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Abstract

Extracellular vesicle (EV)-based therapies have attracted considerable attention as a novel
class of biologics with broad clinical potential. However, their clinical translation is im-
peded by the fragmented and rapidly evolving regulatory landscape, with significant
disparities between the United States, European Union, and key Asian jurisdictions. In this
review, we systematically analyze regional guidelines and strategic frameworks governing
EV therapeutics, emphasizing critical hurdles in quality control, safety evaluation, and
efficacy demonstration. We further explore the implications of EVs’ heterogeneity on prod-
uct characterization and the emerging direct-to-consumer market for EVs and secretome
preparations. Drawing on these insights, in this review, we aim to provide a roadmap
for harmonizing regulatory requirements, advancing standardized analytical approaches,
and fostering ongoing collaboration among regulatory authorities, industry stakeholders,
and academic investigators. Such coordinated efforts are essential to safeguard patient
welfare, ensure product consistency, and accelerate the responsible integration of EV-based
interventions into clinical practice.

Keywords: exosomes; extracellular vesicles; therapeutics; clinical translation; regulatory
framework; quality control; standardization; global regulatory harmonization; manufacturing
scalability

1. Introduction
Exosomes are nanoscale extracellular vesicles (EVs), around 30–100 nm, released by di-

verse cell types, facilitating intercellular communication via the transfer of biomolecules [1–3].
Moreover, they are hypothesized to carry specific biomarkers reflective of their parent cells,
thereby offering significant insights into disease states and potential therapeutic strategies [4,5].
Common markers used for exosome characterization include tetraspanins (CD9, CD63, CD81),
Alix, TSG101, and heat shock proteins [6]. Their roles in immune modulation, cell survival,
and angiogenesis further underscore their importance in both physiological regulation and
pathological conditions [1,7]. For instance, stem cell-derived exosomes have demonstrated the
capacity to enhance tissue repair and regeneration through the modulation of inflammation and
promotion of angiogenesis, which may benefit conditions such as diabetic complications and
neurodegenerative disorders [8,9]. Furthermore, the natural capacity of exosomes to serve as
drug carriers offers a biocompatible and targeted delivery system for therapeutics [10,11].

Emerging applications in therapeutics, diagnostics, and drug delivery have brought
exosomes to the forefront of biomedical research. In the therapeutic sphere, mesenchymal
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stem cell-derived exosomes are being actively investigated for their regenerative properties,
especially in treating osteoarthritis and diabetic wounds [9,12]. Additionally, exosome-
based immunotherapy is showing promise in cancer treatment, as it facilitates the targeted
delivery of immunotherapeutics while minimizing systemic toxicity [13,14]. As diagnostic
tools, exosomes are considered promising candidates for liquid biopsies because they can
mirror the pathological state of their originating tissue, thereby aiding in the early and
non-invasive detection of cancers and other diseases [4,5]. Consequently, the potential for
personalized medicine through tailored exosome therapies emphasizes the need for further
research alongside careful ethical considerations.

The increased interest in both clinical translation and commercialization of exosome-
based products is accompanied by several challenges. Regulatory bodies are anticipated
to develop comprehensive guidelines addressing the characterization, safety, and efficacy
of these products, which is vital for mitigating concerns related to immunogenicity and
long-term effects [12,15]. Equally, preclinical and clinical trials are essential to validate thera-
peutic benefits and standardize production methods [2,15]. Challenges remain in managing
EV source variability, scaling up production, standardizing isolation and characterization
protocols, and ensuring batch-to-batch consistency regarding safety and efficacy [5]. In-
stitutions like the Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) have created frameworks highlighting the significance of adhering to good
manufacturing practices and robust quality control standards. Concurrently, initiatives to
commercialize products aim to improve the production yield, purity, and stability of EV
formulations [5,6,16–22]. This robust growth trajectory in clinical development suggests
that EV may soon play a central role in advancing precision medicine across diagnostics,
therapeutics, and drug delivery [5].

On a regional level, regulatory agencies have begun formulating guidelines specific
to EV-based products; however, discrepancies in classification and evaluation criteria still
exist across jurisdictions. For example, while the FDA regulates EV under the Public Health
Service Act, the EMA may classify certain EV therapies as advanced therapy medicinal
products (ATMPs) depending on their content and function [23]. Similarly, countries
such as South Korea, Japan, and Taiwan have either implemented or are in the process of
developing distinct regulatory strategies that reflect local scientific priorities and healthcare
needs [23]. This situation underscores the necessity for global regulatory harmonization
aimed at streamlining clinical translation and commercialization processes while ensuring
public health safety [24]. Ultimately, establishing a unified global framework is crucial
to maintain consistent manufacturing practices, protect patient safety, and facilitate the
responsible translation of EV research into clinical applications. Collaboration among
regulatory agencies, researchers, and industry stakeholders will be key to fostering an
innovative yet secure regulatory environment. Moreover, in this review, we provide a
comprehensive analysis of the current global regulatory framework, challenges, compare
regional differences, and propose strategies for achieving global harmonization.

2. Exosome-Based Therapeutics in Clinical Trials
Exosome-based therapeutics have attracted considerable scholarly attention in recent

years, as illustrated by the growing number of clinical trials conducted across diverse
medical fields. Their potential is being investigated for an array of conditions, including
cancer, cardiovascular diseases, neurodegenerative disorders, and inflammatory ailments.
In particular, considerable focus has been placed on mesenchymal stem cell (MSC)-derived
exosomes due to their regenerative and immunomodulatory capabilities. For instance,
clinical trials evaluating their application in COVID-19 pneumonia have provided evidence
that these exosomes can expedite recovery through anti-inflammatory and reparative
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mechanisms [25–27]. Moreover, a clinical trial employing nebulization therapy with MSC-
derived exosomes has been initiated to assess their benefits in treating severe pulmonary
complications associated with SARS-CoV-2 infections [25]. Similarly, studies examining
MSC-derived exosomes for premature ovarian insufficiency (POI) have indicated promising
therapeutic potential in reproductive health [28,29].

In the field of oncology, exosomes are under active investigation as vehicles for targeted
drug delivery, particularly in RNA-based therapeutic applications. These vesicles may en-
hance treatment protocols and serve as carriers for interfering RNAs (siRNAs) and messenger
RNAs (mRNAs) [30,31]. Contemporary clinical trials in pancreatic cancer and glioblastoma
are evaluating exosome-based drug delivery systems that aim to increase cytotoxicity against
tumors while reducing systemic toxicity [32]. Furthermore, exosome-based cancer vaccines
are being explored, capitalizing on the inherent ability of these vesicles to stimulate immune re-
sponses against specific malignancies [10,33]. In addition, subsequent studies have broadened
the scope of exosome applications; for example, in the context of neuroprotection following
ischemic strokes, several clinical trials suggest that exosomes may facilitate recovery through
neuroplastic mechanisms [34,35]. Preliminary evidence in gastrointestinal diseases further
indicates that exosome-based therapies may modulate immune responses and promote tissue
repair in conditions such as inflammatory bowel disease [5,36].

Despite these encouraging advancements, the translation of exosome research into clinical
applications faces numerous regulatory challenges. The intrinsic complexity of exosomes as
biological entities mandates the establishment of stringent frameworks to ensure their safe
and effective use as therapeutic agents. Accordingly, the following discussion examines the
principal regulatory challenges currently confronting exosome research, particularly in the
context of clinical trials and the development of exosome-based therapies.

First, a prominent challenge pertains to the classification of EVs within existing regula-
tory frameworks. As EVs may be categorized as either biological products or drug delivery
systems, their regulatory oversight becomes inherently complex [9,37]. Considering that
EV therapies are relatively novel, current regulatory guidelines may not fully address the
unique characteristics and functionalities of these vesicles. Regulatory agencies, such as
the U.S. FDA, are still in the process of developing the requisite policies to govern the
production, clinical trials, and therapeutic applications of EV [9,15]. Furthermore, the ab-
sence of universally accepted protocols for exosome isolation and characterization further
compounds these regulatory hurdles [2,37].

Moreover, the regulatory approval process demands an in-depth understanding of both
the pharmacokinetics and therapeutic efficacy of EV therapies [15]. This process necessitates
rigorous preclinical and clinical evaluations to establish safety and effectiveness, frequently
involving extensive data collection regarding the behavior and effects of exosomes in varied
biological environments. The challenge is further compounded by the need for researchers to
delineate the intricate pathways of exosome biogenesis, uptake, and functionality to provide
compelling evidence for regulatory submissions [15]. As highlighted in reviews focusing
on exosome dynamics, these factors must be systematically characterized to facilitate the
seamless translation of exosome-based therapies into clinical practice [37,38].

In addition, issues related to the standardization of exosome preparations continue to
impede their clinical application. Given that individual studies often employ different meth-
ods for exosome isolation, variability in exosomal composition and functional outcomes is
observed [5]. Consequently, regulatory agencies face significant difficulties in evaluating
the consistency and reliability of EV-based products [2,39]. The lack of standardized quality
controls may lead to substantial variances in therapeutic outcomes, thereby posing a barrier
to the recognition of EV-based interventions as established clinical therapies.
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Further complicating the regulatory landscape is the dynamic nature of EV content,
which can be influenced by factors such as cell type, disease state, and environmental
conditions [40]. Accordingly, regulatory frameworks must be sufficiently adaptable to
accommodate these variables and accurately capture the biological intricacies of exosomes
as therapeutic agents. This evolving scenario necessitates continuous dialogue between
researchers and regulatory authorities to formulate guidelines that foster innovation while
ensuring patient safety [2,41].

In summary, although EV research holds considerable promise for advancing ther-
apeutic strategies, it is encumbered by regulatory challenges arising from classification
uncertainties, the imperative for robust pharmacological data, and the complexities of
standardization. Overcoming these obstacles will be pivotal in the successful integra-
tion of EV-based therapies into clinical practice, an endeavor that will require concerted
collaborative efforts among stakeholders in the biomedical field [15,37,38] (Figure 1).

 

Figure 1. Comparative overview of the principal advantages and key challenges in exosome-based
therapeutics. (Left Panel): core advantages—efficient barrier crossing, high biocompatibility and low
immunogenicity, versatile cargo loading, targeted delivery, and improved stability. (Right Panel): main
hurdles—regulatory ambiguity, mechanistic gaps, scale-up and purification constraints, quality control
issues, and batch heterogeneity.

3. Global Regulatory Frameworks for EV
The global regulatory frameworks that govern the development and approval of EV-

based therapies are both intricate and regionally disparate (Table 1), thereby influencing their
clinical translation. Consequently, exosomes—as biologic medicines—face significant regulatory
hurdles owing to their unique intracellular mechanisms and heterogeneous manufacturing
techniques, which impede efforts at standardization. Globally, regulation generally hinges on
two primary strategies: firstly, evaluation of the molecular and physiological effects of EV cargo;
and secondly, assessment based on the methods of EV acquisition and production [15]. Under
the first strategy, regulators determine whether bioactive components—such as functional RNAs
or modified proteins—elicit therapeutic or diagnostic effects, thus classifying the product as
a biological drug or an ATMP [15]. In contrast, the second approach—common in certain
Asian jurisdictions—categorizes EV-based products according to their provenance (e.g., isolation
from living cells, bioengineering, or derivation from nonliving materials), irrespective of cargo
composition [15]. Furthermore, EV-based therapies are typically regulated akin to biological
medicinal products, requiring in-depth characterization of molecular composition, structure,
pharmacokinetics, and therapeutic efficacy, although these requirements continue to challenge
regulatory agencies [15].
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Table 1. Overview of regional regulatory frameworks for EV-based therapeutics, detailing the
responsible authorities, classification status, pathways, and principal evaluation criteria across key
jurisdictions.

Region/Country Regulatory Authority Regulatory Status & Classification Classification Focus

United States U.S. Food and Drug Administration (FDA)
EV are regulated as biologics/drugs and
subject to premarket review; no products
approved to date

Content characterization; physiological
function

European Union European Medicines Agency (EMA)
EV fall under the advanced therapy
medicinal product (ATMP) regulation;
classification criteria remain unclear

Cargo composition; functional (RNA)
content

Japan Pharmaceuticals and Medical Devices Agency
(PMDA)

Dedicated subcommittees evaluate safety
and quality of EV therapies

Source of manufacture; living vs.
nonliving

South Korea Ministry of Food and Drug Safety (MFDS) Published specific guidelines for
EV–based therapies Manufacturing source

Taiwan Taiwan Food and Drug Administration
(TFDA)

Regenerative Medicine Development Act
encompasses EV; cosmetic use explicitly
permitted

Manufacturing source; regenerative
applications

India Central Drugs Standard Control Organization
(CDSCO) & ICMR

Stem-cell therapies regulated; no
EV-specific therapeutic guidelines
established

Nascent and evolving

Australia Therapeutic Goods Administration (TGA) Stem-cell and tissue therapies regulated
since 2019; no dedicated EV guidelines Nascent and evolving

China National Medical Products Administration
(NMPA)

EV products regulated under the same
framework as biological new drug
applications

Nascent and evolving

Switzerland Swiss Agency for Therapeutic Products
(Swissmedic)

EV-derived products classified as
biological medicines; may be regulated as
ATMPs when cells are extensively
manipulated

Nascent and evolving

United Kingdom Medicines and Healthcare Products
Regulatory Agency (MHRA)

EV therapies classified as biological
medicinal products; ATMP framework
applies if derived from manipulated cells

Nascent and evolving

Regional disparities further shape approval pathways (Table 1). For instance, in
Europe, EVs are not considered ATMPs unless incorporated into gene therapies, a classifi-
cation that directly affects regulatory strategy, jurisdictional oversight, and development
timelines [42]. Although the EU’s ATMP Regulation provides a harmonized framework for
regenerative medicine, it has been criticized for not keeping pace with rapid technological
advances [43]. In the United States, regulatory responsibilities are shared between the
Center for Biologics Evaluation and Research (CBER) and the Center for Drug Evaluation
and Research (CDER), with oversight determined by the specific application of the EV
product [42]. Meanwhile, Japan’s Pharmaceuticals and Medical Devices (PMD) Act and
the Act on the Safety of Regenerative Medicine (ASRM) permit conditional, time-limited
marketing authorizations, thereby expediting development while safeguarding patient
welfare [44]. The International Society for Extracellular Vesicles (ISEV) emphasizes the
necessity of collaboration among researchers, clinicians, and regulatory authorities to
ensure the safe and effective clinical translation of EV-based therapies [45]. Despite the
expanding promise of EVs in regenerative medicine, oncology, and targeted drug deliv-
ery, critical obstacles—particularly those relating to isolation, purification, and regulatory
standardization—remain [2]. Overall, while significant progress has been made, regulatory
frameworks must evolve further to address the unique challenges posed by EV-based
therapies and to facilitate their clinical application [46,47].

Overall, significant progress has been made in recognizing the potential of EV-based
therapies, yet numerous challenges remain in their regulatory oversight. The development
of comprehensive guidelines addressing the isolation, characterization, and therapeutic
efficacy of EV, along with international regulatory harmonization, will be crucial in enabling
these innovative therapies to fulfill their promise in clinical settings.
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On the other hand, regulatory frameworks for bioengineered EVs and exosome-based
therapeutics are still evolving but currently hinge on established biologics and advanced
therapy medicinal product (ATMP) pathways. Initially, regulatory agencies such as the
FDA and EMA treated naïve EV-based therapeutics under existing biologics or ATMP
frameworks—requiring demonstration of identity, purity, potency, and safety analogous
to protein biologics and cell therapies; however, with the advent of bioengineered EVs
(encompassing cargo-loaded vesicles and surface-functionalized constructs), regulators
are beginning to adopt risk-based classification schemes that accommodate these modifica-
tions without reinventing guidance entirely [48]. Consequently, engineered EVs may be
regulated variably as biologics, combination products, or gene-therapy medicinal products
depending on their composition and intended function, thereby invoking combination-
product pathways under Section 351 of the U.S. Public Health Service Act or Regulation
1394/2007 in the EU [15]. In the United States, the FDA treats engineered EVs as biological
products under the Public Health Service Act, requiring Investigational New Drug (IND)
applications, detailed chemistry manufacturing control (CMC) documentation, potency
assays, and rigorous viral safety testing prior to clinical trials [15,49]. In Europe, the EMA
classifies exosome preparations as ATMPs under Regulation (EC) No 1394/2007, man-
dating Good Manufacturing Practice (GMP) compliance, comprehensive source material
characterization, nonclinical safety studies, and clinical trial authorization through the
Committee for Advanced Therapies (CAT) process [50]. Moreover, CMC requirements now
mandate validation of cargo encapsulation efficiency, detailed characterization of surface
modifications, and lot-to-lot consistency through advanced analytics such as single-vesicle
profiling. Furthermore, preclinical safety assessments and clinical trial designs must reflect
altered biodistribution and immunogenicity profiles of engineered EVs, driving the integra-
tion of adaptive safety-monitoring plans and comprehensive pharmacovigilance strategies
that track both EV-related and cargo-related adverse events. At the global level, ICH and
WHO have initiated harmonization efforts—such as ICH Q5E on biotechnology-derived
proteins and WHO draft guidelines on vesicle therapeutics—to align nomenclature, quality
standards, and preclinical models, although regional differences in classification criteria and
documentation requirements persist and international harmonization remains incomplete,
highlighting the urgent need for a unified, risk-based framework that explicitly addresses
both naïve and engineered EV products to accelerate safe global translation [15,51,52].

In summary, naïve extracellular vesicles have been regulated under existing biologics
and ATMP frameworks, with emphasis on particle characterization, purity, potency and
safety. In contrast, bioengineered EVs now fall under risk-based schemes that add require-
ments for validating cargo loading, surface modifications and batch consistency. While the
FDA and EMA continue to use IND and ATMP pathways, global harmonization is still
emerging. From the author’s perspective, a unified, risk-based regulatory framework that
explicitly covers both naïve and engineered vesicles—without diluting the rigor of current
biologics oversight—will be essential to ensure their safe and effective clinical translation.

3.1. United States Regulatory Framework

In the United States, products based on EV for treating or preventing diseases are
categorized as drugs and biologics, falling under the regulatory frameworks of the Public
Health Service (PHS) Act Section 351 and the Federal Food, Drug, and Cosmetic (FD&C)
Act [15,52]. Accordingly, sponsors are required to submit an Investigational New Drug
(IND) application and, following successful clinical trials, file a Biologics License Appli-
cation (BLA) with the FDA’s Center for Biologics Evaluation and Research (CBER) [52].
Furthermore, the FDA has consistently issued public safety notices and undertaken en-
forcement actions against the marketing of unapproved EV products, thereby highlighting
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regulatory gaps and the urgent need for comprehensive guidelines [15]. To ensure patient
safety, the FDA has also released consumer alerts stating that no EV -based product is cur-
rently approved and cautioning against clinics that promote unapproved “stem cell” and
EV interventions [53]. Given the intricate nature, heterogeneity, and incomplete elucidation
of the mechanisms underlying EV products, the FDA aligns its regulatory oversight with
the stringent requirements applicable to biologic drugs, including adherence to current
Good Manufacturing Practice (cGMP) standards for quality control, safety testing, and
consistency in manufacturing [15]. This rigorous regulatory stance reflects the agency’s
commitment to balancing innovative advancements in regenerative medicine with pa-
tient safety, emphasizing the critical need for robust clinical evidence and standardized
production processes before marketing authorization can be granted [52].

In summary, although EV therapies hold immense promise, the regulatory framework
is still evolving. There is a clear need for adaptive and expansive guidelines to facilitate the
safe transition of these therapies from the research phase to clinical practice, ensuring that
their potential benefits are effectively realized [9,37].

3.2. European Union Regulatory Framework

The European Union (EU) predominantly classifies EV-based therapies as biological
medicinal products, subjecting them to strict regulatory oversight similar to that applied to
advanced therapy medicinal products (ATMPs) when their contents have a direct impact on
physiological functions [15]. According to the European Directive (Directive 2001/83/EC)
and Regulation 1394/2007/EC, EVs that are either directly purified from cells or contain
functionally translated RNA with expected therapeutic effects are categorized as ATMPs.
Consequently, these products are reviewed by the Committee for Advanced Therapies
(CAT) at the European Medicines Agency (EMA), which assesses their quality, safety,
and efficacy prior to granting marketing authorization [15]. Moreover, products that
encapsulate recombinant nucleic acids or gene-modulating components may be regulated
as gene therapy medicinal products under this framework [15].

The classification primarily depends on whether the EV composition exerts a specific
mechanism of action affecting physiological functions, distinguishing them from ordinary
biological specimens [15]. In addition, quality control, manufacturing processes, and clinical
evaluations are required to meet Good Manufacturing Practices (GMP) and Chemical,
Manufacturing, and Control (CMC) regulations, thus ensuring consistent pharmaceutical
quality throughout the product lifecycle [15]. Nevertheless, the intrinsic heterogeneity and
batch-to-batch variability of EV continue to pose significant challenges for standardization
and regulatory harmonization [15].

Notably, the use of human-derived EV in cosmetic products is prohibited under
EU Cosmetic Regulation (EC) No 1223/2009 due to safety concerns, such as risks of
contamination and immunogenicity [54]. Therefore, regulatory pathways for EV-based
therapies focus primarily on therapeutic applications rather than cosmetic uses [54].

Furthermore, the EMA actively issues scientific recommendations and guidelines
to promote the safe clinical translation and commercialization of EV-based therapeutics.
These recommendations emphasize the necessity for clear product characterization, a
comprehensive mechanistic understanding, and rigorous clinical evaluation to safeguard
patient safety while fostering innovation in this emerging field [15].

In summary, the EU regulatory framework mandates that EV therapies be managed
as sophisticated biological medicinal products—often as ATMPs—with oversight by the
EMA’s CAT committee, strict adherence to GMP, and comprehensive clinical evaluations to
ensure safety and efficacy prior to market authorization. Although this framework accounts
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for the unique nature of EV, it also underscores ongoing challenges in quality control and
standardization that will require continuous refinement [15,54].

3.3. Japan Regulatory Framework

In Japan, the regulatory framework for EV therapies is defined by a dual-track system
designed to expedite the availability of regenerative medicinal products while ensuring
patient safety. This system, influenced by the Pharmaceuticals, Medical Devices, and Other
Therapeutic Products Act (PMD Act) and the Act on the Safety of Regenerative Medicine
(ASRM) enacted in November 2014, promotes innovative therapies by allowing conditional
and time-limited approvals for regenerative products, including EV therapies [47,55,56].

Nevertheless, Japan currently does not have specific legislation or detailed regulations
that directly address EVs, such as EV, beyond the general oversight provided by the Medical
Practitioners’ Act and the Medical Care Act [57]. Consequently, EV-based therapies are
often utilized in clinical settings without comprehensive scientific validation or regulatory
scrutiny, resulting in their widespread application even in the absence of robust efficacy
or safety data. Moreover, the lack of mandated tracking and reporting mechanisms for
adverse events further complicates patient safety oversight and emphasizes the urgent
need for clearer regulations [58].

Although the dual-track system is intended to balance patient access with safety by
employing risk-based classifications and certified review committees, the inherent vari-
ability of EV, stemming from differences in origin, culture conditions, and manufacturing
methods, poses significant challenges to standardization and quality control that current
cell therapy frameworks do not fully address [15]. Consequently, there is a growing call
within the scientific and regulatory communities for dedicated guidelines and regulatory
measures specifically tailored to EV therapies to ensure consistent product quality and
patient protection while still promoting innovation [15].

In summary, while EV therapies in Japan are currently managed as biologic medicinal
products under existing pharmaceutical laws, the absence of EV-specific legislation and
comprehensive safety monitoring has led to regulatory ambiguity and potential patient
risks. Therefore, enhanced regulatory oversight, clearer classification guidelines, and
improved adverse event tracking are imperative to support the safe clinical development
and application of EV-based therapies in Japan [15]

3.4. South Korea Regulatory Framework

South Korea’s oversight of EV therapies is primarily determined by the “Act on the Safety
of and Support for Advanced Regenerative Medicine and Advanced Biological Products,”
enacted in August 2019 and set to take effect in February 2025 [59]. This legislation is designed
to safeguard patient safety and ensure the quality of advanced regenerative treatments,
including EV-based therapies, by establishing stringent oversight over their development,
manufacturing, and clinical application [15]. In this framework, both the Ministry of Food
and Drug Safety (MFDS) and the National Institute of Food and Drug Safety Evaluation
(NIFDS) play pivotal roles by issuing detailed guidelines that cover quality standards as well
as nonclinical and clinical evaluation criteria specifically for EV therapeutics [15]. Moreover,
EV products are classified as biologics and regulated under standards similar to those for
cellular and gene therapies, although with tailored requirements that address their unique
characteristics [15]. The MFDS enforces compliance with GMP specialized for advanced
biopharmaceuticals, thereby emphasizing rigorous quality control and safety protocols to
tackle challenges such as exosome heterogeneity and production variability [15]. Additionally,
the regulatory framework facilitates patient access by allowing controlled clinical research
pathways, which are authorized by designated institutions and overseen by a national review
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committee composed of scientific and medical experts [59]. Notably, South Korea’s approach
distinguishes itself by excluding minimally manipulated cells, such as cord blood, from
this advanced regenerative medicine pathway—a distinction that sets it apart from other
international frameworks [59]. Furthermore, recent regulatory milestones, such as the MFDS’s
authorization of S&E Bio’s Phase 1b clinical trial for an EV -based stroke therapy, underscore
the advancements enabled by this landscape [60]. Collectively, South Korea’s regulatory
structure embodies a comprehensive, science-driven approach that effectively balances the
promotion of innovation with patient safety, thereby positioning the country as a leader in the
global development and commercialization of EV therapeutics [15].

3.5. Taiwan Regulatory Framework

In Taiwan, EVs are recognized as cell-derived products within the realm of regener-
ative medicine, as explicitly defined by the recently enacted Regenerative Medicine Act
(RMA) [47]. The RMA encompasses genes, cells, and their derivatives, thereby including
EVs as regulated biological products. This systemic approach draws inspiration from regu-
latory models in Japan and South Korea while being tailored to Taiwan’s unique biomedical
landscape [47]. Consequently, EV therapies are categorized as biologic medicinal products
and must adhere to stringent quality and safety standards similar to those applicable to cell
and gene therapies [15].

The primary regulatory authority overseeing EV therapy in Taiwan is the Taiwan Food
and Drug Administration (TFDA), supported by the Center for Drug Evaluation [61]. The
TFDA is charged with ensuring compliance with Good Tissue Practice (GTP), GMP, and
Good Clinical Practice (GCP) standards throughout the entire lifecycle of EV products—
from raw material procurement to clinical application [61]. Simultaneously, the CDE
provides technical evaluations and detailed scientific assessments during the review of
submission dossiers for both regenerative medical technologies and preparations, which
include EV-based therapeutics [62].

Taiwan’s regulatory framework is dual-faceted, governing both regenerative medi-
cal technology—covering clinical use protocols—and regenerative medical preparations,
which encompass biologic drug products such as engineered EVs [62,63]. For regenerative
medical preparations, manufacturers must comply with site registration requirements and
adhere to GMP standards, which may involve foreign inspections or Plant Master File
(PMF) reviews, depending on the product’s country of origin [62]. Moreover, the develop-
ment and manufacturing processes for EV therapies must overcome challenges related to
their heterogeneity and instability by standardizing raw materials, controlling cultivation
environments, optimizing purification procedures, and ensuring thorough characterization
of their physicochemical and biological properties [15]. To this end, Taiwanese guidelines
have incorporated international recommendations, such as the ISEV, Minimal Informa-
tion for Studies of Extracellular Vesicles (MISEV) 2018, to standardize quality control and
characterization practices [15].

EV therapies are subject to a phased approval process in which clinical trial appli-
cations must comply with the Human Trials Management Regulation, in alignment with
international GCP standards [64]. Products that involve EV with minimal manipulation or
systemic effects may qualify for expedited or conditional approval pathways, analogous to
the “fast track” processes available for certain cell therapies in Taiwan [62]. However, a
rigorous demonstration of pharmacokinetics, mechanisms of action, safety, and efficacy
remains mandatory [15]. Additionally, the TFDA conducts post-marketing surveillance to
track adverse events and treatment efficacy, which is critical due to the risks linked with
biologics, including immunogenicity and off-target effects. All licensed institutions are
required to report adverse drug reactions and submit annual summary reports. Further-
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more, Taiwan’s proactive regulatory environment and supportive government initiatives
have spurred local industry participation and clinical research in EV therapy. For instance,
ExoOne Bio has obtained approval to use human-derived EVs as cosmetic ingredients
following a rigorous review process conducted by the Ministry of Health and Welfare
and the TFDA [65]. In summary, Taiwan’s regulatory framework for EV therapy reflects
its commitment to advancing innovative medical treatments through a dual-framework
approach that addresses significant scientific and regulatory challenges. As the field pro-
gresses, further regulatory adaptations will be essential to ensure the successful clinical
implementation of EV-based therapies.

3.6. Chinese Regulatory Framework

EV therapy represents an emerging frontier in biomedical science in China, attracting
significant attention and prompting the development of a specialized regulatory framework
to manage both its research and commercialization. Since 2017, China has implemented
a dual-track regulatory system that distinguishes between pathways for investigator-
initiated studies and commercial clinical trials involving cell-based therapies, including EV
products. This bifurcated system establishes clear and distinct requirements that facilitate
the progression from research to market approval, thereby enhancing regulatory clarity
and oversight for these innovative treatments [66].

At the core of this framework is the National Medical Products Administration
(NMPA), which serves as the primary authority overseeing EV therapies, particularly
those classified as cell therapy products. The NMPA is responsible for managing clinical
trial approvals, enforcing quality control standards, and granting market authorization, all
while ensuring that safety and efficacy criteria are rigorously evaluated before any thera-
peutic product reaches patients [66]. Complementing these measures, China has adopted
GMP that conforms to international guidelines, such as PIC/S GMP. These standards are
critical for ensuring quality assurance throughout the production and distribution stages,
emphasizing standardized production environments, consistent product quality, and full
traceability from raw materials to final products—factors that are essential in addressing
the inherent heterogeneity of EV preparations [66].

Moreover, government policies play a pivotal role in bolstering the EV therapy sec-
tor in China. Strategic initiatives like the “Healthy China 2030” plan allocate substantial
funding towards precision medicine and regenerative therapies, thereby indirectly accel-
erating innovation and the expansion of EV research and applications [67]. Additionally,
regulatory efforts have yielded fast-track approvals for over 40 EV-based therapies as of
2023, highlighting a proactive stance aimed at expediting the availability of promising
treatments while maintaining rigorous oversight [67]. Nonetheless, significant challenges
remain. The complexity of EV’s molecular composition and their dynamic biological func-
tions continues to impede full standardization. In response, China has adopted a cautious
regulatory approach that requires comprehensive preclinical and clinical data to ensure
reliable therapeutic outcomes, in line with international standards [66].

In conclusion, China’s regulatory framework for EV therapy is evolving in step with
technological innovations and emerging regulatory demands. With its emphasis on safety,
efficacy, and international alignment, the framework reflects a growing recognition of EV
therapy as a key element in future therapeutic strategies [66,67].

3.7. Indian Regulatory Framework

In India, the principal regulatory body for the approval, clinical trial conduct, and com-
mercialization of EV-based therapies is the Central Drugs Standard Control Organization
(CDSCO), operating under the Ministry of Health and Family Welfare (MoHFW) [68]. The
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Drugs Controller General of India (DCGI), who heads CDSCO, serves as the Central Licens-
ing Authority responsible for granting permissions related to clinical trials and marketing
authorization for new drugs, including biological products such as EV therapeutics [69].
Accordingly, the CDSCO’s responsibilities include the approval of investigational new
drugs, oversight of clinical trial protocols, and the enforcement of drug standards to ensure
product safety and efficacy [68].

In addition, the Indian Council of Medical Research (ICMR) plays a pivotal role
by issuing national guidelines focused on ethical conduct, research approval, and the
monitoring of stem cell and related advanced therapies. Particularly, the ICMR’s 2017
guidelines mandate that stem cell interventions, including EV applications, must occur
within sanctioned clinical trials. These trials require stringent oversight from Institutional
Committees for Stem Cell Research (IC-SCR) and Institutional Ethics Committees (IEC) [70].

Although a dedicated regulatory framework exclusively for EV therapies has yet to be
finalized, their governance in India currently falls under existing frameworks for biological
products, stem cell research, and regenerative medicine as stipulated by the Drugs and
Cosmetics Act, 1940, and its accompanying rules [71]. Under these regulations, EV-based
products are treated as biological medicinal products that must comply with GMP and
meet quality standards established by CDSCO [71]. Moreover, in 2019 the Government of
India issued national guidelines on gene therapy product development and clinical trials,
which, although primarily targeting gene therapy, provide procedural references applicable
to advanced biotherapeutics and new pharmaceutical products, including EV [23] Conse-
quently, clinical trials involving EV therapies must obtain prior approval from CDSCO (via
the DCGI) and the respective registered Ethics Committees, adhering to the comprehensive
provisions of the New Drugs and Clinical Trial Rules (2019). These rules require the de-
tailed submission of data on pharmacokinetics, safety, immunogenicity, and manufacturing
quality before initiating first-in-human trials [69]. Furthermore, CDSCO mandates the
registration and continuous monitoring of Ethics Committees to ensure ongoing ethical
oversight throughout clinical trials involving novel biologics and cell-based therapies. In
addition, each trial site must secure approval from a registered Ethics Committee to provide
multi-tiered review that safeguards participant rights and safety [69].

However, India’s current regulatory framework for EV therapy faces several chal-
lenges. Notably, the absence of dedicated, explicit guidelines that comprehensively address
the unique characteristics of EV products, including considerations related to donor eligibil-
ity, purification standards, potency assays, and long-term safety monitoring, has resulted
in regulatory ambiguity. This lack of a specific drug classification for EV products further
complicates both clinical translation and commercial approvals [23].

Therefore, to ensure the safe, effective, and ethical use of EV therapies, the Indian
regulatory system requires specific amendments and robust policy development. These
should include the establishment of dedicated regulatory guidelines for the manufacture,
quality control, clinical trials, and post-marketing surveillance tailored to the distinctive
nature of EV products [23].

3.8. United Kingdom Regulatory Framework

The regulatory framework for EV therapy in the United Kingdom is notably stringent,
reflecting the uncertainties and potential risks inherent to these emerging biological prod-
ucts. EV, broadly classified as EVs, are considered biological medicinal products and are
consequently regulated as advanced therapy medicinal products (ATMPs) by the Medicines
and Healthcare Products Regulatory Agency (MHRA) [72]. This status requires that their
quality, safety, and efficacy undergo rigorous evaluation prior to market authorization,
in accordance with both European Union and international standards for cell and gene
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therapies [73]. Currently, no EV-based therapies have received approval for clinical or
cosmetic use within the UK, largely due to insufficient clinical trial data to substantiate
their safety and effectiveness [74]. The MHRA has expressly stated that exosome injections,
particularly those used for aesthetic purposes like facial rejuvenation, cannot be legally
administered until robust evidence from controlled studies is provided [75]. As a result,
clinics offering human-derived EV products, such as those obtained from umbilical cord
blood or mesenchymal stem cells, are in violation of UK regulations, a situation that has
sparked calls for stricter enforcement measures to protect public health [76]. Moreover,
regulatory oversight includes strict adherence to GMP to ensure the purity, stability, and
reproducibility of EV preparations, as well as robust quality control to mitigate risks such
as microbial contamination or viral transmission [72]. UK authorities also follow guidance
from organizations like the ISEV and the European Medicines Agency (EMA) for standard-
ization and monitoring of these products [72]. Additionally, adverse events associated
with unlicensed EV therapies are required to be reported under established pharmacovigi-
lance frameworks, although existing surveillance systems for these novel interventions still
exhibit certain gaps [52].

In summary, the UK’s regulatory framework for EV therapy is characterized by
cautious and comprehensive control under the ATMP designation, emphasizing patient
safety through stringent pre-market evaluation and the prohibition of unapproved clinical
applications. This careful approach, while limiting immediate availability, is designed to
prevent public exposure to unproven and potentially hazardous treatments until further
scientific validation is achieved [74].

3.9. Switzerland Regulatory Framework

In Switzerland, EV therapy is primarily regulated by Swissmedic, the Swiss Agency
for Therapeutic Products, which is responsible for authorizing and supervising therapeutic
products to ensure their quality, safety, and efficacy [77]. EV-based products are classified
as advanced therapy medicinal products (ATMPs) in accordance with European Union
Regulation (EC) No 1394/2007, a framework with which Switzerland formally aligns
to promote regulatory harmonization (© Copyright Swissmedic 2019, n.d.) [78]. This
alignment subjects EV therapies to stringent oversight comparable to that applied to other
cellular and gene therapies, employing a risk-based, case-by-case evaluation that accounts
for the products’ biological complexity [77]. Moreover, the production, characterization,
and quality control of these therapies adhere to international standards, such as those
established by the ISEV, with particular emphasis on achieving the purity, potency, and
reproducibility expected of clinical-grade EV [72]. Although specific authorizations for
EV products by major regulatory bodies like the FDA remain absent, ongoing global
clinical trials highlight both the promise and the regulatory challenges of EV therapies—a
development that Swissmedic actively monitors within its evolving framework [72].

In conclusion, Switzerland’s regulatory environment for EV therapy is marked by
rigorous evaluation aligned with advanced therapy standards, prioritizing patient safety
and product quality while fostering convergence with European Union regulations to
support innovation in regenerative medicine [77].

4. Regulatory Challenges in Clinical Trials and EV Research
The rapid evolution of EV research has been accompanied by significant regulatory

challenges that substantially affect their clinical use as therapeutic agents. One of the
primary issues is the appropriate classification of EV within existing regulatory frame-
works. Regulatory agencies—most notably the U.S. FDA—are still determining whether
EV should be regarded as biological products, which would subject them to stringent
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biomanufacturing standards, or as drug delivery systems that might follow alternative
approval routes [9,37]. Furthermore, a core regulatory challenge arises from the absence
of standardized methodologies for exosome isolation, purification, and characterization.
This methodological variability can lead to inconsistencies in EV potency and therapeutic
efficacy, thereby complicating compliance with regulatory requirements [2,79,80]. Without
established protocols to guarantee the purity and precise content of EV preparations, con-
cerns regarding patient safety and treatment effectiveness persist. In addition, regulatory
bodies insist on a clear demonstration of the pharmacokinetics and biological activity of
EV therapies; however, the complex nature of these vesicles renders such assessments
particularly challenging [81,82].

Moreover, the scalability of EV production remains unresolved. Current production tech-
niques often fail to generate EV in commercially viable quantities while maintaining consistent
quality [5,80,83]. The requirement to adhere to GMP further complicates production, as many
academic institutions and early-stage companies may not have the necessary infrastructure to
meet these standards [80,84]. Consequently, the transition from preclinical investigations to
clinical applications critically depends on the development of robust production and quality
assurance protocols that satisfy regulatory expectations [38,80,85]. Additionally, the intrinsic
variability in EV composition—stemming from differences in cellular origin, cell passage num-
ber, culture mediums, and environmental conditions—challenges conventional diagnostic and
therapeutic evaluations and underscores the need for specific regulatory guidelines tailored
to EV products [15].

Furthermore, an incomplete understanding of the physiological mechanisms underly-
ing EV therapeutic effects, particularly regarding their pharmacokinetics, cellular uptake,
and mechanism of action (MOA), impedes the establishment of reliable potency assays
and comprehensive safety profiles. This lack of mechanistic clarity further complicates
regulatory approval and the assurance of consistent therapeutic outcomes [2,84]. Thus,
rigorous validation and standardization of EV products are essential for advancing this
field [5,37,38].

In summary, navigating the regulatory landscape for EV-based therapies requires the
development of standardized protocols for isolation and characterization, scalable manufac-
turing processes, and comprehensive regulatory compliance. Addressing these multifaceted
challenges is critical to unlocking the clinical potential of EV therapeutics [15,86,87].

To assemble a comprehensive overview of current and ongoing EV-based clinical trials,
we interrogated the World Health Organization’s International Clinical Trials Registry Plat-
form (ICTRP) using the keywords “Exosome” and “Extracellular Vesicle,” Figure 2, thereby
capturing data from the regions summarized in Table 2. The resulting dataset confirms that
EV-based investigational products are regulated globally under established biologics or
advanced-therapy frameworks. Specifically, in the United States, EV therapeutics require
submission of an Investigational New Drug (IND) application to FDA’s CBER or CDER
under 21 CFR Part 312 [88]. In the European Union, the EMA classifies EVs as advanced
therapy medicinal products (ATMPs) per Regulation (EC) No 1394/2007; sponsors file
a single Clinical Trial Application (CTA) via the centralized Clinical Trials Information
System under Regulation (EU) No 536/2014 and obtain Committee for Advanced Therapies
(CAT) classification [89,90]. In Japan, EVs fall under the PMD Act as regenerative-medical
products, necessitating a Clinical Trial Notification (CTN) to PMDA [91]. South Korea’s
Ministry of Food and Drug Safety regulates EVs as biologics requiring IND-type authoriza-
tion, IRB approval, and ICH-GCP compliance [92]. Taiwan’s TFDA classifies EVs as new
biologics under the Human Research Act, mandating IND applications or CTN filings with
centralized IRB cooperation [93]; India’s CDSCO governs EV trials under the New Drugs
and Clinical Trials Rules (NDCTR 2019), requiring CTA submissions and ethics-committee
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review [94]. In Australia, EV research proceeds under the TGA’s CTN (notification) or CTX
(full-review) schemes with Human Research Ethics Committee oversight [95], whereas
China’s NMPA employs a dual-track IND system for biologics and cell therapies [96].
Switzerland administers EV trials via Swissmedic under the Therapeutic Products Act and
Human Research Act using ClinO-compatible CTA dossiers [97], and the United Kingdom
regulates EV therapeutics as ATMPs under the Medicines for Human Use (Clinical Trials)
Regulations 2004, with combined MHRA and Research Ethics Committee review through
IRAS [98]. Across all jurisdictions, adherence to core ICH guidelines—such as Q5A/Q5B
for quality and E6 for good clinical practice—provides a consistent foundation for trial
design and conduct.

 

Figure 2. The proportion of EV-based clinical trials registered in the WHO ICTRP by regulatory
jurisdiction. China-NMPA accounts for 61% of total registrations, followed by the U.S.A.’s FDA (17%),
Japan’s PMDA (7%), India’s CDSCO (4%), South Korea’s MFDS, Australia’s TGA, and the United
Kingdom (3% each), with smaller shares from the EU’s EMA (CTIS) (1%), Taiwan’s TFDA (1%), and
Switzerland’s Swissmedic (<1%).

Table 2. Regional distribution of EV-based clinical trials registered in the WHO ICTRP, showing trial
counts by jurisdiction, product classification and corresponding regulatory submission pathways.

International Clinical Trials Registry
Platform (ICTRP) by Region Trial Counts Classification Regulatory Submission Pathways

U.S.A-FDA 33 Biologics (IND-regulated) IND (21 CFR 312)

EU-EMA (CTIS) 3 ATMP (Reg EC 1394/2007) CTA via CTIS (Reg EU 536/2014)

Japan-PMDA 14 Regenerative-medical product (PMD Act) CTN (Clinical Trial Notification)

South Korea-MFDS 5 Biologics IND authorization (CTN/CTA equivalent)

Taiwan-TFDA 3 New drug/Biologics IND application; c-IRB/CTN for MRCTs

India-CDSCO 8 Biologics/New drug (NDCTR 2019) CTA under NDCT Rules; IRB

Australia-TGA 5 Biologicals CTN or CTX scheme

China-NMPA 119 Biologics/Cell-therapy dual track IND submission (Pharma Admin Law)

Switzerland-Swissmedic 1 Medicinal products (ATMP-like under
TPA/HRA) CTA under ClinO; eDok_KLV dossier structure

United Kingdom 5 ATMP (MHCTR 2004/amend 2024) CTA via IRAS combined MHRA/REC review

5. Harmonization of the EV Regulatory Framework
International harmonization of the EV regulatory framework presents both a signifi-

cant challenge and a promising opportunity in biomedicine. The inherent complexity of
EV biology means that their development and manufacturing processes encounter unique
regulatory obstacles. Globally, differing regulatory approaches result in variations in how
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EVs are characterized and evaluated for clinical use. Wang and colleagues underscore that
achieving harmonization across these practices is crucial for ensuring safety and efficacy
across diverse jurisdictions Table 1 [15]. One promising strategy to advance harmonization
is the establishment of international cooperation frameworks. Current discussions advocate
a dual approach: one that focuses on the composition and biological effects of EV, and
another that evaluates their therapeutic implications [15]. In support of this, the ISEV
has called for the standardization of methodologies to assess exosome products, thereby
promoting a unified regulatory approach that spans both geographical and institutional
boundaries [45] Figure 3. Such collaborative efforts are essential, as inconsistent regulations
can impede innovation and delay the translation of research into clinical applications.
Moreover, international bodies such as the International Conference on Harmonization
(ICH) play a pivotal role in aligning regulatory standards for biopharmaceuticals, including
EV. Their established frameworks have fostered regulatory convergence across regions,
facilitating smoother collaborative efforts in drug development and approval processes [99].
Additionally, recent initiatives emphasize sharing best practices and aligning preclinical
and clinical evaluation standards to further bolster regulatory coherence in EV thera-
peutics [100,101]. Despite these advancements, notable challenges remain. For example,
incomplete harmonization—illustrated by experiences in the stem cell sector—can lead
to regulatory fragmentation, thereby compromising global assessments of efficacy and
safety [102]. Furthermore, stakeholders must navigate complex ethical, legal, and social
considerations as they work toward a more cohesive regulatory stance on EV [103]. Ad-
dressing these multifaceted issues necessitates an ongoing dialogue among regulatory
authorities, scientists, and healthcare providers to develop robust standards that support
innovation while safeguarding public health Figure 3.

 

Figure 3. Global regulatory ecosystem for EV-based therapeutics. Centralized ICH-driven harmoniza-
tion through ISEV/MISEV guidelines informs regional frameworks, guiding content characterization
and safety assessment. Divergent country-specific pathways—USA (FDA), EU (EMA), South Ko-
rea (MFDS), Japan (PMDA), India (CDSCO/ICMR), Taiwan (TFDA), China (NMPA), UK (MHRA),
Switzerland (Swissmedic)—are mapped alongside regulatory classifications (e.g., biologics, ATMPs) and
approval processes. This schematic underscores the complexity and the need for unified standards.

In conclusion, progress toward harmonizing the regulatory framework for EV ther-
apies is a multifaceted journey marked by both significant achievements and persistent
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challenges. Continued dialogue and alignment among global regulatory agencies are essen-
tial for establishing mutually recognized standards, streamlining approval pathways and
methodologies, enhancing regulatory efficiency, fostering trust, and ultimately improving
patient access to these innovative therapies [15,45,99–103].

6. Future Directions, Opportunities, and Policy Implications
As recognition of EV’ therapeutic potential grows, their regulatory framework con-

tinues to evolve. Given the inherent complexity of EV biology and their diverse clinical
applications, it is imperative to develop comprehensive regulatory guidelines that ensure
both safety and efficacy. Currently, existing regulations often lack the necessary specificity
regarding EVs, thereby complicating their development and approval. Accordingly, efforts
should concentrate on clearly defining EV within regulatory frameworks—whether as
biological products or drug delivery systems—especially in light of their complex biogene-
sis and biocompatibility [15,37,52]. Such clarity will enable researchers and companies to
navigate the regulatory landscape more effectively.

Moreover, advancements in exosome isolation and characterization techniques are
expected to play a crucial role in future research and development. The improvement and
standardization of these methods will enhance the reproducibility and purity of exosome
preparations, thereby facilitating more reliable clinical applications [2,104]. In addition,
integrating artificial intelligence and machine learning into data analysis could streamline
the biomarker identification process, thus accelerating the translation from basic research
to clinical trials [105].

EVs also present novel therapeutic opportunities, particularly in the field of personal-
ized medicine. Their capacity to transport nucleic acids, proteins, and lipids specific to the
originating cell allows for targeted therapies in diseases such as cancer, neurodegenerative
disorders, and metabolic conditions [38,106]. Furthermore, EV -mediated drug delivery
systems offer the potential to improve treatment efficiency while mitigating the adverse
effects commonly associated with conventional therapies [107]. Global collaboration is
another vital avenue for optimizing both regulatory and investigational processes in EV
research. Initiatives by international bodies such as the ISEV are essential for fostering
a unified approach to developing and implementing EV therapies [108]. Harmonizing
regulatory standards across countries could facilitate a smoother transition of EV-based
products into clinical practice, thereby accelerating medical innovation.

Given the rapid advancements in this field, regulatory frameworks must adapt accord-
ingly. Policymakers need to ensure that regulations are both comprehensive and flexible
enough to accommodate ongoing scientific and technological progress. This includes rec-
ognizing EVs as pivotal components of biologics, which necessitates stricter guidelines
concerning their composition, manufacturing, and clinical applications [109]. Addition-
ally, regulatory bodies should consider establishing fast-track pathways for promising EV
therapies similar to accelerated approval processes used for other innovative treatments,
to expedite patient access while maintaining rigorous safety and efficacy standards [110].
Complementary policy efforts should also focus on incentivizing research and development
in EV technology through targeted grants and funding, thereby empowering emerging
scientists and organizations to contribute meaningfully to this field [111,112].

7. Conclusions
In summary, EV-based therapies hold substantial promise, driven by ongoing scien-

tific advances and an evolving regulatory environment. Nevertheless, the global regulatory
landscape is filled with significant challenges, including the absence of harmonized interna-
tional guidelines, technical obstacles in characterization and manufacturing, and unresolved
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concerns regarding safety and efficacy. Consequently, the development of clear and robust
policies is expected to streamline the advancement process and promote collaboration among
researchers, clinicians, and industry stakeholders, ultimately enabling safe and effective appli-
cations across diverse medical fields. By tackling regulatory voids and adopting technological
developments, EV therapeutics can foster improved patient care.
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