modules with 
a significant clinical classification function, we integrated 
the proteins’ profile of the training dataset (TCGA-LIHC) 
with the PPI network and then calculated the expression 
score (�) of each module using the following formula:  
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where � is the number of proteins in a given module M, j is 
the sample of expression score of module M, and ��� is the 
protein expression value of proteins i through Z in the trans-
formation conversion. Next, the mutual information (MI) 
between � and clinical classification (c) was determined by 
discriminative score � �  as shown:  
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Where ���is the discretised form of �, calculated by discre-
tising the expression score=9 (log2(n)+1) (n is the number of 
the sample) [14]. � and � represent the enumerative values 
of � and �, respectively. ������ is the joint probability den-
sity function (PDF) of �� and �. � �  and � � �are the mar-
ginal pdf’s of � and �. The greedy searching program was 
used to identify the modules with a locally maximal stage 
score [14]. 
 We randomly selected proteins with the same number of 
M modules from the PPI network to calculate the MI value. 
Each module was randomly repeated 1000 times. The re-
sults from the random sampling and the actual module out-
comes were statistically analyzed, and the modules with a 
significance level of (P<0.0001) were further processed. To 
construct the prognosis prediction signature, we used the 
random forest (RF) algorithm in the randomForest R pack-
age to score the candidate module protein expression, then 
used for feature selection and model establishment. Briefly, 
the predictive value of each candidate module was estimated 
using an initial RF of 5000 trees. The stepwise adverse se-
lection was used to determine the optimal combination of 
the candidate modules for prognostic prediction. Each itera-
tion excluded 10% of the features, and the remaining fea-
tures were used to construct an RF with 3000 trees. The 
program was terminated when only two functions remained. 
The RF model with the smallest amount of features was 
selected among all iteration outcomes. Finally, the last RF 
model included an out of bag (OOB) probability to describe 
patient prognosis. 

2.4. Identification of Tumor Immune Cells and Tumor 
Microenvironment Status 

 CIBERSORT method [15] was used to calculate the 
abundance of immune and non-immune cells in the tumor 
microenvironment. The calculation was based on the protein 
profiles on tissue infiltrating cell populations. The standard-

annotated proteins were uploaded to the CIBERSORT web-
site, and the calculation was performed using LM22 signa-
tures and 1000 permutations. Previous studies revealed the 
signature of tumor microenvironment status, including hy-
poxia [16], angiogenesis [17], and inflammation [18]. These 
tumor cell signature scores were derived using the corre-
sponding proteins’ average Z- normalised expression values. 
Pheatmap R package was used to create cluster maps. Addi-
tionally, using the GSVA R package, the tumor microenvi-
ronment status between subgroups classified by module 
signatures was analysed using the Gene Set Enrichment 
Analysis (GSEA). 

2.5. Statistical Analysis 

 The clusterProfiler R package was used to perform Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) analyses the module’s signature identified 
from the EVs-related proteins. The p < 0.05 was set as the 
threshold for statistical significance. The OS was estimated 
using the Kaplan–Meier (KM) method, while the sensitivity 
and specificity of the survival curve were assessed using the 
receiver operating characteristic (ROC) curve. The ROC 
curve was obtained from calculations of the area under the 
curve (AUC) using the pROC R package. A hypergeometric 
algorithm was used to determine the overlapping proteins 
across the significant signature modules. Multivariate cox 
analysis was performed to determine the correlation be-
tween signature modules and clinical characteristics. On the 
other hand, variables were compared between groups using 
the independent Chi-square test. Pearson's correlation was 
used to investigate the association between immune cells 
and the tumor microenvironment status signature modules. 
For OS prediction, Harrell’s C-index was used to compare 
the signatures of modules and proteins. All statistical anal-
yses were performed using the SPSS Version 25.0 software 
and the R software version 3.4.0, P < 0.05.  

3. RESULTS 

3.1. Construction of the PPI and Identification of Mod-
ules Signature 

 The intersection of 1134 differentially expressed proteins 
with 17211 HCC EVs-specific proteins resulted in the iden-
tification of 437 proteins. The proteins were used to con-
struct the PPI network, which contained 321 proteins and 
938 interactions (Supplementary Fig. 1). The MCODE algo-
rithm was used to identify 16 modules in the PPI network 
(Supplementary Fig. 2). Next, the greedy searching program 
and random sampling identified 13 modules that significant-
ly distinguished clinical classification (P<0.001) (Supple-
mentary Table S3). The clustering map for the expression 
score profile of the 16 modules divided them into two clus-
ters (cluster 1, 2) (Fig. 2A). Cluster 1 had 3 modules (mod-
ules 1, 4, and 6) that contained upregulated proteins in tu-
mor stages I and II, while cluster 2 had 13 modules that con-
tained upregulated proteins in tumor stage III+ IV 
(P=0.033). Additionally, the 16 modules were associated 
with the clinic-pathologic classification of HCC, such as T 
(P=0.043), or grade (P=0.046).  
 Because the modules were associated with clinical char-
acteristics of HCC, we considered using the 13 modules 



112    Current Genomics, 2022, Vol. 23, No. 2 Chen et al. 

with a significant discriminative score to establish an opti-
mal signature for predicting prognosis in HCC patients. We 
found that combining three modules (modules 5, 8, and 15) 
resulted in optimal prediction accuracy when using the RF 
algorithm (Fig. 2B). In advanced clinical tumor stages (III+ 
IV), all 3 modules showed higher expression levels com-
pared to early tumor stages (I+II) (Fig. 2C). The 3 modules 
were then used to construct a prognostic prediction signa-
ture, referred as the 3 network modules (3NM). The ROC 
curve verified the prognostic prediction potential of 3NM 
with an AUC of 0.736 (Fig. 2D).  
 317 HCC patients from TCGA-LIHC were divided into 
high or low-risk groups based on the predicted risk coefficient 
using the 3NM signature. The signature accurately predicted a 
lower survival rate in the high-risk group compared to the 
low-risk groups (p = 0.0057) (Fig. 2E). Additionally, multi-
variate cox analysis found that the 3NM was a strong inde-
pendent risk factor for survival (P=0.045) (Supplementary 
Table S4). The prognostic prediction of the 3NM was also 
validated using validation datasets. The KM analysis revealed 
that the high-risk group had a significantly shorter OS than 
the low-risk groups in both the GEO-GSE76427 (p = 0.0039) 
and ICGC-LIHC-JP (p < 0.0001) datasets (Fig. 3). These 
findings demonstrated that the 3NM signature based on EVs-
related proteins from the PPI network was a potential bi-
omarker for predicting prognosis in HCC patients.  

3.2. Functional Analysis of 3NM and their Correspond-
ing EVs-related Proteins 

 There were 8, 7, and 3 EV-related proteins, corresponding 
to modules 5, 8, and 15, respectively. Protein-ISL1 over-
lapped modules 5 and 8, whereas 4 proteins, (PVALB, NPY, 
PF4, and SPAG17) were located at the intersection of mod-
ules 8 and 15 (Fig. 4A). GO, and KEGG analyses revealed 
that all 3 modules were associated with tumor-related path-
ways, including the toll-like receptor signaling pathway, Wnt 
signaling pathway, and inflammatory response (Fig. 4B). 
These findings inferred that the 3 modules were connected by 
EVs-related proteins and played a role in HCC pathogenesis. 

3.3. Comparing the 3 NM and Exosome-related Gene 
Modules 

 As with 3 NM, the remaining 18 EV-related proteins 
were used to construct an additional prediction signature. In 
both the training and validation datasets, the developed sig-
nature could distinguish survival time between high- and 
low-risk groups. The high-risk group had a significantly 
shorter survival time than the low-risk group (Figs. 5A-C), 
which corresponded to the prediction performance of the 
3NM signature. Unlike the new signature, however, the 3 
NM ROC curve showed a higher AUC and C-index (Figs. 
5D-G). These findings demonstrated a superior prediction 
performance of the 3NM signature. 

 
Fig. (2). Modules signature identification based on the PPI network. (A) Clustering map of the 16 modules based on the expression score of 
their profiles. The clustering map also showed the association between the clusters and Clinicopathologic staging. T-N-M: the form of tumor 
classification represented Tumor- Node- Metastasis. (B) Identification of optimal modules using the RF algorithm. The X-axis represented 
the number of modules, while the Y-axis indicated the cross−validation of each prediction model. (C) Comparison of expression scores 
based on 3 modules between high (III+ IV) and low (I+II) clinical tumor stage. (D) The ROC curve was used to validate the 3NM's prognos-
tic prediction (E) KM analysis was used to investigate the survival of HCC patients in the TCGA-LIHC database using the 3NM signature. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (3). KM analysis was used to verify the prognostic prediction of HCC patients in (A) GEO-GSE76427 and (B) ICGC-LIHC-JP datasets 
based on the 3NM signature. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (4). Functional analysis of the 3 modules. (A) The extracellular vesicle-related genes from 3 modules interacted by overlapping with 
proteins. (B) The GO and KEGG analyses of 3 modules. (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 

3.4. 3 NM is Associated with Tumor Immune Cells and 
Tumor Microenvironment Status 

 CIRBERSORT was used to identify the proportion of 
immune-related cells in the TCGA-LIHC dataset. There was 
a direct positive correlation between the 3 NM, macrophag-

es, and mast cells. In contrast, various other immune cells, 
including the T and cell B cell, and dendritic cells, correlat-
ed negatively with the 3 modules (Fig. 6A). Additionally, 
the 3 modules and their corresponding EVs-related proteins 
were positively associated with tumorigenic status (hypoxia,
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Fig. (5). A comparison of the prognostic prediction ability between 3NM and their corresponding EVs-related proteins. KM analysis was 
used to investigate the survival of HCC patients in (A) TCGA-LIHC, (B) ICGC-LIHC-JP, and (C) GEO-GSE76427 datasets based on 3NM 
corresponding EVs-related proteins. ROC curve analysis was used to compare the accuracy of 3NM and their corresponding EVs-related 
proteins in predicting (D)TCGA-LIHC, (E)ICGC-LIHC-JP, and (F) GEO-GSE76427 datasets HCC patient outcomes. (G) The C-index was 
used to assess the prognostic prediction abilities of 3NM and its corresponding EVs-related proteins. (A higher resolution / colour version of 
this figure is available in the electronic copy of the article). 

HIF1A, angiogenesis, and inflammation) (Fig. 6A). Hypox-
ia, HIF1A, angiogenesis, and inflammatory cytokines were 
significantly more prevalent in the high-risk group than in 
the low-risk group (Fig. 6B). HIF1A regulates various 
pathways in HCC cells that control cellular inflammation, 
angiogenesis, proliferation, and migration, allowing HCC 
cells to adapt to low-oxygen environments [19]. Therefore, 
hypoxia was favorably associated with HIF1A, both of 
which were upregulated in high-risk groups (Fig. 6C). 
GSEA analysis revealed hypoxia and inflammation enrich-
ment in the high-risk group classified by the 3 NM signature 
(Fig. 6D). The data established an association between the 3 
NM signature and HCC pathogenesis, characterised by im-
mune-related factors and tumor microenvironment status. 

4. DISCUSSION 

 EVs containing nucleic acids and other genetic material 
are widely distributed in body fluids. They are an ideal can-
didate for use as noninvasive clinical biomarkers.  
 It is crucial to identify specific biomarkers from tumor-
specific EVs for the early diagnosis and prognosis of can-
cerous cells [20]. Here, we systematically investigated the 
EVs-related proteins in HCC patients and developed a prog-
nostic signature for use in the clinical management of HCC. 
The 3NM signature was found to be a highly predictive bi-
omarker for prognostic prediction in HCC patients. Mecha-
nistically, the 3NM was associated with several tumor-

related pathways, tumor immune cells, and tumor microen-
vironment status. Our research analysed the prognostic val-
ue of EVs-related proteins in HCC patients using a large and 
diverse sample size. 
 Unlike most research, which used biochemical methods 
to obtain human EVs, this study used high-throughput se-
quencing to identify tumor-specific proteins in EVs [21]. 
The EV-related proteins were obtained from HCC databases 
in this study [22]. Additionally, the differentially expressed 
proteins in HCC and normal tissue intersected with the EVs-
related proteins from the database. This approach ensured 
that the selected proteins were accurate and HCC-specific. A 
previous study reported that EVs-related proteins released 
into body fluid were proportional to the tumor tissue sug-
gesting that the examination of EVs-related proteins may be 
used to assess tumor status [23]. We mined EV-related pro-
teins for prognostic prediction of HCC using a multi-
dimensional bioinformatics approach. The 3NM signature 
showed prognostic predictive ability not only in the training 
cohort but also in the two validation cohorts. This study 
provided a novel strategy to determine the prognostic signif-
icance of specific EV-related proteins in HCC. 
 The establishment of the 3NM signature was based on 
constructing a PPI network. The network, coupled with the 
proteins expression profile, aided in studying the molecular 
mechanisms of HCC and systematic identification of a reli-
able biomarker [24]. The 3 modules were inter-connected by
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Fig. (6). The association between 3NM, tumor immune cells, and tumor microenvironment status. (A) The association between 3NM, tumor 
immune cells, and tumor microenvironment status. (B) Tumor microenvironment status score was used to compare between high and low-
risk groups. (C) Pearson’s correlation algorithm was used to determine the association between HIF1A and hypoxia. (D) GSEA was used to 
determine the hypoxia and inflammatory status of the tumor microenvironment based on the 3NM categorisation. (A higher resolution / col-
our version of this figure is available in the electronic copy of the article). 

overlapping proteins, some of which were associated with 
tumorigenesis. Indeed, several important proteins such as 
FGF23 [25] in module 8, HOXC5 [26] in module 5, and 
WDR63 [27] in module 15 were identified as HCC onco-
genes. However, using a single protein as a biomarker 
lacked specificity and stability and was susceptible to exter-
nal factors. The shortage could be alleviated by classifying 
protein expression and function and constructing models 
based on bioinformatics algorithms [28]. Our study con-
structed the 3NM signature to assess its prognostic predic-
tive value in HCC patients. Additionally, the 3NM was as-
sociated with the clinicopathologic staging of HCC. This 
study uncovered a complex protein expression and PPI in-
teraction network, which provided a strategy for developing 
a potential HCC prognostic prediction signature. 
 EVs are a critical component of the tumor microenvi-
ronment and contribute significantly to tumorigenesis. Thus, 
EVs were identified as a novel biomarker for communica-
tion mediation in the tumor microenvironment [29]. The 
3NM was found to be associated with hypoxia, angiogene-
sis, and inflammatory reactions. Hypoxia, an important fea-
ture in solid tumors, is associated with invasion and a poor 

prognosis. Previous research has established that hypoxia 
promotes the secretion of EVs by cancer cells. On the other 
hand, hypoxic conditions significantly alter EVs, indicating 
a communication interface between tumor cells and the lo-
cal or distant microenvironment [30]. Similarly, this study 
found a direct correlation between hypoxia and all of the 3 
modules. Additionally, HIF1A, a key protein involved in 
inducing hypoxia in extracellular vesicles [31], was also 
isolated. Angiogenesis and inflammatory reactions were 
associated with the 3NM and had higher expression levels in 
high-risk groups. There is growing evidence that EVs pro-
mote immunosuppression by altering the composition of 
different immune cell types, thereby contributing to tumor 
progression [32]. This study showed that the 3 modules had 
abnormal immune cell composition and high levels of mac-
rophages (M0, M1, and M2) and mast cells. Overall, these 
findings suggested that the 3NM signature was associated 
with HCC pathogenesis, thus might be used as a potential 
biomarker for HCC progression prediction. 

 With the rapid advancement of bio-information technol-
ogy and the rise of precision medicine enabled by big data, 
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many cancer databases with different functions have been 
established [33]. The use of modern biological information 
technology for in-depth mining and analysis of a large num-
ber of clinical medical data,provides a new research method 
for tumor mechanism research and also supports rich data 
for clinical diagnosis and treatment [33, 34]. The purpose of 
this study was to determine the value of clinical information 
about proteins carried by extracellular vesicles in HCC 
based on big data and bioinformatics methods.  Bioinfor-
matics research using big data has identified several bi-
omarkers, such as Zhang et al. finding that a three-miRNA 
signature can serve as an independent prognostic indicator 
for HCC patients [35], and Du et al. revealing that a specific 
seven-biomarker signature may be clinically useful in pre-
dicting HCC prognoses in addition to conventional clinico-
pathological factors [36]. While the bioinformatics analysis 
methods for big data are generally the same, the research 
perspectives vary. Because HCC is associated with mecha-
nisms involving the genome, proteome, metabolism, im-
munity, apoptosis, and exosome conduction, bioinformatics 
analysis revealed the etiology of HCC and identified biolog-
ical targets via different mechanisms [37, 38]. Therefore, 
this study focused on the proteins carried by EVs, which are 
critical in the signaling of HCC tumor cells. Compared to 
other studies involving bioinformatics research using large 
datasets on HCC, the data provides the 3 network modules 
signature composed of specific proteins, rather than individ-
ual proteins. Moreover, comparing 3 NM and exosome-
related proteins showed a superior prediction performance 
of the 3NM signature.  

 While this study established that 3 NM was a reliable 
HCC prognostic signature for HCC, the limitation of this 
study is the lack of comprehensive verification. Due to data 
constraints, the 3 NM were validated in only 2 additional 
databases. Additionally, the 3 NM was not validated in actu-
al clinical practice. Thus, the 3 NM is preliminary and will 
require further research and clinical validation on a large 
scale in the future. We suggested that the 3 NM identified in 
this study be combined with clinical indicators of HCC to 
complement each other and improve the clinical diagnosis 
and treatment specificity of HCC. 

CONCLUSION 

 In conclusion, this study constructed a 3NM signature 
for prognostic prediction of HCC patients using used specif-
ic proteins carried by EVs. The 3NM was associated with 
the clinicopathologic stage, tumor immune cells, and tumor 
microenvironment status. We hypothesised that the 3NM 
was a sufficiently robust biomarker for clinical application 
and pathogenesis research in HCC. 
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