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Abstract

Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abundant in serum and
other extracellular fluids and contain a large repertoire of proteins, mRNA and microRNA. Exosomes have been implicated in
cell to cell communication, the transfer of infectious agents, and neurodegenerative diseases as well as tumor progression.
However, the precise mechanisms by which they are internalized and/or secreted remain poorly understood. In order to
follow their release and uptake in breast tumor cells in real time, cell-derived exosomes were tagged with green fluorescent
protein (GFP)-CD63 while human serum exosomes were rhodamine isothiocynate-labeled. We show that detachment of
adherent cells from various substrata induces a rapid and substantial secretion of exosomes, which then concentrate on the
cell surfaces and mediate adhesion to various extracellular matrix proteins. We also demonstrate that disruption of lipid rafts
with methyl-beta-cyclodextrin (MbCD) inhibits the internalization of exosomes and that annexins are essential for the
exosomal uptake mechanisms. Taken together, these data suggest that cellular detachment is accompanied by significant
release of exosomes while cellular adhesion and spreading are enhanced by rapid uptake and disposition of exosomes on
the cell surface.
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Introduction

Exosomes are small nanovesicles (30–100 nm) that originate

from the inward budding of an endosome’s limiting membrane

into its lumen, giving rise to endosomes containing multiple intra-

luminal vesicles and therefore termed multivesicular body (MVB).

The outer membranes of MVBs can fuse with the plasma

membrane and release their intraluminal vesicles to the extracel-

lular milieu as exosomes [1,2]. Even though exosomes were

described more than two decades ago, it is only in the last three

years that thorough mechanistic studies of their functional roles

commenced in cancer. These recent studies have suggested that

exosomes take part in key physiological processes such as cell-cell

communication, cellular adhesion, migration, invasion, angiogen-

esis and growth of tumor cells [3,4,5,6]. Therefore, they can no

longer be considered simply as garbage bags for throwing out

unwanted protein cargo from the cell as originally suggested [7],

necessitating a recalibration of our understanding and of their

potential functions in physiological processes.

Exosomes have been shown to mediate the adhesion of breast

epithelial cells in culture [6]. Adhesion is exceedingly important

not only in cancer biology but other pathological conditions

including cardiovascular disorders [8,9]. It is generally assumed

that integrins on the cell surface are the major if not the only

players in extracellular matrix adhesion [10]. Recent studies

involving tumor cells, however, show that the process may be

more complicated, involving players other than integrins. Whereas

integrins require the presence of manganese or magnesium for

optimal activity [11], exosomal mediated adhesion and spreading

can be affected by calcium (unpublished information-J.O.)

Furthermore, we recently reported that in breast carcinoma cells,

fetuin-A and calcium ions may be just as important as integrins in

mediating adhesion dependent growth signaling mechanisms [12].

Intriguingly, platelet-derived microvesicles depleted of exosomes

have also been shown to mediate cell to cell as well as cell to

extracellular matrix (ECM) adhesion [13].

Due to multiple extracellular and intracellular physiological

processes that can be attributed to exosomes, there is a need to

define biochemical mechanisms that mediate secretion and uptake

of these vesicles. For example, it is becoming increasingly clear

that factors that impose stress on cells can mediate the secretion of

exosomes [14]. Increases in intracellular calcium that can be

induced by growth factors and ionophores have been shown to

mediate secretion of exosomes [15]. It is feasible that spikes in

intracellular calcium which occur for example when cells detach

from the substrata could be responsible for both the constitutive

and regulated secretion of exosomes. A number of studies utilizing

labeled exosomes have reported rapid uptake of these vesicles by

cells [16,17]. Some studies have shown that exosomes are

internalized via phagocytosis [18], while others suggest lipid raft

domains [19]. Whereas it is believed that exosomal secretion and

uptake is a means of intercellular communication including the
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exchange of microRNA and messenger RNA [20], there are

potentially other reasons why cells and especially tumor cells

uptake these vesicles.

The impetus for the present studies were the reports that

galectin-3 (Gal-3) and other members of the family are secreted in

exosomes [16,21,22,23] and our previous report showing that Gal-

3 secretion is increased in detached cells [24]. In order to define

the processes of exosomal secretion and uptake, we stably

transfected BT-549 breast cancer cells with green fluorescent

protein (GFP)-tagged CD63 and followed the secretion and uptake

of the GFP-labeled exosomes. CD63 is an integral membrane

protein known to be predominantly associated with MVB/late

endosomes and exosomal membranes [25,26,27]. Using this

approach we report, that exosomes are rapidly secreted upon

detachment of cells from substrata, a process that can be followed

in live cells. Interestingly, upon attachment, exosomes are taken up

by the adhered and spreading cells via membrane lipid rafts

domains. Annexins, particularly AnxA2 and AnxA6 are required

for the uptake mechanism. In addition, AnxA2 is associated with

immobile raft domains and is likely to immobilize exosomes on the

cell surface at specific adherent junctions.

Materials and Methods

Materials
Polyclonal antibodies to AnxA2, AnxA6, EEA1, CD71,

LAMP1, HSP90, and CD63 were purchased from Santa Cruz

Biotechnology Inc. (Santa Cruz, CA, USA). Monoclonal antibody

to green fluorescent protein (GFP) was purchased from OriGene

Technologies Inc. (Rockville, MD, USA). Alamar Blue, Alexa

fluor 555-tagged cholera toxin B and Alexa fluor 568-tagged

transferrin conjugates were purchased from Invitrogen (Carlsbad,

CA, USA). All the other reagents were purchased from Sigma (St.

Louis, MO, USA) unless otherwise stated.

Cell culture
The breast carcinoma cell lines (BT-549) and MDA-MB-231

were purchased from ATCC (Manassas, VA). A subclone of BT-

549 stably transfected with galectin-3 (BT-549Gal-3) was a gift

from Dr. Avraham Raz of Karmanos Cancer Research Institute.

These cells were propagated in culture medium (Dulbecco’s

modified Eagle’s medium/nutrient F-12 (DMEM/F-12) supple-

mented with 10% heat-inactivated fetal bovine serum, 2 mmol/

liter L-glutamine, 100 units/ml penicillin, and 50 units/ml

streptomycin in a humidified 95% air and 5% CO2 incubator at

37uC). Where indicated, serum-free medium (SFM) consisted of

DMEM/F-12 in which fetal bovine serum (FBS) was replaced with

0.1% bovine serum albumin (BSA).

Expression of GFP-tagged CD63 in BT-549 breast cancer
cells

Human CD63 cDNA in pCMV6-AC-GFP (pCMV6-GFP-

CD63) was purchased from OriGene Technologies Inc. (Rockville,

MD). BT-549 cells were grown overnight in six-well plates at 60 to

70% confluence, then transfected with 4 mg/well of purified

pCMV6-GFP-CD63 by using Fugene6 reagent as recommended

by the manufacturer (Roche Applied Science, Indianapolis, IN).

Cells were selected in complete DMEM/F-12 medium containing

500 mg/mL geneticin (G418) for three weeks. G418 resistant and

GFP positive cells were further isolated using fluorescence

activated cell sorting (FACS), expanded and maintained in

selection medium as long as the cells were in culture. The

expression of GFP-CD63 in the selected cell lines herein referred

to as BT-CD63 cells was verified by immunoblotting and

immunofluorescence.

Purification of exosomes from adherent and non-

adherent cells. BT-549 and BT-CD63 cells were cultured in

exosome-free medium (complete medium depleted of FBS-derived

exosomes) prepared as previously described [12]. The conditioned

media were first centrifuged at 20,000 6 g for 30 minutes to

remove micro-vesicles and other cellular debris. The resultant

supernatant was carefully collected, filtered through a 0.22- mm

pore filter (Millipore) and the exosomes pelleted by

ultracentrifugation at 100,000 x g for 1 hour at 4uC. The

exosome-containing pellets were dissolved in HBSS containing 1

mM MgCl2 and CaCl2. For purification of exosomes in non-

adherent (suspension) cells, BT-549 and BT-CD63 were grown as

described above. Cells were then washed twice with HBSS,

detached from the substrata using 2 mM EDTA and pelleted at

700 x g for 5 minutes. These were washed to remove EDTA and

re-suspended in 5 mL of EFM containing 1 mM MgCl2 and

CaCl2. Cells were subsequently incubated at 37uC for 2 hours.

The culture supernatants were then centrifuged at 3000 x g for 5

minutes to remove any cells and then at 20,000 6g for 15 minutes

to remove micro-vesicles and other cellular debris. The final

supernatant was carefully collected, passed through a 0.22- mm

pore filter (Millipore) and exosomes were concentrated by

ultracentrifugation at 100,000 x g for 1 hour at 4uC. The

concentration of proteins was determined by the Bradford assay.

To quantify GFP-CD63 labeled exosomes, BT-CD63 cells were

grown in complete DMEM/F-12 medium in 10 cm plates for

24 hours. Cells were washed twice with PBS and the complete

medium was replaced with 2% FBS DMEM/F-12 medium

without phenol red and exosomes in the conditioned medium were

transferred to 96 well plates and quantified by fluorescence

spectroscopy following excitation at 488 nm and emission at

509 nm (BioTek). We previously demonstrated the purity of these

exosomes by electron microscopy [6].

Further purification of exosomes, concentrated by differential

velocity centrifugation as described above, was performed by

density gradient centrifugation using sucrose step gradients (10%

to 60%). The exosome-loaded gradients were centrifuged at 200,

000 x g for 4 hours at 4uC using the Sorvall M150 micro-

ultracentrifuge and S120-AT2 rotor. Ten 120 mL fractions were

collected from the top of the gradient. Aliquots (20 mL) of each

fraction were then resolved in 4-12% SDS-PAGE and analyzed by

Western blotting.

Exosome uptake assays
Human serum exosomes were purified as previously described

[6]. The purified exosomes were re-suspended in 200 mL of HBSS.

GFP-CD63-labeled cell-derived exosomes were purified from

culture supernatants of BT-CD63 cells. BT-CD63, BT-549 and

BT-549 cells stably transfected with GFP-AnxA2 or GFP-AnxA6

cells were either grown in complete DMEM/F12 on microscope

coverslips (adherent cultures) or in anchorage-independent mode

on polyHEMA (Sigma) coated six-well plates. These were then

incubated with GFP-CD63-labeled cell-derived exosomes (10 mg/

ml) at 37uC for up to 3 hours. Cells growing on polyHEMA coated

wells were then transferred to glass cover slips coated with poly-L-

Lysine (Sigma) and allowed to attach for 20 minutes in complete

medium. The cells were then washed three times with cold PBS,

fixed in 3.7% paraformaldehyde for 15 minutes at room

temperature, quenched with 0.1 M glycine in cold PBS for 30

minutes, washed three times with PBS, and mounted with

ProLong antifade reagent (Invitrogen). Internalization of exosomes

Secretion and Uptake of Cellular Exosomes
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Figure 1. Detection and quantification of intracellular and released exosomes in the conditioned medium of BT-CD63. (A) BT-549
cells stably expressing GFP-CD63 were grown on glass cover-slips for 24 hours and the intracellular localization of the CD63-associated vesicles
visualized by confocal microscopy. Bar is 10 mm. (B) Over-expression of GFP-CD63. Total cell lysates from control BT-549 and BT-549 expressing GFP-
CD63 (BT-CD63) cells were analyzed by western blotting and probed with antibodies against CD63. (C) Exosomes purified from the spent media of
BT-CD63 cells were layered on top of a sucrose step gradient and centrifuged at 200,000 x g for 4 hours in a Sorvall M150 microcentrifuge. Equal
volumes of fractions collected from the top of the gradient (20 mL) were separated by SDS-PAGE and analyzed by western blotting for the co-
migration of CD63 and the indicated exosomal markers. (D) BT-CD63 cells (56106) were cultured in complete medium for 24 hours. Adherent cells
were maintained in phenol red and exosome-free DMEM/F-12 for the indicated times (0–6 hours). For non-adherent cultures, EDTA-detached cells
were resuspended in phenol red and exosome-free DMEM/F-12 for the indicated times (0–6 hours). GFP-CD63 tagged exosomes in the conditioned
media were assayed by fluorescence spectroscopy. (E) Purified exosomes secreted for 2 hours from adherent or non-adherent BT-CD63 cells (56107)
were separated in 4-12% SDS-polyacrylamide gels and analyzed by western blotting using antibodies against CD63 and the indicated exosomal
markers.
doi:10.1371/journal.pone.0024234.g001
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was observed under a laser scanning confocal microscope (Nikon

A1R).

Flow cytometry
BT-549 cells were pretreated without or with methyl-b-

cyclodextrin (MbCD) (10 mM) for 1 hour, and then incubated

with 10 mg/mL of GFP-labeled exosomes in PBS containing 0.5%

BSA. Cells were then fixed with 1% paraformaldehyde, quenched

with 0.1 M glycine in PBS, and permeabilized with PBS/0.5%

BSA, 0.02% Triton X-100. In the exosomal uptake studies, BT-

549, BT-A2-sh and BT-A6-sh, cells were incubated with GFP-

CD63 labeled exosomes diluted in PBS 0.5% BSA at 37uC for 30

minutes, fixed with 1% paraformaldehyde and quenched with PBS

0.1 M glycine (surface staining). For total staining (intracellular +
surface staining) as described by Ostrowski et al [28], cells were

incubated with GFP-CD63 exosomes then fixed with 1%

paraformaldehyde, quenched with PBS 0.1 M glycine, permeabi-

lized using PBS 0.5% BSA, 0.02% Triton X-100. Flow cytometry

data was acquired on a FACS calibur and analyzed using FlowJo

software.

Cell attachment assays
The wells of 96-well plates were coated in quintuplets with

fibronectin or laminin (10 mg/mL) in PBS. Prior to use, the

coating solutions were discarded, and wells washed twice with

PBS. BT-549 cells growing as adherent cultures in complete

DMEM/F-12 were harvested using 2 mM EDTA, washed and re-

suspended in EFM at 37uC for 2 hours to rid the cells of

endogenous exosomes. Cells were then pelleted and re-suspended

in serum-free DMEM/F-12 or serum-free DMEM/F-12 supple-

mented with exogenous exosomes (20 mg/mL). Equal number of

cells (2 x 104/well) with or without exosomes were added to each

well and incubated for different time points (30–120 minutes) at

37uC. After each time point, attached cells were washed, fixed

with cold methanol for 15 minutes and stained with 0.5% crystal

violet dissolved in 25% methanol for 10 minutes. The plates were

washed in water, dried overnight (12–16 hours) at room

temperature and photographed using a DCM200 digital camera

equipped with Scopephoto software. To determine the role of

secreted exosomes in subsequent cellular attachment, the cells

were pre-incubated with 30 mM BAPTA-AM for periods ranging

from 1 to 7 h in culture medium. Studies have shown that pre-

treatment of cells with BAPTA-AM down-regulates the secretion

of exosomes. The controls were incubated in culture medium

containing the same concentration of vehicle (DMSO) used to

dissolve the BAPTA-AM. After the incubation, the cells were

detached using 2 mM EDTA, washed in serum free medium and

added to wells coated with 1% fetuin-A in the absence or presence

of purified cellular or serum exosomes. We have shown that breast

tumor cells bind rapidly to wells coated with fetuin-A in SFM and

that fetuin-A is the major adhesion protein in serum [12].

Live cell imaging of exosomes secretion and uptake
Live-cell imaging was performed at 37uC by using a 60X oil

objective (numerical aperture, 1.4) of a laser scanning or Nikon

A1R confocal microscope. BT-CD63 cells were plated on 35-mm

imaging dishes (MatTek, Ashland, MA) and cultured overnight in

complete DMEM/F-12 medium. For live exosomal secretion

studies, EDTA (final concentration of 2 mM) was added to the

adherent BT-CD63 cells maintained at 37uC. Time-lapse images

Figure 2. Visualization in real time of cellular detachment-induced rapid release of exosomes from BT-CD63 cells. BT-CD63 cells or
GFP expressing control cells were plated on MatTek glass dishes for 24 hours. Prior to live-cell imaging cells were washed 2 times in PBS. Cells were
then treated with EDTA (2 mM) and the trafficking and release of GFP-labeled exosomes was monitored by time-lapse imaging for up to 10 minutes.
Upper panels are representative individual frames from time-lapse acquired images of GFP expressing control cells. Lower panels are representative
individual frames tracking the release of the GFP-tagged CD63 vesicles. The white arrow shows a strongly adhered cell that was not detached even
after 10 minutes following EDTA addition. The yellow arrows indicate stream of GFP-tagged CD63 vesicles that are being released (see movie S1 and
S2 in supplemental materials). Bar is 20 mm.
doi:10.1371/journal.pone.0024234.g002
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were captured using a 60X oil objective (numerical aperture, 1.4)

in the GFP channel at 5 second intervals using the laser scanning

Nikon A1R confocal microscope. All movies were edited using

Nikon EZ-C1 Free Viewer and saved as TIFF format for

presentation in QuickTime. To study the exosomal co-trafficking

with either cholera toxin B (CTXB) or transferrin (Tf), exogenous

GFP-CD63-labeled exosomes (10 mg/ml) diluted in HBSS con-

taining 0.5% BSA and 1 mM MgCl2 and CaCl2, were added

directly to the culture medium which was pre-cooled on ice for 10

minutes. Alexa Fluor tagged CTXB (10 mg/ml) or Tf (10 mg/ml)

were added to the culture medium and the cells were left on ice for

an additional 10 minutes. This mixture was then brought to room

temperature and imaged using the laser scanning Nikon TE2000

confocal microscope.

Fluorescence recovery after photo-bleaching
BT-549 cells stably transfected with GFP-ANXA2 or GFP-

ANXA6 were plated on glass coverslips in complete DMEM/12

(Invitrogen). After 24 h cells were washed three times with PBS,

loaded or depleted of cholesterol, or mock treated for controls. To

deplete the cells of cholesterol, the cell culture medium was

remove and discarded, and cells were washed with PBS and

incubated in HBSS 0.5% BSA containing 10 mM MbCD for

10 min. at 37uC. To load the cells with cholesterol, water-soluble

cholesterol mixed with MbCD in a 1:6 ratio (10 mM in MbCD)

was added to warm HBSS containing 0.5% BSA for 10 minutes at

37uC. Cells were rinsed with PBS prior to imaging. Fluorescence

recovery after photo-bleaching (FRAP) was performed on a Nikon

A1R laser scanning confocal. We used a Plan-Apo 6061.4

numerical aperture (NA) oil DIC lens at a zoom of 4x. GFP was

excited with the 488 nm line of a 40 mW argon laser at 0.5–1%

attenuated transmission and fluorescence emission collected using

a 505 long pass filter. The pinhole was set to 1 Airy unit and no

line averaging was used. We defined a 5 mm wide circular region

of interest (ROI) and photo-bleached GFP with 250 ms dwell time

at 100% transmission of a 40 mW argon laser. Since diffusion was

very rapid for GFP-AnxA2 and GFP-AnxA6 in control conditions,

we captured 15 images/s to produce our FRAP curves. FRAP

recordings were done on cells in PBS, pH 7.4 at room

temperature.

Western Blot Analysis
Cells were grown in 15-cm dishes until 80–90% confluent in

complete DMEM/F-12. The cells were washed once in ice-cold

PBS and harvested by scraping. Cells were disrupted in RIPA

buffer (50 mM Tris-HCl, pH 7.4, 1% Nonidet P-40, 0.1% sodium

deoxycholate, 150 mM NaCl, 1 mM EDTA) containing a cocktail

of proteases (Sigma) and phosphatase inhibitors (20 mM sodium

fluoride, 50 mM b-glycerophosphate, and 1 mM sodium ortho-

vanadate). Cell lysates or various fractions of sucrose gradients

were separated in 4–12% SDS–PAGE (Invitrogen), blotted on

Immobilon membranes (Southern Scientific). Blots were probed

with the indicated primary antibodies followed by HRP-conjugat-

ed secondary antibodies and revealed using enhanced chemilu-

minescence. The intensity of the bands was quantified using

ImageJ (NIH).

Results

Quantification of exosomal secretion by using GFP-CD63
as readout

To study the mechanisms of exosomal secretion and uptake we

have established a cell line (BT-CD63) stably expressing GFP-

CD63 as a model for our studies (Fig. 1A and B). CD63 is a

member of tetraspanins, a family of cell-surface associated proteins

characterized by four transmembrane domains [25]. CD63

predominantly co-localize in the membrane of MVB/late

endosomes and exosomes and give a characteristic punctate

pattern on direct or indirect immune-fluorescence images [25].

Exosomes isolated and purified from the BT-CD63 cell line are

decorated with GFP-CD63. GFP-CD63 is localized with other

exosomal marker proteins, HSP90a/b and LAMP-1 in fractions 4–

6 of the 10-60% sucrose gradient (Fig. 1C). It is interesting to note

that exosomal proteins usually elute in this range (fractions 4-6 of

the 10–60% sucrose gradient) [29,30]. Armed with the knowledge

that the breast cancer cells that express GFP-CD63 secrete

exosomes decorated with this protein, we obtained conditioned

medium (1 ml) from attached and an equal number of detached

BT-CD63 cells. Determination of GFP levels in the conditioned

medium revealed that detached cells release more exosomes over a

six hour period than the attached cells (Fig. 1D). The level of

exosomal proteins secreted into the conditioned medium of

adherent BT-CD63 cells for 2 h was compared to the level of

proteins in the exosomes released by the same number of cells

suspended for 2 hours. Results show that cells secrete approxi-

mately 5 to 6 times more exosomes when suspended for 2 h

compared to the secretion over 16 hours period from the same

number of cells that are attached (Fig. 1E).

Cell detachment triggers a rapid release of exosomes
To directly visualize the secretion/release of exosomes in live

cells, we again employed GFP-CD63 expressing BT-CD63 cells.

The cells were cultured on glass bottom culture dishes for

Figure 3. Distribution of GFP-CD63 containing exosomes in
adherent and non-adherent BT-CD63 cells. A-B) BT-CD63 cells
were maintained in adherent (panel A) or non-adherent (panel B)
modes as described in materials and methods and examined by
confocal microscopy Note that the EDTA-induced detachment of BT-
CD63 led to the accumulation of the GFP-CD63 labeled exosomes on
the cell surface. C-D), parental BT-549 cells in adherent cultures or in
anchorage-independent cultures on polyHEMA coated plates were
incubated with conditioned medium containing GFP-CD63 vesicles for
3 h. Cells were thereafter processed for microcopy as described in
Materials and Methods. Bar is 10 mm.
doi:10.1371/journal.pone.0024234.g003
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24 hours. Just prior to addition of EDTA (t = 0), cells showed what

appears to be a background movement and release of GFP

particles (Fig. 2B; movie S2). The addition of EDTA caused the

cells to retract and concomitantly a stream of green particles could

be seen shooting outwards within seconds (Fig. 2B; movie S2). The

unidirectional movement of the exosomal particles could be seen

going past the original cell borders marked by red. (Fig.2B).

Following their release into the extracellular milieu, the particles

Figure 4. Exosomes promotes rapid adhesion of BT-549 breast cancer cells. The wells of a 96-well culture plate were either uncoated
(plastic), or coated with 10 mg/ml of fibronectin or laminin for 16 hours at 37uC. Prior to use, the wells were washed twice with HBSS. BT-549 cells
were pre-incubated in serum-free medium for 2 hours to deplete endogenous exosomes. The cells in serum free medium (SFM) were divided in 2
groups and re-suspended in SFM containing 1 mM Ca2+/Mg2+ without or with cell-derived exosomes (10 mg/ml). Cells (26104) were transferred to 96-
well plates for indicated times (30–120 minutes) and incubated at 37uC. The unattached cells were aspirated with the SFM and the adhered cells fixed
in cold methanol and stained with crystal violet. Cells were photographed and the number of attached cells assessed by cell counting. Each bar
represents the mean 6 S.E of adherent cells per field. Bar is 40 mm.
doi:10.1371/journal.pone.0024234.g004
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(too small to be seen individually under microscope) dissipate and

fade away, suggesting that they move as a group which then

breakout as individual particles outside the cell. The exit of

exosomes is clearly evident in this cell (marked by red boundary) as

well as the cell marked by the star in Fig. 3B. To control for

fluorescence bleaching with time, we also examined a GFP labeled

epithelial cell within the time frames (see cell with red boundary)

(Fig. 2A). Also as this control cell retracts and detaches upon the

addition of EDTA, no particles are seen being secreted outwards

(Fig. 2A; movie S1). This live cell imaging confirmed our

observation that detachment accelerates the secretion of exosomes.

We next wanted to determine the localization of exosomes in

attached or adherent and spread cells as well as in non-adherent

spherical cells. Whereas we and others have observed that in

attached and spread cells, exosomes are concentrated in the

perinuclear region of the cell [6,18], the manner in which they re-

equilibrate in detached spherical cells had not been described. As

shown in Fig. 3, panels B and D, both endogenous and exogenous

or donated GFP-CD63 containing exosomes are concentrated on

the surfaces of non-adherent spherical cells. We have confirmed

this observation using purified exosomes labeled with rhodamine

isothiocynate (unpublished data). Endogenous GFP-CD63 con-

taining exosomes can be seen concentrated in the perinuclear

region in adhered and spread BT-CD63 (Fig. 3A). Like-wise,

purified exosomes bearing GFP-CD63 added to attached and

spread parental BT-549 enter the cells and localize to the

perinuclear region of the cell (Fig. 3C).

Exosomes promote adhesion and cell spreading to
plastic, laminin and fibronectin

We previously showed that in addition to mediating anchorage

independent growth of breast tumor cells, exosomes also promoted the

adhesion of these cells to plastic [6]. Here we determine whether these

vesicles also play a role in the rapid adhesion of tumor cells to the

common extracellular matrix proteins such as laminin and fibronectin.

Figure 5. Exosomes secreted by tumor cells during detachment are required for subsequent adhesion and spreading. In panel A, BT-
CD63 cells were plated in 35 mm with glass bottom dishes and allowed to adhere for at least 24 hours in complete DMEM/F-12 medium. The culture
medium was replaced with fresh medium containing 30 mM BAPTA-AM and allowed to incubate for another 7 hours. The dish was then placed on
microscope stage (Nikon A1R) and the live cells photographed (t = 0) and then 2 mM EDTA added. After 5 and 10 minutes of EDTA addition, images
were again taken of the cells. Bar is 20 mm. In panel B, BT-549-Gal-3 cells in control wells (untreated) and in BAPTA-AM treated wells (in the absence
and presence of purified cellular exosomes) were allowed to adhere to Fetuin-A coated wells, fixed, stained and photographed as described above.
Bar is 40 mm. In panel C, the experiments in B were repeated with a different cell line (MDA-MB-231). At the end of the incubation, the non-adhered
cells were washed off and fresh medium containing a 1:10 dilution of Alamar Blue added to the wells, incubated for another 1 h and cell number
determined by fluorescence spectroscopy.
doi:10.1371/journal.pone.0024234.g005

Secretion and Uptake of Cellular Exosomes
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Figure 6. The exosomal uptake route in breast carcinoma cells. BT-549 cells were grown on glass cover-slips for 24 hours. Cells were then
washed twice with HBSS, and treated with different concentrations of methyl-beta-cyclodextrin (MbCD) (0–10 mM) for 30 minutes. Subsequently,
cells were incubated with 10 mg/ml GFP-CD63 labeled exosomes in HBSS containing 0.5% BSA and 1 mM Ca2+/Mg2+ for 30 minutes at 37uC. In panel
A, the untreated (control) and cells pre-incubated with 10 mM of MbCD were washed in ice-cold HBSS and fixed with paraformaldehyde and cover-
slips mounted with Prolong Gold and visualized by confocal microscopy. Images were captured using a Nikon TE2000. Bar is 20 mm. In panel B, the

Secretion and Uptake of Cellular Exosomes
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The breast carcinoma cell line BT-549 adheres slowly to various

substrata and can take as many as 6 hours to fully adhere to plastic and

a minimum of 1 hour to laminin coated dishes [31]. We herein show

that in the absence of cellular exosomes, cells failed to adhere to any

substratum within the first 30 minutes, while in the presence of added

exogenous exosomes (,20 mg/ml), an appreciable number of cells

adhered and spread on plastic (control), laminin and fibronectin coated

wells within 30 minutes (Fig. 4, panels A and B). In the absence of

exosomes, even after 2 hours of incubation, only a handful of cells

adhered and spread on plastic (Fig. 4, panels A and B). Generally these

cells require an overnight incubation to fully adhere to plastic.

The significance of cell surface immobilized exosomes for
subsequent adhesion and spreading

We questioned whether the rapid secretion of exosomes and

their localization on the cell surface is required for subsequent

adhesion to the substrata. The release of exosomes is highly

dependent on increases in intracellular [Ca2+] [15]. Pre-incuba-

tion of BT-CD63 with BAPTA-AM inhibited the sudden release of

exosomes in live cells even after 10 min of addition of EDTA and

so there was no accumulation of exosomes on the cell surfaces

(Fig. 5A). To directly test this effect of BAPTA-AM on the

subsequent adhesion of cells, we pre-incubated BT-549-Gal3 cells

with BAPTA-AM for 7 hours prior to detachment following the

addition of EDTA. The BAPTA-AM pre-treated cells were not

able to adhere to fetuin-A coated wells even after 2 hours of

incubation while the control (untreated) cells were fully adhered

after only one hour (Fig 5B). Interestingly, the BAPTA-AM treated

cells were able to adhere and spread on fetuin-A coated wells in

the presence of 20 mg/ml of exosomes purified from the BT-549

cells (Fig. 5, panels B). To show that the release of exosomes for

adhesion is not unique to BT-549-Gal3, we also treated MDA-

cells were also processed for flow cytometry as indicated. Unstained control cells (black line) were included. In panel C, BT-549 cells grown on MatTek
glass bottom culture dishes were incubated in HBSS 0.5% BSA 1 mM Ca2+ 1 mM Mg2+ on ice for 10 minutes. The cells were then treated with 10 mg/
mL of alexa fluor Tf (left panel) or CTXB (right panel) and GFP-labeled exosomes on ice for 10 minutes again. The trafficking of GFP labeled particles
and colocalization with either Tf or CTXB (white arrows) were tracked live on the Nikon TE2000 for 10 minutes. Representative time-lapse images are
shown.
doi:10.1371/journal.pone.0024234.g006

Figure 7. Trafficking of GFP-exosomes in breast carcinoma cells. BT-549 cells gown on glass cover slips were incubated with purified GFP-
CD63 exosomes (green) for the indicated time points. At each time point the cells were fixed with PFA and stained with antibodies to the early, late
and recycling endosomes followed by TRITC conjugated secondary antibodies (red). The first row shows co-localization of GFP-exosomes with EEA1
(early endosomes); Second row shows colocalization with CD71 (recycling endosomes); and the third row shows colocalization with LAMP1 (late
endosomes). Bar is 10 mm.
doi:10.1371/journal.pone.0024234.g007
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MB-231, another popular breast cancer cell line without (control)

and with 30 mM of BAPTA-AM for 1 h and demonstrated that

whereas the control untreated cells adhered to fetuin-A coated

wells after detachment, the cells pre-treated with BAPTA-AM

failed to do so after detachment and only did so in the presence of

added serum exosomes (125 mg/ml) (Fig. 5C). The serum

exosomes were not as efficient as cell derived exosomes in

promoting adhesion and a much higher concentration was used.

The MDA-MB-231 cells appeared to be very sensitive to BAPTA-

AM and so were incubated for 1 h. Only cells that were 100%

viable after BAPTA-AM treatment were used for subsequent

attachment studies. Therefore, flooding of cell surfaces with

exosomes secreted upon detachment is critical for subsequent

adhesion of cells particularly in serum free conditions.

Uptake of exosomes via lipid rafts
The cellular mechanisms responsible for the uptake of exosomes

have been the subject of considerable debate in the literature

[32,33]. We hypothesized that exosomes are internalized via the

same gateway in the plasma membrane through which they are

secreted which in most cases has been shown to be lipid raft

domains [34]. Treatment of cells with methyl beta-cyclodextrin

(MbCD) in the range of 0–10 mM was quite effective in reducing

the uptake of GFP-CD63 labeled exosomes as indicated by

reduced fluorescence (Fig. 6, panels A and B). To further show that

the uptake of exosomes is via lipid rafts, GFP-exosomes were

incubated with the cells in the presence of either alexa fluor tagged

transferrin or cholera toxin B (CTXB) which are internalized via

clathrin coated pits or lipid rafts respectively. The data show that

GFP-exosomes co-migrate or traffic with CTXB (see arrows) but

not transferrin, again suggesting that uptake of exosomes is via

lipid rafts.

Trafficking of exosomes in tumor cells
In order to follow the uptake of exosomes more closely, we

examined whether they localize with markers of early endosomes

(EEA1), recycling endosomes (CD71) or late endosomes (LAMP-1)

in a time dependent manner. For the first 15 minutes of

incubation, the GFP-exosomes were hardly observed in early

endosomes (Fig. 7). However, after 30 min, some colocalization

with EEA1 was evident. After 1 h, GFP-exosomes were in the late

endosomes where they stayed for at least another 1 h and then

moved to the recycling endosomes after 4 h (Fig. 7).

Annexins mediate the uptake of exosomes by tumor cells
We have demonstrated that AnxA2 and AnxA6 are important

for cellular adhesion and growth in culture [12]. Knowing that in

adhered and spread cells exosomes are sequestered inside the cells,

we questioned whether the annexins played a role in the uptake

and intracellular trafficking of exosomes since these proteins are

usually associated with cellular but not serum derived exosomes

[6]. We therefore compared the uptake of GFP-CD63 bearing

exosomes (GFP-EXO) in BT-549 and its sub-clones that have

reduced expression of AnxA2 (BT-A2-sh) and AnxA6 (BT-A6-sh)

(Fig. S1, supplemental data). There was a reduction in the uptake

of exosomes (CD63-GFP) in BT-A2-sh and BT-A6-sh (Fig 8 A).

The uptake of exosomes was quantified by comparing fluorescence

intensities between surface and total GFP-CD63 fluorescence

according to the method of Ostrowski et al. [28]. A big difference

seen in parental BT-549 cells means a large uptake while a small

difference means a smaller uptake as indicated by the horizontal

lines (Fig. 8 B). Knowing that exosomes mediate adhesion of tumor

cells to various substrata and that exosomes that mediate adhesion

would be concentrated in the adhesion plaques, we questioned

which annexin member would associate or co-localize with these

plaques. The data show that it is AnxA2 that co-localized with

actin at the adhesion plaques on the cell surface (arrows) (Fig. 8C),

while AnxA6 was mainly localized in the cytosol (Fig. 8D).

Fluorescence recovery after photobleaching (FRAP)
assays

Lipid raft membrane microdomains are cholesterol and

glycosphingolipid-enriched [35]. Cholesterol is thought to play

an important role in the structure and stabilization of lipid rafts

and membrane proteins diffusing in lipid rafts have been shown to

have an overall lower diffusion or mobility [36]. Proteins

associated with caveolae-type lipid rafts on the cell surface are

typically considered immobile [37]. To probe the dependence of

AnxA2 and AnxA6 insertion within and diffusion on the plasma

membrane, we removed (depleted) cholesterol with methyl-b-

cyclodextrin (MbCD) and added (loaded) cholesterol using water-

soluble cholesterol (MbCD–cholesterol complexes) in cells ex-

pressing these proteins. Cholesterol depletion in effect should allow

a raft protein to diffuse faster, and under cholesterol loaded

conditions, proteins would diffuse slower or be unable to diffuse if

associated with caveolae [37]. AnxA2 had a slight but not

significant increase in lateral mobility with cholesterol depletion,

but was completely immobilized with cholesterol loading (Fig. 9A).

We extended the recovery time after photo-bleaching for the

AnxA2 in the loading condition to 3 min. We did not see any

significant diffusion or mobility during this time frame as well (data

not shown). These data suggest that AnxA2 is primarily associated

with caveolae lipid rafts. We found that the lateral mobility of

AnxA6 in cholesterol depleted or loaded conditions was not

different from controls (Fig. 9B), suggesting that this family

member is not associated with caveolae.

To determine the annexins that move to the late
endosomes in the absence and presence of added
extracellular exosomes

The data from the FRAP experiments suggest that AnxA2 is

immobilized on the cell surface while AnxA6 is mobile. In

addition, the trafficking of exosomes in tumor cells showed the

majority of exosomes translocated to the late endosomes. We

therefore used the same GFP-AnxA2 and GFP-AnxA6 transfected

breast carcinoma cells to determine which of these two family

members is capable of translocating to the late endosomes in the

absence and in the presence of added exosomes. AnxA2 did not

move to the late endosomes (LAMP-1) after 2 h of incubation

either in the absence or presence of added exosomes (Fig. 10A).

However, AnxA6 was capable of migrating to the late endosomes

after 2 h of incubation in the absence of exosomes. This trafficking

Figure 8. Annexin-mediated uptake and disposition of exosomes on the cell surface. Parental BT-549, BT-A2-sh and BT-A6-sh were grown
on glass coverslips or 10 cm dishes and incubated with GFP-CD63 exosomes and analyzed by (A) confocal microscopy or (B) Flow Cytometry. In
panels C and D, BT549 cells were grown on glass cover-slips, serum starved for 24 hours washed and stimulated without (control) and with 100 mg/
mL exosomes in HBSS 0.5% BSA 1 mM Ca2+ 1 mM Mg2+ for 5 and 15 minutes at 37uC and fixed with PFA. Cells were then treated with rhodamine
phalloidin for actin staining followed by antibodies to AnxA2 (C) and AnxA6 (D). Images were acquired with a Nikon TE2000 confocal microscope. Bar
is 20 mm.
doi:10.1371/journal.pone.0024234.g008
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Figure 9. Fluorescence recovery after photo-bleaching. BT-549 stably transfected with either GFP-AnxA6 (panel A) or GFP-AnxA2 (panel B),
were plated on glass coverslips in culture medium. After 24 h, the cells were washed 3X with PBS, loaded or depleted of cholesterol. Fluorescence
recover after photo-bleaching (FRAP) was performed on a Nikon A1R laser scanning confocal microscopy as detailed in Materials and Methods. FRAP
readings were done on cells in PBS, pH 7.4 and at room temperature.
doi:10.1371/journal.pone.0024234.g009

Figure 10. Trafficking of AnxA6 but not AnxA2 to the endosomal compartments as a function of exosomal uptake by BT-549 cells.
BT-549 cells gown on glass cover slips were incubated without or with purified GFP-CD63 exosomes (green) for 2 h. The cells were then fixed with
PFA and stained with antibodies to AnxA2 (panel A) or AnxA6 (panel B) followed by TRITC conjugated secondary antibodies (red). Bar is 10 mm.
doi:10.1371/journal.pone.0024234.g010
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to the late endosomes was substantially increased in the presence

of added extracellular exosomes (Fig. 10B). Together, these data

suggests that AnxA2 may be important in anchoring of exosomes

to lipid raft domains of the plasma membrane while AnxA6 may

be important in the trafficking of exosomes to the late endosomal

compartment.

Discussion

The present analyses were done to shed light on the

mechanisms that mediate the secretion, endocytic uptake and

the functional significance of exosomes in the extracellular milieu

of tumor cells. A complete understanding of the mechanisms

associated with exosomal mediated adhesion is essential towards

the effort to corral metastatic cells, which are more likely to utilize

this novel mode of adhesion. The data reported herein has enabled

us to develop a working model to define exosomal mediated

adhesion and growth related mechanisms.

We previously identified the ability of some tumor cells to

adhere very rapidly to various substrata. More importantly we

demonstrated that the tumor cells that adhered and spread rapidly

also expressed high levels of galectin-3, suggesting that this lectin

played a role in the rapid adhesion [31]. More recently we showed

that the cells which express high levels of galectin-3 also rapidly

secrete the lectin upon detachment from the substrata [24]. Based

on current data, the detachment induces a spike in the level of

intracellular calcium which in turn mediate the secretion of

exosomes [15]. The process by which exosomes were secreted as

observed in live cells was most intriguing. The secretory

mechanism appeared to be novel due to its speed, in that almost

90% of exosomes were externalized within 10 minutes. The

overarching finding from the present study, however, is that

secreted exosomes that accumulate on the cell surface are needed

for subsequent adhesion and growth of the tumor cells. Some of

the exosomal proteins particularly galectin-3 and annexins have

been shown to be up-regulated in tumor cells [38,39], and hence

the urgency to define their potential role(s) in the trafficking and

utilization of exosomes by tumor cells.

The rapid adhesion of cells to the various substrata only in the

presence of cellular exosomes, suggest that these vesicles harbor or

carry an assortment of adhesion receptors including integrins [40].

The exosomes containing integrins and possibly other adhesion

receptors are then likely to be anchored or immobilized at specific

‘adhesion plaques’ on the cell surface. The data suggest that tumor

cells with the propensity to adhere rapidly to various extracellular

matrix adhesion proteins and plastic, synthesize and secrete more

exosomes relative to those that take longer to adhere and spread.

This could be the domain of metastatic cells which have the

capacity to rapidly adhere to various substrata to gain a foothold

for growth advantage. Therefore as proof of principle, lack of

secreted exosomes in BAPTA-AM treated cells following their

detachment, mitigated their subsequent attachment and spread-

ing. It is however unclear why nearly all of the exosomes in the cell

have to be secreted outside only to be taken up by the cell during

attachment and spreading. It is possible that exosomes transport

adhesion receptors to the cell surface and once they have

positioned the receptors, they need to be rapidly internalized for

the receptors to function optimally. We have shown that in the

presence of an overload of exosomes (.100 mg/ml) cells do not

adhere and spread but instead form clumps (J. Ochieng,

unpublished data). Another possibility is that exosomes may be

critically needed for ‘initial’ adhesion which is then followed by

stronger integrin mediated adhesion as in the rolling model of

neutrophil migration into inflamed tissues [41]. We have

previously documented the uptake of exosomes in breast

carcinoma cells [6], while others have done so in other tumor

cell types [42]. However, to date, there is no firm consensus as to

the pathway by which exosomes enter or exit through the plasma

membrane. The proposed mechanisms have ranged from entry via

phagocytosis [18] to exit from the cells via cholesterol rich lipid

rafts [43]. The present studies suggest lipid raft micro-domains as

both the points of entry and immobilization of exosomes on the

cell surface and that annexins particularly AnxA2 and AnxA6 play

an active role in these processes.

Depletion of either AnxA2 or AnxA6 has been shown to

attenuate cellular adhesion and spreading [12,44,45]. The

immobilization of exosomes is likely to occur at the adhesion

plaques concentrated in the lipid raft micro-domains, and these

plaques associated with exosomes are likely to be responsible for

the rapid cellular adhesion. AnxA6 on the other hand may be

more relevant in the trafficking or re-cycling of exosomes from the

cell surface into the cell and vice-versa via lipid raft domains. The

present studies suggest important roles for AnxA2 and AnxA6 in

exosomal mediated adhesion with implications in the progression

of breast cancer. We have shown that silencing of AnxA6

abrogates cellular adhesion and spreading but promotes anchor-

age independent growth which may require exosomes to be

concentrated on the cell surface [45]. Cellular adhesion and

motility are not static processes; both involve the constant

recycling of adhesion receptors [46]. Apart from mediating

adhesion, exosomes interacting with their putative receptor(s) on

the cell surface may elicit cell signaling. We have demonstrated

that incubation of tumor cells with cellular or serum exosomes is

sufficient to activate MAP kinase [6]. The localization of exosomes

on the cell surface could also serve as platforms for cell-cell

interaction such as homotypic aggregation [47].

In summary, this study shows that detachment of cells is a

powerful trigger for the release of exosomes which are then

concentrated on the surfaces of detached spherical cells. This

release is likely to be a novel mechanism for shuttling adhesion

receptors and possibly other signaling molecules to the cell surface.

On the cell surface, exosomes interact with annexins where AnxA2

immobilize them on the cell surface at cholesterol rich lipid raft

domains while AnxA6 mediates the uptake and recycling of excess

exosomes via the same raft domains to facilitate adhesion and cell

spreading.

Supporting Information

Figure S1 Knock-down and GFP-tagged AnxA2 and
AnxA6 in breast carcinoma cells. BT-549 parental cells were

transfected with shRNA specific to AnxA2 (panel A) and AnxA6

(panel B). Stables puromycin-resistant clones were selected,

expanded and depletion efficient was verified by Western blotting.

BT-549 cells were transfected with GFP-AnxA2 (panel C) or GFP-

AnxA6 (panel D) and the expression efficiency was verified by

immunofluorescence and Western Blotting. Bar is 10 mm.

(TIF)

Movie S1 GFP expressing control cells were plated on
MatTek glass dishes for 24 hours. Prior to live-cell imaging

cells were washed 2 times in PBS. Cells were then treated with

EDTA (2 mM) and the trafficking of GFP was monitored by time-

lapse imaging for up to 10 minutes. GFP molecules remained

inside the cells as they retract.

(M4V)

Movie S2 BT-CD63 cells were plated on MatTek glass
dishes for 24 hours. Prior to live-cell imaging cells were
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washed 2 times in PBS. Cells were then treated with EDTA

(2 mM) and the trafficking and release of GFP-labeled exosomes

monitored by time-lapse imaging for up to 10 minutes. GFP-

labeled exosomes shoot out as the cells retract and by the end of

the movie, most of the GFP labeled particles have moved outside.

(M4V)
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