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SUMMARY

Cognitive output and physical activity levels fluctuate surrounding sleep. The ubiq-
uitous digitization of behavior via smartphones is a promising avenue for address-
ing how these fluctuations occur in daily living. Here, we logged smartphone
touchscreen interactions to proxy cognitive fluctuations and contrasted these to
physical activity patterns logged on wrist-worn actigraphy. We found that both
cognitive andphysical activitiesweredominatedbydiurnal (�24h) and infra-radian
(�7days) rhythms. The proxymeasures of cognitive performance—tapping speed,
unlocking speed, and app locating speed—contained lower-powered diurnal
rhythm than physical activity. The difference between cognitive and physical activ-
ity was vivid during bedtime as people continued to interact with their smart-
phones at physical rest. The cognitive performance measures in this period were
worse than those in the hour before or after bedtime.We suggest that the rhythms
underlying cognitive activity in the real world are distinct from those underlying
physical activity, and this discord may be a hallmark of modern human behavior.

INTRODUCTION

Cognitive performance systematically fluctuates according to rhythms of different lengths. The best-studied

rhythms in a laboratory setting are diurnal (Dijk et al., 1992; Wright et al., 2012). Cognitive rhythms have also

been explored in the context of seasonality, menstrual cycle, weekly cycle, and cycle with a 90-min period

(inspired by basic rest-activity) (Huttenlocher et al., 1992; Klein and Armitage, 1979; Kleitman, 1982; Lavie,

1980; Sommer, 1973). Establishing such rhythms is a key step towards the mechanisms underlying systematic

behavioral variations. For instance, whereas the diurnal cyclemaybe attributed to intrinsic circadian clocks, the

weekly cycles may be attributed to the artificial schedules of human society. The mechanistic understanding

also hinges on whether the rhythms appear systemwide or if they are compartmentalized. For instance, the

circadian rhythmicity and the underlying clocks vary across different brain areas, and between the suprachias-

matic nucleus (the ‘‘master clock’’ in the brain) and the muscles (Abe et al., 2002; Gabriel and Zierath, 2019).

These observations in laboratory settings raise the question ofwhether in daily living certain rhythms dominate

human behavioral outputs and if their influence is compartmentalized to specific domains.

The endogenous circadian rhythm significantly impacts various cognitive performancemeasures in a�24-h

rhythm (Borbély et al., 2016; Schmidt et al., 2007). In addition, cognitive performance suffers under high

sleep pressure as a function of the duration of prior wakefulness (Borbély et al., 2016; Lo et al., 2016). Ac-

cording to a well-established idea, the interaction between the circadian timing and time awake modulates

cognitive performance (Dijk et al., 1992). To elaborate, the circadian timing impacts the steady deteriora-

tion of performance with increasing wake duration both in a favorable and in an unfavorable way. This

impact is best seen during the so-called wake maintenance zone, a time window 2–3 h before the start

of melatonin secretion in the evening, during which the circadian system maximally supports wakefulness

and cognitive performance (Lo et al., 2012). On the other hand, a trough in circadian support is seen during

nighttime supporting consolidated sleep (Zhou et al., 2011). Additionally, sleep inertia, i.e., morning grog-

giness, reduces performance in the first 30–90 min after waking up (Wertz et al., 2006).

In laboratory settings the baseline measures before sleep deprivation offer some key insights into the com-

partmentalized nature of diurnal cognitive rhythms (Blatter and Cajochen, 2007; Burke et al., 2015). First,

sensorimotor cognition captured by using a psychomotor vigilance performance test remains stable

through the waking hours before the sleep deprivation, but memory performance captured using a

different test fluctuates through the day in the same period (Chua et al., 2014; Schmidt et al., 2007). Second,
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if people are woken up from their sleep to perform tasks akin to emergency response by a medical worker,

executive functions, in particular, appear vulnerable (Horne and Moseley, 2011).

Wearables with accelerometers (actigraphy) are widely used in the study of rhythms that dominate daily

living, albeit with a focus on overall physical activity rather than cognition and on the diurnal rhythm rather

than infra- or ultra-radian rhythm. Still, diurnal, infra- and ultra-radian rhythms are all visible in the move-

ments logged using actigraphy (Fossion et al., 2017; Wong et al., 2013). Of interest, the inter-individual dif-

ferences in the near-24-h rhythm of physical activity may be markers of clinical conditions (Germain and

Kupfer, 2008; Krafty et al., 2019; Leng et al., 2020). The observation in daily living that diurnal rhythms for

the left versus right arm differ further support the idea that these rhythms can be compartmentalized in

the nervous system (Natale, 2002).

One promising avenue to study the cognitive oscillations in the real world is to leverage the daily digital

interactions and yield proxy measures of cognitive functions (Balerna and Ghosh, 2018; Insel, 2017; White

and Horvitz, 2019; Austin et al., 2011). According to one recent report leveraging the keypresses while on a

web search engine, the speed of the keypresses fluctuates according to the time of the day, similar to what

has been found for reaction time tasks in the laboratory (Althoff et al., 2017). Smartphone touchscreen in-

teractions log (tappigraphy) is particularly suitable for long-term assessments spanning virtually all the

waking hours. Indeed, the usage occupies the waking hours such that the distribution of the smartphone

touchscreen interactions can proxy sleep-wake times (Borger et al., 2019; Min et al., 2014). Moreover, the

smartphone can also sample behavior while lying in bed putatively awaiting sleep or recovering from sleep

inertia (Borger et al., 2019).

The combination of actigraphy and tappigraphy in the same individual can help address whether the

rhythms in cognitive activity differ from that of physical activity in the real world. Can different cognitive do-

mains be evaluated based on smartphone interactions? There is emerging evidence that thismay indeed be

possible. Inter-individual differences in smartphone tapping speeds (TSs) are strongly correlated to motor

variability in tactile reaction time tasks andweakly correlated to the reaction time (Balerna andGhosh, 2018).

The sameparameter is strongly correlated to 4-choice reaction times in response to visual stimuli andweekly

correlated to simple reaction times (Akeret et al., 2020). This pattern of results suggests that TS can be used

to proxy executive functions (Stuss et al., 2003). Furthermore, another smartphone parameter—unlocking

speed (US)—is unrelated to reaction time performance (Akeret et al., 2020). In sum, distinct smartphone pa-

rameters can help address the domain-specific variations in cognitive rhythms.

In this study we used the following different tappigraphy parameters to proxy cognitive processes: (1) TS,

the time that is taken to go from one touch to another; (2) US, the time that is taken to unlock the phone; and

(3) app locating speed (ALS), the time that is taken to locate app icons on the home screen before launch -

inspired by conventional visual search tasks (Wang et al., 1994). These yielded time series of measurements

enabling spectral density analysis of the cognitive fluctuations to identify the oscillations that dominate the

cognitive outputs, with periods of�24 h and larger. We contrasted thesemeasures to actigraphy (including

ambient luminescence) captured using a wrist-worn wearable. Finally, we tethered our analysis to actigra-

phy-estimated sleep times to capture the putative impact of sleep inertia and pressure across the different

cognitive domains captured using tappigraphy.
RESULTS

Periodicity in luminescence, physical activity, and tappigraphy

The wearable and tappigraphy signals fluctuated through the recording period (Figure 1). To quantify the

periodicity of these fluctuations, we used the Lomb-Scargle method. Population average traces were used

to establish the consistency of the behavioral patterns in the sampled population controlled for multiple

comparisons by using false discovery rate, FDR (Pernet et al., 2011). The periodograms revealed a consis-

tent�24-h periodicity across all the signals and a less prominent�7-d periodicity for the ambient lumines-

cence, physical activity, smartphone usage (number of touches), and the two proxy measures of cognitive

processing speed, TS and US (Figure 2A).

By using the periodogram peaks we next estimated which period consistently dominates the signals (Fig-

ure 2B). First, we contrasted the location of the periodogram peaks with 24-h periods using one-sample t

tests to establish deviations from this anticipated period (aFWER = 0.0083, Benjamini and Yekutieli, 2001).
2 iScience 24, 102159, March 19, 2021



Figure 1. The range of measures captured in daily living conditions in this study

(A and B)Wearable and smartphone data from one exemplary subject monitored over 21 days. (A) The amount of ambient

light was captured on the wrist along with (B) the acceleration used here as a proxy for physical activity.

(C–F) We quantified the smartphone behavior in hour-long bins in terms of (C) the number of touches, (D) the speed of the

interactions measured as the interval between subsequent touches (fastest 25th percentile at each bin, tapping speed,

TS), (E) the time taken to unlock the screen (unlocking speed, US), and (F) the time to select an app icon while on the home

screen (app locating speed, ALS).
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The mean peak periodicity of ambient light fluctuations was 23.96 (p = 0.002, t(69) =�3.27), for movements

it was 24.19 (p = 0.22, t(70) = 1.23), for smartphone usage it was 23.97 (p = 4.24 x 10 �6, t(183) =�4.74), for TS

it was 23.38 (p = 0.01, t(184) = �2.57), for US it was 23.82 (p = 0.43, t(184) = �0.78), and for ALS it was 23.00

(p = 0.01, t(156) = - 2.65). Next, we compared the peak locations across the signals to find that the periods

were domain dependent (p = 0.01, f(5,846) = 3.01, ANOVA).

There were pronounced inter-parameter differences between the power estimates (i.e., in the normalized

peak amplitudes of the periodogram, p = 7.22 x 10�74, f(5,848) = 87.02, ANOVA, Figure 2C). The power of

smartphone usage showed the highest �24-h peaks relative to any of the signals, and the ALS showed the

weakest peaks. Notably, the proxy measures of cognitive processing (TS, US, and ALS) speed show a lower

amplitude than the wearable measures of luminescence or physical activity (Figure 2C).

We performed an additional analysis based on tappigraphy parameters accumulated at 15-min bins to

address the putative presence of cognitive rhythm with a 90-min period. Although this form of
iScience 24, 102159, March 19, 2021 3
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Figure 2. Lomb-Scargle periodogram reveals the periods that dominate the wearable (luminescence and physical

activity) and smartphone parameters

(A) Mean periodograms and their corresponding confidence intervals (95%), with significant differences from zero-

amplitude signal marked in red.

(B) Mean peak periods derived from the periodograms and their corresponding confidence intervals.

(C) Mean peak normalized powers and their corresponding confidence intervals. The sizes of the shapes in (B and C)

correspond to the sample size (see main text for the corresponding degrees of freedom).

ll
OPEN ACCESS

iScience
Article
accumulation again revealed strong diurnal cycles, none of the tappigraphy parameters revealed a consis-

tent 90-min period (Figure S1).
Time-of-the-day effects in physical and cognitive signals

Upon establishing the dominance of �24-h rhythms in the physical and cognitive fluctuations we next

focused on how the gathered measures related to the time of the day. As anticipated from the periodo-

grams, the central tendencies revealed substantial time-of-the-day fluctuations across the parameters

(Figure 3A). To systematically address at which hour the signals consistently peaked we relied on cosinor

analysis with a fixed 24-h waveform (with individual fits corresponding to p < 0.05, Nelson et al., 1979). The
4 iScience 24, 102159, March 19, 2021
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Figure 3. Time of the day reflects on physical activity and processing speeds captured on the smartphone

(A) Time-of-the-day fluctuations in mean values and the corresponding 95% confidence intervals.

(B) Cosinor fits revealed the period of signal peak (higher amplitude of movements, luminescence, and smartphone usage

and smaller inter-touch intervals for processing times) on the 24-h clock, with the confidence intervals marked with

triangles.

(C) The comparison of processing at the acrophase versus off phase (bathyphase) in the sample, with each individual

represented with a connecting line.

(D) The inter-individual differences in the time of peak performance (cosinor, acrophase) are related to each other. The

circular correlation coefficient is shown for the significant relationships.
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hour at which performance peaked (the cosinor acrophase) depended on the parameter (p = 0, f(5,673) =

25.64, Watson-Williams multi-sample test, Berens, 2009). Follow-up tests revealed that the peak for

ambient light exposure preceded all other measures, whereas the peak for US lagged all other measures

except for ALS (Figure 3B). Although the hour of peak performance for the proxy measures of cognitive

processing occurred between 16 and 17 h, the differences between the peak and off-peak performance

was the most pronounced for TS (p = 3.23 x 10�29, t(125) = 14.78, paired t test), followed by US (p = 3.48 x

10�12, t(117) = 7.76) and the ALS (p = 0.0062, t(39) = 2.89) (Figure 3C).

Next, we addressed whether the inter-individual differences in the acrophase were correlated across pa-

rameters (Figure 3D). In particular, we were interested in the putative determinants of the cognitive pro-

cessing proxied here. We used paired circular correlations to address these relationships. Of interest,

the subtle variations in the ambient light acrophase were not correlated to any of the measures. However,

physical activity was correlated to only one of the tappigraphy measures: US. Furthermore, smartphone us-

age was related to all the proxy measures of processing speed.

The analysis presented above is based on 24-h sinusoids, and in notable proportion of the data a cor-

responding rhythm could be detected (the null hypothesis of no rhythm could not be eliminated for

0% of the sampled population for luminescence, 1% for physical activity, 1% for smartphone usage,

18% for TS, 20% for US, and 70% for ALS). We performed an additional set of analysis to estimate the

signal peaks, and thus untethered our analysis from the sinusoid. This analysis confirmed that the

high-performing (larger signal amplitude) time-of-the-day hour bins were dependent on the parameter

(p = 0.0011, f(5,556) = 4.14, Watson-Williams multi-sample test), with luminescence preceding physical

activity, TS, and US (Figure S2).

Similarly, we also followed up on the�7-day rhythm identified using the periodogram based on time-of-the

week analysis to find systematic variance according to the day of the week for all measures except the US

and ALS (Figure S3). The day on which the signals peaked varied according to themeasured parameter (p =

0, f(5,838) = 52.77, Watson-Williamsmulti-sample test). Furthermore, whereas physical activity and lumines-

cence peaked around the weekend, smartphone usage and TS peaked around the weekday.
Poor cognitive performance during actigraphy-labeled ‘‘sleep’’

The prominent diurnal cycles in cognitive rhythms may be partly due to sleep-related influences on cogni-

tive performance. To explore this we focused on the sleep-wake transitions and, more uniquely, while in

actigraphy-defined sleep (i.e., while lying still in bed and using the smartphone and yet classified as sleep

by the Cole-Kripke algorithm on actigraphy, Cole et al., 1992) (Figure 4A). From each individual, we pooled

all the instances of usage at three different periods: pre-bed defined as 1 h immediately preceding actig-

raphy-defined sleep time, bed defined as during the putative sleep (actigraphy defined) time, and rise

defined as 1 h immediately following the sleep period (Figure 4B). We focused on the subset of the pop-

ulation where the parameter estimation requirements were satisfied to yield a measure in each of these pe-

riods (Figure 4B). TS fluctuated only marginally across the three periods (p = 0.07, f(2,65) = 2.73, ANOVA).

Follow-up paired t tests revealed marginal slowing in bed versus pre-bed (p = 0.05, t(65) = �2.0) and the

bed versus rise (p = 0.05, t(65) = 2.04). Furthermore, there was no difference between the pre-bed versus

rise (p = 0.59, t(65) = �0.54). US fluctuated substantially through these periods (p = 5.62 x 10-9, f(2,62) =

22.23), and the follow-up t tests revealed a similar pattern as for TS albeit more exaggerated. The bed

period compared with the pre-bed was substantially slower (p = 5.01 x 10�7, t(62) = �5.6), and the bed

period was also slower versus the rise period (p = 6.12 x 10�5, t(62) = 4.3). There was a marginal difference

between the pre-bed and rise periods, with the rise being slower (p = 0.03, t(62) =-2.20). ALS too fluctuated

through these periods (p = 5.50 x 10�30, f(2,47) = 150.08). Interestingly, the bed period was no different

versus the pre-bed period (p = 0.52, t(47) = �0.64). However, the rise period was faster than both pre-

bed (p = 0, t(47) = 12.98) and bed periods (p = 0, t(47) = 15.53).

Intuitively, these distinct performance levels around sleep may be influenced by the day of the week. For

instance, the urgency of actions performed through the weekend may be distinct from the weekday. To

address this, we separated all the sleep-related measures into two sets depending on the sleep onset: (1)

spanning Friday, Saturday, and Sunday and (2) spanning Monday, Tuesday, Wednesday, and Thursday.

The same pattern of results for pre-bed, bed, and rise times was obtained across these two sets

(Figure S4).
6 iScience 24, 102159, March 19, 2021
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Figure 4. Cognitive processing speed captured on the smartphone during actigraphy-labeled sleep

(A) The median processing speeds—in terms of tapping speed, unlocking time, and locating the app icon—captured for

each individual accumulated over the observation period.

(B) The differences in mean processing speed captured during actigraphy-estimated sleep in contrast to the values

accumulated in the hour before sleep and after sleep (95% confidence interval). The sizes of the shapes in (B) correspond

to the sample size (see the main text for the corresponding degrees of freedom).
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DISCUSSION

The proxy measures of cognitive processes captured using tappigraphy revealed a range of systematic

fluctuations, and here we contrasted these to the fluctuations in ambient luminescence and physical activ-

ity. The tappigraphy measures—like luminescence and physical activity—were dominated by � 24-h

rhythm. However, there were visible differences between the cognitive and the non-cognitive rhythms in
iScience 24, 102159, March 19, 2021 7
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terms of the exact period, the power, and even the time of the day when they peak. Some of these differ-

ences also extended to the �7-d rhythm. Intriguingly, the tappigraphy measures also allowed us to assess

the performance at odd hours, including when in bed, revealing a distinctly slow cognitive output.

As continuous measures related to cognitive output are mostly unexplored, the general patterns of the sig-

nals observed in tappigraphy are of interest. The periodograms of the three proxy measures of cognitive

processing speed (TS, US, and ALS) revealed dominant powers at frequencies with periods of�24 h and�7

d. Although all the measures were dominated by 24-h rhythms, there were substantial inter-individual dif-

ferences and the exact period varied according to the parameter. This is in line with previous observations

demonstrating deviations from the 24-h period in cognitively rooted performance parameters such as

handgrip strength (Ashkenazi et al., 1993). We also observed �7-d rhythm in the cognitive parameters of

smartphone usage and TS. This supports the idea that the time information—both in terms of time of

the day and time of the week—is encoded in cognitive output (Huttenlocher et al., 1992).

We anticipated �7-d, 24-h, and 90-min rhythms in tappigraphy. We did find evidence for the first two,

whereas we found no indications of the third rhythm. Ninety-minute rhythms play an important role in

sleep, but their impact on wakeful periods and cognition is contentious. The original observations of 90-

min fluctuations in cognitive tests have been difficult to reproduce and attributed to low-threshold statis-

tical tools (Klein and Armitage, 1979; Neubauer and Freudenthaler, 1995).

Luminescence is a primary zeitgeber for circadian physiological rhythms according to observations mostly

in the sleep laboratory (Bedrosian and Nelson, 2017; Chellappa et al., 2011; Wever, 1989). Still, cognitive

processes may not be faithfully tethered to this in the real world. First, the cognitive processing measures

were less dominated by �24-h rhythms when compared with the luminescence captured at the wrist. Sec-

ond, according to the fixed (24-h) cosinor analysis, all the proxy measures of cognitive processing peaked

(became faster) later in the day when compared with the experienced luminescence. Finally, population-

level variance in tappigraphy time to peak was unrelated to the variance in the experienced luminescence.

We speculate that cognitive processes follow diurnal rhythms that are partially independent of the expe-

rienced luminescence. Nevertheless, as the luminosity sensor on the wrist was insensitive to the light

emitted from the smartphone itself and as the cosinor peaks corresponding to the proxy measures of

cognitive performance were related to smartphone usage, it is possible that the cognitive processes track

the smartphone-emitted light as opposed to natural light.

The processes that drive the well-documented rhythmicity in overall physical activity may not entirely

overlap with the oscillators underlying cognitive activity in the real world. Toward this, cosinor analysis

revealed some important separations between cognitive and physical activity. The US peaked later

than physical activity, and the variations in time to peak in physical activity were related to only one of

the tappigraphy measures—US. The differences between physical and cognitive activity were further

widened in the �7-d rhythms, and whereas tappigraphy measures (smartphone usage and TS) peaked

during weekdays, physical activity (and experienced luminescence) peaked during weekends.

Of interest, smartphone behavior showed the strongest �24-h power (signal normalized) when compared

with the other measures considered here. This underscores the habitual nature of smartphone behavior

where it may be more driven by daily rhythm than overall physical activity or the amount of light exposure.

Nevertheless, the daily rhythms were less powerful for the proxy measures of cognitive output, suggesting

discord between engaging in smartphone behavior and the cognitive processing speed proxied on the

smartphone. This discord was evident in the time-of-the-day analysis, and by using the fixed 24-h cosinor

analysis we found that the US peaked (was the fastest) later in the day when compared with smartphone

usage. This raises the possibility that the need or desire to engage on the smartphone and certain cognitive

performance abilities is out of sync, i.e., phase shifted.

In contrast to diurnal rhythms, the �7-d (circaseptan) rhythms in human physiology and behavior have

received less attention. We observed this rhythm for smartphone usage and TS. Although intuitively

they may stem from the widespread use of the weekly calendar, there is notable evidence suggesting

a more intrinsic biological substrate (Cornélissen et al., 2000). Cognitive processing as captured in reac-

tion time tests also shows �7-d rhythms (Beau et al., 1999). Perhaps the slow progress in understanding

this domain is partly linked to the methodological obstacles. The observation of Beau et al. (1999) still
8 iScience 24, 102159, March 19, 2021
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holds today for conventional tests: ‘‘The difficulties inherent in such a study is numerous, including . the

need to administer tests every day of the week.’’ The approach used here helps overcome this key

barrier.

By leveraging smartphone touchscreen behavior, we could sample cognitive fluctuations at the gray zone

between sleep and wakefulness. People spontaneously interacted with their smartphones in the actigra-

phy-labeled sleep periods, and we leveraged these interactions to address the cognitive status in this

‘‘sleep’’ period when compared with the performance 1 h before and after this period. Now, admittedly ac-

tigraphy can overestimate sleep and people may engage on their smartphones while at rest in bed (Borger

et al., 2019). Still, this provided us with an opportunity to assess cognition in this period of sleep fracture.

Across the different proxy measures of cognitive processing, the performance was poor in this obscure

period. Themechanismunderlying this, as in sleep inertia versus pressure, could not be clarifiedwithout pol-

ysomnography; it is possible that the participants intermittently woke up from sleep in the bed (inducing

inertia) and it is equally possible that they may have remained still without sleep (building sleep pressure).

The current pattern suggests a dual contribution. In the hour after sleep, inertia can be considered to be

maximal and yet the performance at sleep fracture was worse than this period. This suggests that an addi-

tional factor, such as sleep pressure, is compounded with sleep inertia to additionally degrade cognitive

output in the obscure sleep period. Conversely, in the hour before sleep, sleep pressure can be considered

to be maximal, and yet TS and US degraded further at sleep fracture. Interestingly, ALS did not degrade

further and perhaps the underlying processes are particularly sensitive to pressure rather than inertia.

Such specific variations or lack thereof are in keeping with the general notion that sleep impacts cognitive

processes in a domain-specificmanner (Burke et al., 2015; Ferrara et al., 2000). Nevertheless, factors besides

sleep inertia and pressure may have contributed to our results. Under sleep deprivation, altering body

posture alone (from standing to sitting) is known to impact cognitive performance (Caldwell et al., 2003).
Limitations of the study

Our approach of assessing cognitive fluctuations surrounding sleep in daily living conditions requires

further consideration. First, we observed different rhythms in cognitive versus the physical activity mea-

sures, including the presumable zeitgeber of ambient light. It was not clear if these asynchronies were intro-

duced by smartphone behavior or if they are intrinsic properties captured on the smartphone. On a related

note, the consequences of the differences between smartphone usage and the proxy measures of cogni-

tive processing too need further exploration. These asynchronies may have important consequences for

mental and physical well-being (Van Someren and Riemersma-Van Der Lek, 2007). Second, there is much

to be addressed on why and how people behave at physical rest while in bed (i.e., actigraphy-defined

sleep). What are the cognitive and behavioral processes underlying these behaviors that spontaneously

occur so close to sleep? Perhaps the gold-standard measure of sleep will help better understand the

bedtime sleep-cognition interactions better. Third, we deployed Lomb-Scargle spectrograms and cosinor

analysis to capture the rhythms. Both of these approaches are extensively used in basic and clinical research

(Cornelissen, 2014; Ruf, 1999). However, there are emerging alternatives that may be more sensitive to de-

tecting subtle rhythms (Fossion et al., 2017). We anticipate that the data shared with this report will further

help the development of such alternative methods. Fourth, our study population was dominated by stu-

dents. How these findings extend to the general population remains to be seen. Finally, unlike traditional

cognitive testing, the parameters extracted from spontaneous smartphone behavior do not allow us to sim-

ply specify the cognitive processes with precision even if they are highly correlated to conventional reaction

time. For instance, the TS may reflect not only the underlying cognitive process but also the momentary

behavioral demands, as in typing and urgent message versus relaxed web browsing. At least in measures

such as the ALS and US the range of actions was more constrained. Meaningful cognitive processes are

inherently complicated, and the approach of tappigraphy and the findings presented here is a key step

to help unravel that complexity.
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Data and code availability

The data used in this study—from smartphones and wearables—are made available at dataverse.nl,

(https://doi.org/10.34894/6CIGDY) along with the codes to analyze the data.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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ACKNOWLEDGMENTS

We thank the students at the Applied Cognitive Psychology master’s program at Leiden University for aid-

ing in the data collection. We thank Andrew Westbrook for sharing the smartphone data collected at The

Donders Institute. We thank Leonardo Cohen for his advice during the preparation of this manuscript and

for suggesting the title. Funding: Investigator A.G. was supported by intramural funding from Leiden Uni-

versity and a research grant from VELUX Stiftung during this study (no. 1283). Investigator R.H. was sup-

ported by the University Medicine Zurich flagship grant ‘‘SleepLoop’’ and research grants from the Swiss

National Science Foundation (320030_153387& 320030_179443).

AUTHOR CONTRIBUTION

A.G. conceived the study with the help of R.H. A.G. gathered and analyzed the data. A.G. drafted themanu-

script with the help of R.H.

DECLARATION OF INTERESTS

A.G. is a co-founder of QuantActions Ltd, Lausanne, Switzerland, and holds shares in this company. This

company focuses on converting smartphone taps to mental health indicators. Software and data collection

services from QuantActions were used to monitor smartphone activity. R.H. has no interests to declare.

Received: August 6, 2020

Revised: September 7, 2020

Accepted: February 2, 2021

Published: March 19, 2021
REFERENCES

Abe, M., Herzog, E.D., Yamazaki, S., Straume, M.,
Tei, H., Sakaki, Y., Menaker, M., and Block, G.D.
(2002). Circadian rhythms in isolated brain
regions. J. Neurosci. 22, 350–356.

Althoff, T., Horvitz, E., White, R.W., and Zeitzer, J.
(2017). Harnessing the Web for Population-Scale
Physiological Sensing: A Case Study of Sleep and
Performance. In Proceedings of the 26th
International Conference on World Wide Web,
(Republic and Canton of Geneva, CHE:
International World Wide Web Conferences
Steering Committee), pp. 113–122.

Akeret, K., Vasella, F., Zindel-Geisseler, O.,
Dannecker, N., Brugger, P., Regli, L., Young, P.,
Stienen, M.N., and Ghosh, A. (2020). Passive
smartphone-based assessment of cognitive
changes in neurosurgery. MedRxiv, 8.

Ashkenazi, I.E., Reinberg, A., Bicakova-Rocher,
A., and Ticher, A. (1993). The genetic background
of individual variations of circadian-rhythm
periods in healthy human adults. Am. J. Hum.
Genet. 52, 1250–1259.

Austin, D., Jimison, H., Hayes, T., Mattek, N.,
Kaye, J., and Pavel, M. (2011). Measuring motor
10 iScience 24, 102159, March 19, 2021
speed through typing: a surrogate for the finger
tapping test. Behav. Res. Methods 43, 903–909.

Balerna, M., and Ghosh, A. (2018). The details of
past actions on a smartphone touchscreen are
reflected by intrinsic sensorimotor dynamics. Npj
Digit. Med. 1, 4.

Beau, J., Carlier, M., Duyme, M., Capron, C., and
Perez-Diaz, F. (1999). Procedure to extract a
weekly pattern of performance of human reaction
time. Percept. Mot. Skills 88, 469–483.

Bedrosian, T.A., andNelson, R.J. (2017). Timing of
light exposure affects mood and brain circuits.
Transl. Psychiatry 7, e1017.

Benjamini, Y., and Yekutieli, D. (2001). The control
of the false discovery rate in multiple testing
under dependency. Ann. Stat. 29, 1165–1188.

Berens, P. (2009). CircStat: a MATLABtoolbox for
circular statistics. J. Stat. Softw. 1, 2009.

Blatter, K., and Cajochen, C. (2007). Circadian
rhythms in cognitive performance:
methodological constraints, protocols,
theoretical underpinnings. Physiol. Behav. 90,
196–208.

Borbély, A.A., Daan, S., Wirz-Justice, A., and
Deboer, T. (2016). The two-process model of
sleep regulation: a reappraisal. J. Sleep Res. 25,
131–143.

Borger, J.N., Huber, R., and Ghosh, A. (2019).
Capturing sleep–wake cycles by using day-to-day
smartphone touchscreen interactions. Npj Digit.
Med. 2, 1–8.

Burke, T.M., Scheer, F.A.J.L., Ronda, J.M.,
Czeisler, C.A., and Wright, K.P. (2015). Sleep
inertia, sleep homeostatic and circadian
influences on higher-order cognitive functions.
J. Sleep Res. 24, 364–371.

Caldwell, J.A., Prazinko, B., and Caldwell, J.L.
(2003). Body posture affects
electroencephalographic activity and
psychomotor vigilance task performance in
sleep-deprived subjects. Clin. Neurophysiol. 114,
23–31.

Chellappa, S.L., Gordijn, M.C.M., and Cajochen,
C. (2011). Chapter 7 - can light make us bright?

https://doi.org/10.34894/6CIGDY
https://doi.org/10.1016/j.isci.2021.102159
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref1
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref1
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref1
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref1
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref2
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref2
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref2
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref2
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref2
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref4
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref4
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref4
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref4
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref4
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref5
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref5
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref5
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref5
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref6
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref6
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref6
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref6
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref7
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref7
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref7
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref7
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref8
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref8
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref8
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref9
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref9
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref9
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref10
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref10
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref11
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref11
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref11
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref11
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref11
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref12
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref12
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref12
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref12
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref12
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref13
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref13
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref13
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref13
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref14
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref14
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref14
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref14
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref14
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref15
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref15
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref15
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref15
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref15
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref15
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref16
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref16


ll
OPEN ACCESS

iScience
Article
Effects of light on cognition and sleep. In
Progress in Brain Research, H.P.A. Van Dongen
and G.A. Kerkhof, eds. (Elsevier), pp. 119–133.

Chua, E.C.-P., Yeo, S.-C., Lee, I.T.-G., Tan, L.-C.,
Lau, P., Cai, S., Zhang, X., Puvanendran, K., and
Gooley, J.J. (2014). Sustained attention
performance during sleep deprivation associates
with instability in behavior and physiologic
measures at baseline. Sleep 37, 27–39.

Cole, R.J., Kripke, D.F., Gruen,W., Mullaney, D.J.,
and Gillin, J.C. (1992). Automatic sleep/wake
identification from wrist activity. Sleep 15,
461–469.

Cornelissen, G. (2014). Cosinor-based
rhythmometry. Theor. Biol. Med. Model. 11, 16.

Cornélissen, G., Engebretson, M., Johnson, D.,
Otsuka, K., Burioka, N., Posch, J., and Halberg, F.
(2000). The week, inherited in neonatal human
twins, found also in geomagnetic pulsations in
isolated Antarctica. Biomed. Pharmacother. 55,
s32–s50.

Dijk, D.-J., Duffy, J.F., and Czeisler, C.A. (1992).
Circadian and sleep/wake dependent aspects of
subjective alertness and cognitive performance.
J. Sleep Res. 1, 112–117.

Ferrara, M., De Gennaro, L., Casagrande, M., and
Bertini, M. (2000). Selective slow-wave sleep
deprivation and time-of-night effects on
cognitive performance upon awakening.
Psychophysiology 37, 440–446.

Fossion, R., Rivera, A.L., Toledo-Roy, J.C., Ellis, J.,
and Angelova, M. (2017). Multiscale adaptive
analysis of circadian rhythms and intradaily
variability: application to actigraphy time series in
acute insomnia subjects. PLoS One 12, e0181762.

Gabriel, B.M., and Zierath, J.R. (2019). Circadian
rhythms and exercise — re-setting the clock in
metabolic disease. Nat. Rev. Endocrinol. 15,
197–206.

Germain, A., and Kupfer, D.J. (2008). Circadian
rhythm disturbances in depression. Hum.
Psychopharmacol. Clin. Exp. 23, 571–585.

Horne, J., and Moseley, R. (2011). Sudden early-
morning awakening impairs immediate tactical
planning in a changing ‘emergency’ scenario.
J. Sleep Res. 20, 275–278.

Huttenlocher, J., Hedges, L.V., and Prohaska, V.
(1992). Memory for day of the week: a 5 + 2 day
cycle. J. Exp. Psychol. Gen. 121, 313–325.
Insel, T.R. (2017). Digital phenotyping:
technology for a new science of behavior. JAMA
318, 1215–1216.

Klein, R., and Armitage, R. (1979). Rhythms in
human performance: 1 1/2-hour oscillations in
cognitive style. Science 204, 1326–1328.

Kleitman, N. (1982). Basic rest-activity cycle—22
years later. Sleep J. Sleep Res. Sleep Med. 5,
311–317.

Krafty, R.T., Fu, H., Graves, J.L., Bruce, S.A., Hall,
M.H., and Smagula, S.F. (2019). Measuring
variability in rest-activity rhythms from actigraphy
with application to characterizing symptoms of
depression. Stat. Biosci. 11, 314–333.

Lavie, P. (1980). The search for cycles in mental
performance from Lombard to Kleitman.
Chronobiologia 7, 247–256.

Leng, Y., Blackwell, T., Cawthon, P.M., Ancoli-
Israel, S., Stone, K.L., and Yaffe, K. (2020).
Association of circadian abnormalities in older
adults with an increased risk of developing
Parkinson disease. JAMA Neurol. e201623.

Lo, J.C., Groeger, J.A., Santhi, N., Arbon, E.L.,
Lazar, A.S., Hasan, S., Schantz, M. von, Archer,
S.N., and Dijk, D.-J. (2012). Effects of partial and
acute total sleep deprivation on performance
across cognitive domains, individuals and
circadian phase. PLoS One 7, e45987.

Lo, J.C., Ong, J.L., Leong, R.L.F., Gooley, J.J., and
Chee, M.W.L. (2016). Cognitive performance,
sleepiness, and mood in partially sleep deprived
adolescents: the need for sleep study. Sleep 39,
687–698.

Min, J.-K., Doryab, A., Wiese, J., Amini, S.,
Zimmerman, J., and Hong, J.I. (2014). Toss
‘‘N’’turn: smartphone as sleep and sleep quality
detector. In Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems (ACM)), pp. 477–486.

Natale, V. (2002). Circadian motor asymmetries in
humans. Neurosci. Lett. 320, 102–104.

Nelson, W., Tong, Y.L., Lee, J.K., and Halberg, F.
(1979). Methods for cosinor-rhythmometry.
Chronobiologia 6, 305–323.

Neubauer, A.C., and Freudenthaler, H.H. (1995).
Ultradian rhythms in cognitive performance: no
evidence for a 1.5-h rhythm. Biol. Psychol. 40,
281–298.
Pernet, C.R., Chauveau, N., Gaspar, C., and
Rousselet, G.A. (2011). LIMO EEG: A Toolbox for
Hierarchical LInear MOdeling of
ElectroEncephaloGraphic Data.

Ruf, T. (1999). The lomb-scargle periodogram in
biological rhythm research: analysis of
incomplete and unequally spaced time-series.
Biol. Rhythm Res. 30, 178–201.

Schmidt, C., Collette, F., Cajochen, C., and
Peigneux, P. (2007). A time to think: circadian
rhythms in human cognition. Cogn.
Neuropsychol. 24, 755–789.

Sommer, B. (1973). The effect of menstruation on
cognitive and perceptual-motor behavior: a
review. Psychosom. Med. 35, 515–534.

Stuss, D.T., Murphy, K.J., Binns, M.A., and
Alexander, M.P. (2003). Staying on the job: the
frontal lobes control individual performance
variability. Brain 126, 2363–2380.

Van Someren, E.J.W., and Riemersma-Van Der
Lek, R.F. (2007). Live to the rhythm, slave to the
rhythm. Sleep Med. Rev. 11, 465–484.

Wang, Q., Cavanagh, P., and Green, M. (1994).
Familiarity and pop-out in visual search. Percept.
Psychophys 56, 495–500.

Wertz, A.T., Ronda, J.M., Czeisler, C.A., and
Wright, K.P. (2006). Effects of sleep inertia on
cognition. JAMA 295, 159–164.

Wever, R.A. (1989). Light effects on human
circadian rhythms: a review of recent andechs
experiments. J. Biol. Rhythms 4, 49–73.

White, R.W., and Horvitz, E. (2019). Population-
scale hand tremor analysis via anonymizedmouse
cursor signals. Npj Digit. Med. 2, 1–7.

Wong, S.N., Halaki, M., and Chow, C.M. (2013).
The periodicity of sleep duration – an infradian
rhythm in spontaneous living. Nat. Sci. Sleep 5,
1–6.

Wright, K.P., Lowry, C.A., and LeBourgeois, M.K.
(2012). Circadian and wakefulness-sleep
modulation of cognition in humans. Front. Mol.
Neurosci. 5, 50.

Zhou, X., Ferguson, S.A., Matthews, R.W.,
Sargent, C., Darwent, D., Kennaway, D.J., and
Roach, G.D. (2011). Sleep, wake and phase
dependent changes in neurobehavioral function
under forced desynchrony. Sleep 34, 931–941.
iScience 24, 102159, March 19, 2021 11

http://refhub.elsevier.com/S2589-0042(21)00127-9/sref16
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref16
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref16
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref17
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref17
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref17
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref17
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref17
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref17
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref18
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref18
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref18
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref18
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref19
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref19
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref20
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref20
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref20
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref20
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref20
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref20
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref21
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref21
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref21
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref21
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref22
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref22
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref22
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref22
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref22
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref23
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref23
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref23
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref23
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref23
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref24
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref24
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref24
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref24
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref25
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref25
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref25
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref26
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref26
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref26
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref26
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref27
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref27
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref27
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref28
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref28
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref28
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref29
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref29
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref29
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref30
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref30
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref30
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref31
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref31
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref31
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref31
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref31
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref32
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref32
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref32
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref33
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref33
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref33
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref33
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref33
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref34
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref34
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref34
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref34
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref34
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref34
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref35
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref35
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref35
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref35
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref35
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref36
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref37
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref37
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref38
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref38
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref38
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref39
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref39
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref39
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref39
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref40
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref40
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref40
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref40
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref41
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref41
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref41
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref41
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref42
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref42
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref42
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref42
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref43
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref43
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref43
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref44
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref44
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref44
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref44
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref45
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref45
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref45
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref46
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref46
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref46
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref47
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref47
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref47
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref48
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref48
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref48
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref49
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref49
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref49
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref50
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref50
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref50
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref50
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref51
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref51
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref51
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref51
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref52
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref52
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref52
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref52
http://refhub.elsevier.com/S2589-0042(21)00127-9/sref52


iScience, Volume 24
Supplemental information
Large cognitive fluctuations surrounding

sleep in daily living

Reto Huber and Arko Ghosh



Transparent Methods 

Participants 

A total of 189 individuals were sufficiently sampled (with 235 addressing the 

recruitment call). To be included in the study the subjects self-reported that they were healthy 

and without any ongoing neurological disease or medication. The data collection and analysis 

were approved by the ethical committees of Leiden University (Psychology Research Ethics 

Committee) and the medical ethics committee of Arnhem-Nijmegen. All subjects provided 

informed consent for the study. The age (reported by 164 participants) was a median of 22.4 

years (min, 16.1 and max, 45.1) at the time of study consent. The sex (reported by 132 

participants) was 70 females and 62 males. The primary occupation was reported by 118 

participants, and 89 of them reported being a student. None of the reported professions 

required night shift work.  

 

Actigraphy measurement  

Actigraphy measures were obtained from a subset of participants (n = 79) and 

reported in a previous study (Borger et al., 2019). Participants wore GENEACTIV watches 

(Activinsights, Cambridgeshire, UK) on both the wrists, but only the measures from the left 

wrist were used here. The watches measured the 3-axis accelerometry along with the ambient 

luminesce and near body temperature, but only the former two measures were used here. The 

ambient luminesce sensor was insensitive to the light emitted from the smartphone (Suppl. 

Fig. 4). The participants were instructed to wear the watches for 3 weeks continuously and 

this yielded measure lasting for a median of 21 days (min, 7 and max, 32). The 3 axis 

accelerometry was reduced by using 𝑀𝑀 =  √(𝑥𝑥2 +  𝑦𝑦2 +  𝑧𝑧2), where M is the value used here 

and x, y and z correspond to the accelerations on the distinct axis. The Cole–Kripke 



algorithm was used to label sleep periods based on these measures as described in detail 

elsewhere along with the corresponding MATLAB codes (Borger et al., 2019; Cole et al., 

1992).  

 

Smartphone measurements  

The timestamp of touchscreen interactions and the corresponding app labels (as in 

Facebook, Launcher screen, Weather) were recorded using an app running in the background 

of the user’s device (TapCounter, QuantActions, Lausanne, Switzerland). The app required 

an Android operating system. Based on this labelled time-series of events the following 

parameters were estimated in hourly bins: (a) Smartphone usage, in the form of number of 

touchscreen interactions in each bin while the phone was in an unlocked state, (b) tapping 

speed, in the form of the 25th percentile inter-touch interval accumulated from all of the 

screen ON sessions in each bin, (c) unlocking speed, in the form of 25th percentile inter-

event interval between the two intervals, one, the touchscreen turning ON and two, the touch 

on the unlocked screen and, (d) app locating speed, as in the inter-touch interval between two 

consecutive touches on the home/launch screen (identified using the corresponding app label) 

before the launching of any app. As with the previous measures the 25th percentile of the 

intervals in each hour bin was recorded.  All of the smartphone parameters were transformed 

by using 𝑙𝑙𝑙𝑙𝑙𝑙10.  

  

The rationale behind the smartphone proxies of cognitive performance   

 The three measures of cognitive performance were inspired by conventional measures 

of cognitive performance, and all of them share the property of overcoming the bounds of 

conventional measurements constrained by the laboratory setting or task. (a) Tapping speed: 



The finger-tapping task is commonly used to assess motor speed and is highly related to the 

inter-keystroke intervals on a keyboard (Austin et al., 2011). However, the inter-touchscreen 

intervals offered a crucial advantage as the smartphone interactions are likely to occur more 

spontaneously and even in bed in contrast to the interactions on the personal computer. This 

measure is related to tactile reaction times, visual reaction times and tactile reaction time 

variability (Akeret et al., 2020; Balerna and Ghosh, 2018).  (b) Unlocking speed: This 

measure captures the memory dependent cognitive processes. Moreover, the time taken to 

perform this task is expected to be an amalgam of declarative (recalling the password or 

pattern) and procedural (the frequently used motor sequence) memories.   (c) App locating 

speed: This parameter was inspired by the visual search task based on familiar images (Wang 

et al., 1994). Essentially, the time to perform this task is dictated by both visual attention and 

memory. This measure is related to visual reaction times (Akeret et al., 2020). 

 

Estimating the periodogram and the corresponding metrics   

Lomb-Scargle periodograms were estimated (MATLAB, Mathworks, Natick, USA) 

and the power was scaled by the input variance. The periodogram was estimated between 

0.05 and 12 cycles per day with a step of 0.001 cycles. The statistical significance (α = 0.001) 

of the power fluctuations were estimated against 0 using t-tests (LIMO EEG(Pernet et al., 

2011)) and multiple comparisons corrected using the false discovery rate (FDR, also on 

LIMO EEG). Inputs spanning longer than 10 days were used for this analysis. To compare 

the periodogram peaks at ~1 cycle per day across the different smartphone and wearable 

parameters, the peak was determined within the range of 0.7 and 1.6 cycles per day. First, the 

peaks from the different measures were compared using one-way ANOVA (MATLAB, 

MathWorks, Natick, USA). These were followed-up with t-tests comparing all possible pairs 



of measures. The tests were corrected using Bonferroni correction of Family-Wise Error Rate 

(FWER, α = 0.05, Victor Martinez’s Multiple Testing Toolbox as implemented 

MATLAB)(Benjamini and Yekutieli, 2001). The 95% confidence intervals were estimated 

using the inverse of Student's T cumulative distribution function (MATLAB). Follow up t-

tests after ANOVA to compare the periodogram peaks (location and amplitude) across the 

different parameters were also corrected using FWER. Inputs spanning longer than 7 days 

were used for this analysis block focused on ~1 cycle per day rhythm. 

 

Finding signal peak in terms of time-of-the-day using cosinor analysis  

 The signals were organised as follows: for smartphone usage, luminescence and 

accelerations, the higher the signal amplitude the more positive the signal. For smartphone 

tapping speed, unlocking speed and app locating speed, the shorter the inter-touch interval the 

more positive the signal. The acrophase of the sine wave fits obtained using Cosinor.m 

(implemented in MATLAB by Casey Cox)(Nelson et al., 1979). Inputs spanning longer than 

7 days were used for this analysis. The time-of-the day fluctuations were compared across the 

different parameters using the Parametric Watson-Williams multi-sample test (Circular 

Statistics Toolbox for MATLAB) and as a follow-up, the same test was used in pairs. In the 

paired comparison between peak and off-peak signals, the peak was defined by the cosinor 

acrophase and the off peak was defined by the cosinor bathyphase. The inter-individual 

differences in the acrophase across the different parameters were tested for correlation using 

circular correlation (Circular Statistics Toolbox for MATLAB) (Berens, 2009). The statistical 

output was corrected for multiple comparisons using the Bonferroni correction of Family-

Wise Error Rate (FWER, α = 0.05). The 95.0% confidence intervals were estimated using the 

same toolbox. 



 In addition, a cosinor independent analysis was used to estimate the time-of-the-day 

effects on the measured signals. First, the measured signals were binned according to the 

time-of-the-day at the resolution of an hour. Second, if there were a minimum of 7 samples in 

each hour, the central tendency was estimated for each bin (mean for luminescence, physical 

activity, and phone usage, median for TS, US, and ALS; note mean was used due to the 

presence of ‘0’ values at certain times of the day resulting in sharp edges when using 

median). This resulted in 24 values for each subject. Subjects where the sample number 

threshold (of 7) was not reached in > 0 bin were eliminated. Third, the 24 bins were sorted 

according to signal strength, and the time-of-the-day index was noted for the top 5 bins. 

These bins were then split into 2 clusters using agglomerative clustering (Circular Statistics 

Toolbox). The highest-ranking bin of the larger of the two clusters was used to locate the bin 

with peak performance. The difference between the smartphone parameters was subsequently 

tested using the Watson-Williams multi-sample test (α = 0.05).  

 

Finding signal peak in terms of day-of-the-week  

 The hourly smartphone and wearable parameters as described above were sorted 

according to the day of the week. Inputs spanning longer than 10 days were used for this 

analysis. The mean value from each day of the week was used to derive the location of the 

peak. These locations were converted into radians towards circular mean and confidence 

intervals (95%). The measures were compared for day-of-the-week differences across the 

different parameters as stated above for time-of-the day analysis, that is by using the 

Parametric Watson-Williams multi-sample test and follow-up paired tests were corrected for 

FWER.   

 



Estimating performance surrounding sleep  

 The hourly smartphone parameters were time-locked to the sleep times estimated 

using the Cole-Kripke algorithm on the actigraphy measures from the left wrist (Cole et al., 

1992). The median values in the hour bin preceding, during and after the sleep period was 

estimated from each individual. To address if there were differences between these three 

measures were contrasted using two-way ANOVA (MATLAB, MathWorks, Natick, and α = 

0.05).  

 

  



Supplementary Figures 

 

Supplementary Figure 1. Related to Figure 2. Absence of rhythms with 90 min period in the proxy 

measures of cognitive performance captured on the smartphone. Mean periodogram and their 

corresponding confidence intervals (95%), with the 90 min period marked with a dashed line. Note, 

no periodogram peak was visible at that period.  

 

 

Supplementary Figure 2. Related to Figure 3. Smartphone and wearable measures analysed 

according to the time of the day. (a) The central tendency performance fluctuations for all the 

participants meeting the sample density requirements to extract signal peak. The signals are 

normalised at the level of each participant (across rows). (b) The analysis used to identify the peak 

signal time bins. Note, the clustering method avoids isolated signal peaks. (c) The mean time to peak 

across the different parameters and the corresponding confidence intervals. 

 

 

Supplementary Figure 3. Related to Figure 3. Day of the week reflects on physical activity and 

processing speeds captured on the smartphone. (a) Mean values and the corresponding confidence 

intervals (95%). (b) The peak performance in terms of the best (mean) performing day of the week 

and corresponding confidence intervals.  

 

 



Supplementary Figure 4. Related to Figure 4. Cognitive processing speed captured on the 

smartphone during actigraphy labelled sleep. Figure legends same as in Figure 4., but the data was 

separated according to the days of the week of the actigraphy labelled sleep onset.  

 

 

Supplementary Figure 5. Related to Figure 1.  The actigraphy luminescence sensor output when a 

subject uses the smartphone in a dark room. Light bulb (💡💡) marks the periods when the room was 

lit.  
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