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Light-intensity-dependent photoresponse time of
organic photodetectors and its molecular origin
Chiara Labanti 1,2,7, Jiaying Wu2,3,5,6,7, Jisoo Shin4,7, Saurav Limbu1,2, Sungyoung Yun4, Feifei Fang4,

Song Yi Park1,2, Chul-Joon Heo4, Younhee Lim4, Taejin Choi4, Hyeong-Ju Kim4, Hyerim Hong4, Byoungki Choi4,

Kyung-Bae Park 4✉, James R. Durrant 2,3✉ & Ji-Seon Kim 1,2✉

Organic photodetectors (OPDs) exhibit superior spectral responses but slower photo-

response times compared to inorganic counterparts. Herein, we study the light-intensity-

dependent OPD photoresponse time with two small-molecule donors (planar MPTA or

twisted NP-SA) co-evaporated with C60 acceptors. MPTA:C60 exhibits the fastest response

time at high-light intensities (>0.5 mW/cm2), attributed to its planar structure favoring

strong intermolecular interactions. However, this blend exhibits the slowest response at low-

light intensities, which is correlated with biphasic photocurrent transients indicative of the

presence of a low density of deep trap states. Optical, structural, and energetical analyses

indicate that MPTA molecular packing is strongly disrupted by C60, resulting in a larger

(370meV) HOMO level shift. This results in greater energetic inhomogeneity including

possible MPTA-C60 adduct formation, leading to deep trap states which limit the low-light

photoresponse time. This work provides important insights into the small molecule design

rules critical for low charge-trapping and high-speed OPD applications.
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Organic semiconductors such as small molecules and
conjugated polymers are a new class of attractive pho-
toactive materials for photo-sensing in various imaging

applications1–8. Their narrow optical absorption bands9, com-
bined with highly-flexible, light-weight, transparent, and easily
processable physical properties are particularly advantageous for
top-surface photodetection in integrated sensor arrays to achieve
compact and sensitive high-resolution imaging systems10,11. A
photoactive layer in particular based on small molecules is usually
fabricated as a thin film by a sublimation technique, yielding high
batch-to-batch reproducibility12. For organic photodiode (OPD)
applications, this photoactive layer is typically comprised of a
bulk heterojunction (BHJ), a highly intermixed blend of electron
donor (D) and electron acceptor (A) molecules fabricated by co-
sublimation, which offer efficient separation of excited state
excitons into charge carriers at their D/A interfaces13. For sub-
limed OPDs, C60 has been the preferential choice as the acceptor
molecule due to its isotropic charge transport and ease of
sublimation9–11,14,15. However, properly selecting and engineer-
ing sublimable donor molecules still remain as a key challenge for
OPD performance optimization.

Recently, promising OPD performance has been achieved with
sublimable donor molecules which possess both donor and
acceptor moieties along their conjugated backbone9,10,15,16. The
resulting push-pull character of these donor molecules provides
an effective way to control their electronic energy levels and
optical bandgap. Such structural motifs have also enabled, in
blends with C60, tuning of the photoresponse detection range,
enhancement of the charge transport properties, and optimiza-
tion of the nanostructure of the photoactive layer9–11,15. In par-
ticular, good performance has been reported with merocyanine
and related dyes, achieving a sharp and narrow optical absorption
and fast photoresponse9–11,16. Various other molecular design
strategies such as fusion of the donor moieties and functionali-
zation or elongation of the acceptor moieties have also been
explored in the donor molecules, achieving excellent OPD figures
of merit including EQEs in the green at 5 V in reverse bias of
60–75%, dark currents of the order of 1 nA/cm2, detectivity in the
1013 Jones range and linear detection ranges of seven orders of
magnitude9–11,16.

Despite these achievements, the major limitation of OPDs
compared with crystalline inorganic counterparts remains in their
relatively slow photoresponse times17–19. The charge carrier
mobility of organic semiconductors is normally orders of mag-
nitude lower than that of inorganic crystalline materials20,21,
attributed to polaron formation and higher energetic disorder
resulting in charge trapping22–25. This results in slower light-on/
off photoresponse times17 with limited frequency bandwidths in
device operation, which are particularly detrimental for imaging
reconstruction when OPDs are used in conjunction with faster
inorganic detectors in integrated imaging systems18. Moreover,
even slower OPD photoresponse times can occur in low-light
operating conditions26, further limiting their potential applica-
tions. Energetic disorder and charge trapping in organic
semiconductors27–32 can stem from multiple molecular origins
such as chemical impurity or the co-existence of different con-
formations (e.g., isomers)27,32. Furthermore, molecular-structure
induced intermolecular packing, orientation, and domain for-
mation can also contribute to the energetic disorder and charge
trapping. Even for sublimed OPDs, known to exhibit better device
performance and reproducibility than solution-processed devices,
the molecular origins determining these energetic disorder and
charge trapping, and hence the OPD photoresponse times,
remain largely unresolved10,11,15,16.

Herein, we elucidate the role of donor molecular structure on
the formation of trap states in co-evaporated C60 blends, and its

impact on the light-intensity dependent photoresponse times of
BHJ OPDs fabricated using these blends. Two small mole-
cule donors (NP-SA and MPTA, see Fig. 1 for their chemical
structures) are used with C60 acceptor in co-sublimed BHJ OPDs.
A planar donor MPTA yields a faster OPD response than a
twisted donor NP-SA under relatively high-light irradiation
(1 Sun down to 0.5 mW/cm2). However, OPDs with the planar
MPTA donor exhibit biphasic photocurrent transients, with the
slower phase dominating at low-light levels. This results in MPTA
OPDs exhibiting a slower photoresponse time than NP-SA OPDs
when operated under low-light conditions (e.g., 0.02 mW/cm2).
These light-intensity-dependent photoresponse times are corre-
lated with differences in BHJ nanoaggregation and charge trap-
ping induced by the donor molecular structure (planar or
twisted), with in particular the slower photoresponse time of
MPTA OPDs at low light levels resulting from a higher density
of relatively deep trap states. These relatively deep trap states
have negligible impact on high-light OPD operation, but
can significantly retard OPD photoresponse time at low-light
intensity. In contrast, the more twisted NP-SA donor results
in a lower density of these deep trap states, allowing OPD devices
to maintain their photoresponse time independent of light
intensity. This work provides important insights into the mole-
cular origin of trap states in BHJ OPDs and how molecular
design requirements can differ for high- and low-light device
operation.

Results
Twisted (NP-SA) and Planar (MPTA) donor molecules. The
two small molecule donors, NP-SA (2-((5-(naphthalen-1-
yl(phenyl)amino)selenophen-2-yl)methylene)−1H-cyclopenta[b]
naphthalene-1,3(2H)-dione) and MPTA (2-((8-methyl-8H-
thieno[2,3-b]indol-2-yl)methylene)−1H-cyclopenta[b]naphtha-
lene-1,3(2H)-dione), are used (see their chemical structures in
Fig. 1a). The synthetic route of NP-SA is reported in ref. 10, while
full details about MPTA synthesis are included in the Materials
section of the Supplementary Methods. Both donors are com-
prised of electron-donating and electron-withdrawing units (D-A
structure) based on fused heterocycle groups, yielding a compact
structure suitable for the formation of highly-intermixed inter-
penetrated networks upon co-evaporation with C60

10,11,15,16. For
NP-SA, the donor unit is constituted by a tertiary amine coor-
dinating benzene and naphthalene units to the selenophene
molecular core, while three fused rings form its acceptor unit. The
optimized geometry of NP-SA based on density functional theory
(DFT) shows twisted 3D-like arrangement of donor unit with a
planar linkage between the core and the acceptor units (Fig. 1a).
For MPTA, the donor unit is made of a single fused hetero-
cyclic group incorporating the amine linkage and the thiophene
ring, while maintaining the same three fused ring acceptor unit as
NP-SA. This results in an extremely planar molecular structure in
MPTA. DFT calculations show the preferential distribution of the
highest occupied and lowest unoccupied molecular orbitals
(HOMO and LUMO) to the donor and acceptor units respec-
tively for both NP-SA and MPTA molecules (Supplementary
Fig. 1). However, the planar MPTA molecule shows smaller
electrostatic potential separation on the D and A units, in line
with better charge delocalization along its planar conjugated
backbone. Although existing studies suggest that the twisted
conformation (out-of-plane branching) of the molecule is bene-
ficial to prevent excessive molecular aggregation affecting
absorption range and dark current16, no detailed study compar-
ing twisted donor molecules to fully-planar ones for BHJ OPD
devices has been reported in the literature, which is the main
focus of our work.
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Responsivity and current density–voltage characteristics. NP-
SA:C60 and MPTA:C60 BHJ OPDs are green-light selective
detectors with a detection range from 460 to 620 nm for NP-
SA:C60 and 450–600 nm for MPTA:C60 (Fig. 1b). Both devices
demonstrate a similar level of field-dependent responsivity,
assigned to bias-dependent CT dissociation, similar to that pre-
viously reported for analogous IDDSe based OPDs15. Supple-
mentary Figure 2 shows the photocurrent collection as a function
of light intensity at different bias conditions. Non-linear behavior
(slope <1) is observed at higher light intensities (Φ), indicating
bimolecular recombination losses during charge collection,
attributed to the highly intermixed nature of the BHJs for both
OPDs. Both systems show enhanced linearity at reverse bias,
assigned to accelerated charge extraction at reverse bias reducing
bimolecular recombination losses during transport. These
dependencies are also apparent from the analysis of the
derivative of lnJ/lnΦ versus light intensity (Supplementary Fig. 3).
Figure 1c shows the J–V response in dark and under AM1.5
G illumination of both systems. The dark and light J–V responses
are very similar, and the dark currents are particularly low
(~10−8 A cm−2) for a wide reverse bias range of 0 to −5 V when
compared with most OPDs33. The MPTA:C60 device shows a
dark shunt increase at strong reverse bias, indicative of a trap
associated reverse bias shunt33, and consistent with our results
below indicating the presence of deep traps in this device.

High-light device response time governed by shallow traps. To
understand the photodetector behavior of NP-SA and MPTA
donors, we first consider transient optoelectronic analysis at
relatively high illumination intensities (>0.5 mW/cm2),

employing frequency response analysis, as well as transient
photovoltage and charge extraction (CE) techniques more widely
applied to organic solar cells25,27,32. The frequency response of
NP-SA:C60 and MPTA:C60 OPDs measured at 0.7 mW/cm2

(Fig. 1d) exhibits a −3 dB cut-off frequency of 3 kHz for NP-
SA:C60 and 4 kHz for MPTA:C60 (this light intensity was
employed to avoid potential contributions from bimolecular
recombination losses which will also contribute to the photo-
current response at higher light intensities, see Supplementary
Fig. 3). For both devices, the response bandwidth increases at
reverse bias −3 V (green and orange data in Supplementary
Fig. 4), attributed to accelerated charge extraction due to the
larger drift fields in reverse bias conditions (see photocurrent
transient data as a function of reverse bias in Supplementary
Fig. 5).

The frequency dependent photoresponse of OPDs depends on
device circuit RC and charge carrier transport time17,19. For low-
mobility organic semiconductor-based OPDs, the frequency
photoresponse is primarily limited by the charge carrier transport
time17. Measuring photocurrent transients under pulsed light
illumination allows further investigation of the charge carrier
transport properties; this method has been applied to study the
effective charge carrier mobility of organic solar cells34. Figure 1e
shows short circuit photocurrent transients of NP-SA:C60 and
MPTA:C60 devices under 0.7 mW/cm2. Pulsed light irradiation
for 100 ms ensures that the devices reach a steady state
precondition with a constant initial light-on current, and the
experiments were conducted within the linear dynamic range of
the devices (see Supplementary Figs. 2 and Fig. 3). Faster charge
extraction transients were observed for MPTA:C60 devices at the
light intensity ranging from 0.6 to 2.2 mW/cm2, consistent with
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the wider frequency response bandwidth of the MPTA:C60 OPDs
(Fig. 1d). In particular, a photocurrent decay time of the order
of microseconds is in line with state-of-the-art OPD
performances4,15,35. Integration of the photocurrent transients
(see Supplementary Fig. 6) allows the determination of the short
circuit charge carrier density at different light levels. These data
can then be employed to determine, using a simple drift model,
the effective drift charge carrier mobility in the active layer of
these devices (see reference 36 for calculation details)36. For high-
light intensities (>0.5 mW/cm2), corresponding to charge carrier
density higher than ~1015 cm−3, the effective charge carrier
mobility is higher for MPTA:C60 compared to NP-SA:C60 OPDs
(see Fig. 1f).

Charge carrier transport in organic semiconductors is typically
dominated by the thermally activated charge hopping processes
via band tail states (often referred to as shallow trap states)37. For
such materials, the mobility is strongly impacted by hopping site
density (i.e., trap density) and thermal activation barriers (trap
energy)38,39. Support for the presence of such shallow trap or tail
states in our OPDs was obtained from charge extraction transients
measured from open circuit conditions, again as a function of light
intensity34,40. As can be seen from Fig. 1g, as the open circuit
voltage (expected to correspond to the quasi-Fermi level splitting
in the photoactive layer) is reduced by lowering the light intensity,
the charge density extracted from the devices is lowered (see also
Supplementary Fig. 7 for non-normalized data). However, this
drop in charge density as a function of VOC is significantly
shallower than that expected for an ideal semiconductor (see
dashed line), evidence for the presence of tail states27,32. This drop
is steeper for MPTA:C60 OPDs, indicative of a narrower energetic
distribution of band tail states for the MPTA:C60 device compared
to NP-SA:C60, consistent with the faster response time of
MPTA:C60 devices under these ‘high-light’ conditions41.

Low-light device response time governed by deep traps. The
operating light intensities of OPDs vary largely between different
applications. We therefore now turn to the frequency response
and transient extraction analysis of MPTA:C60 and NP-SA:C60

OPDs at low-light intensities (≤0.5 mW/cm2). When the devices
are operated at 0.024 mW/cm2, the opposite trend in frequency
response is observed (Fig. 2a) compared to the high-light case
(Fig. 1d). At this low-light intensity, the −3 dB frequency of the
NP-SA:C60 device is about 5 kHz, while MPTA:C60 response time
has reduced to 2 kHz. It is thus apparent that MPTA:C60 OPD
exhibits a superior frequency response for high-light intensity
sensing applications, but the NP-SA:C60 OPD possesses the
fastest response for low-light applications.

To investigate this further, we undertook high sensitivity short
circuit photocurrent transients shown in Fig. 2b–d for initial light
intensities from 0.1 to 0.4 mW/cm2. The initial photocurrent
decay kinetics measured at low-light intensity are similar to those
observed in Fig. 1e measured at relatively high-light intensities,
with faster kinetics for MPTA:C60 device. However, as shown in
Fig. 2c, it is also apparent that the MPTA:C60 device shows a
distinct, slower (circa 100 µs) second decay phase which is not
significantly observed in the NP-SA:C60 devices (Fig. 2b–d). The
amplitude of this slow decay phase is observed to saturate at
higher-light intensities (see current transients measured at
relatively high-light intensities in Supplementary Fig. 8) and is
thus more dominant at the lowest light intensities. Therefore,
while NP-SA maintains a state-of-the-art photoresponse
time4,15,35 independently from light intensity, MPTA perfor-
mance degrades under lower light intensities showing a second
slow phase photocurrent transient. Such biphasic photocurrent
transients are particularly striking and have not been reported
before in previous studies of OPD devices. In particular, the
second slow phase decay is evidence of a low density of much
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slower, but still extractable charge carriers, indicative of the
presence of a low density of relatively deep trap states in addition
to the band tail states observed near the band edge42. Consistent
with this observation, light-intensity-dependent surface photo-
voltage (SPV) measurements also show more prominent deep
charge trapping in MPTA:C60 OPDs compared to NP-SA:C60

devices (Fig. 2e and Supplementary Fig. 9). At this regard, we
note that slow charge generation can be ruled out as cause of the
observed slow photocurrent transient, since the timescales of the
two phenomena are significantly different (i.e., charge generation
occurs in the ps-ns range15, compared to the 100 µs of the slow
charge transient component).

The decay of the MPTA:C60 photocurrent transients can be
fitted with a biexponential decay function, as shown by the
dashed line in Fig. 2d, with a fast decay time constant of 5.9 µs
and a slow decay time constant of 210 µs. The difference in these
extraction times can be assigned to a difference in effective charge
carrier mobility (µ) as the extraction speed (ν) depends only on
mobility when the drift force (F) is identical (ν= µF). Assuming a
system with shallow (E1) and deep (E2) state energies as
illustrated in Fig. 2f, and thermally activated detrapping, the
difference in extraction times indicates the deep traps are
approximately 0.1 eV below the shallow trap states (we note that
this calculation is only indicative, due to its assumption of single
trap energies rather than distributions of energies, see Supple-
mentary Note 1 for details). Integration of charge associated with
the slow CE decay phase yields the density of these deeply trapped
charges, corresponding to 1 × 1015 cm−3 at short circuit under
0.3 mW/cm2. The presence of these deep traps in MPTA:C60

devices is also apparent from open circuit charge extraction
transients as shown in Supplementary Fig. 7. Open circuit
conditions result in enhanced charge accumulation; these data
show up to 5 × 1015 cm−3 charges accumulated in these deep trap
states, indicative of the total density of deep trap states in the
MPTA:C60 OPDs. We note that at short circuit, the charge carrier

density accumulating in the device under steady state is lower
than at open circuit due to external extraction of photogenerated
charge carriers from the photoactive layer43–45.

The impact of these deep trap states in MPTA:C60 blend can
also be probed by light intensity-dependent surface photovoltage
measurements (Fig. 2e)46. The magnitude of SPV response is
significantly dependent on light intensity for MPTA:C60 blend,
showing a strong reduction compared to NP-SA:C60 blend when
measured in low-light (notably at 0.5 mW/cm2), indicating strong
trap-assisted recombination loss, consistent with deep trap states
being more dominant in MPTA blends. Moreover, MPTA:C60

blend shows a slower transient time to reach equilibrium in the
dark after low-light illumination (shown in the inset in Fig. 2e),
which suggests that these deep trap states slow down charge
extraction in MPTA:C60 blend47,48. In summary, we conclude
that the slower frequency response of MPTA:C60 OPDs at low-
light intensities results from the presence of relatively deep trap
states, while these are not so prevalent in NP-SA:C60 OPDs.

Molecular-structure-dependent intermolecular coupling. In
order to identify possible molecular origins for shallow and deep
traps, we first investigate the effect of donor molecular structure
(twisted NP-SA vs planar MPTA) on intermolecular coupling in
neat and blend films using optical and structural probes. For
absorption, both donor molecules show a well-defined absorption
band in the visible range with a smaller (90 nm) full-width at half
maximum (FWHM) peaking at 565 nm for NP-SA and a larger
(150 nm) FWHM peaking at 495 nm for MPTA, respectively
(Fig. 3a). For MPTA, a clear absorption feature at the low energy
shoulder is also observed. Surprisingly, both NP-SA and MPTA
absorption spectra get narrower, in particular for the high energy
shoulder, upon blending with C60, and this narrowing is more
dominant in MPTA, reducing its FWHM by 45 nm compared to
15 nm in NP-SA (Fig. 3a).
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More striking differences between the two donors appear in
their photoluminescence (PL) spectra (Fig. 3b). The planar
MPTA shows strongly red-shifted, highly-emissive PL emission
compared to the twisted NP-SA, with its PL intensity increasing
further upon thermal annealing (Supplementary Fig. 10), indicat-
ing stronger intermolecular interactions of MPTA most likely
associated with molecular aggregation, arising from its extremely
planar molecular structure. Similar emission characteristics with
strongly red-shifted and highly-emissive PL has also been
observed in analogous organic planar small molecules, assigned
to excimers49. The lifetime of these emissive species is found to be
in the order of 5 ns by time-resolved PL (Supplementary Fig. 11),
which is consistent with excimeric emission reported50,51, while
NP-SA shows a much faster decay (<400 ps limited by the
instrument response function). The aggregation in MPTA seems
to occur at the molecular level without any detectable microscopic
features (Supplementary Figs. 12 and 13 for atomic force
microscopy (AFM) and transmission electron microscopy
(TEM) images, respectively). Upon blending with C60, this red-
shifted, highly emissive PL of MPTA is strongly quenched, while
a new broad charge transfer (CT) state emission appears at low
energy (>800 nm) (Fig. 3c). This CT state emission originates
from weakly bound electron-hole pairs formed upon photo-
excitation at the MPTA/C60 interfaces; this is readily quenched by
reverse electric field generating free charge carriers (Supplemen-
tary Fig. 14). A similar red-shifted CT state emission is also
observed in NP-SA:C60 blend. Such dominant CT state emission
in both MPTA:C60 and NP-SA:C60 blends is indicative of highly
intermixed morphology for both blends15. Differently from NP-
SA:C60 showing stronger and predominant CT emission,
MPTA:C60 blend emission shows more visible high energy
shoulder (<750 nm) coinciding with MPTA emission, indicating
possible presence of residual neat MPTA emission. For both
blends, a new additional blue-shifted, much weaker PL emission
is also observed at high energy (<650 nm) with higher relative
intensity for MPTA:C60 blend, attributed to the emission of donor
molecules where their intermolecular interactions are largely
disturbed by C60 acceptors. Based on these absorption and PL
properties, it is clear that the planar donor MPTA undergoes
more significant changes in the molecular-scale nanomorphology
to accommodate C60 acceptor in the blend than NP-SA.

These significant changes in the nanomorphology of
MPTA:C60 blends are also apparent from molecular vibrational
spectroscopy. Figure 3d, e shows the Raman spectra of NP-SA
and MPTA respectively, comparing neat and blend films. The
main peaks appear at low (1300–1500 cm−1) and high
(1550–1800 cm−1) frequencies, which mainly originate from
the core unit (i.e., central selenophene/thiophene and amine
linkage) and the end-group (i.e., acceptor unit, phenyl, and
naphthalene) vibrations of molecules15, respectively (see Supple-
mentary Fig. 15 and Supplementary Table 1 for detailed
assignment). In neat films, MPTA shows much stronger and
sharper core unit peaks, indicating enhanced π-electron density in
the fused donor unit compared to non-fused donor in NP-
SA52–54. Blending with C60 leads to completely different changes
in their vibrational modes. For NP-SA, it affects only the high
energy vibrations (peaks A and C) with increased relative
intensities, consistent with a certain degree of molecular twisting
selectively involving only the end-groups15. On the other hand,
the blending induces significant structural changes in MPTA,
with increased relative intensities of all the vibrations accom-
panied by large broadening of the peaks towards high frequencies.
This does not match the Raman spectra of twisted MPTA (see
Supplementary Fig. 16), indicating that molecular twisting is not
the main cause of Raman changes observed in MPTA:C60 blend.
Such significant changes reflect the more dramatic impact that

C60 blending has on MPTA, disturbing its strong intermolecular
coupling52,55–58. As planar MPTA exhibits strong intermolecular
coupling in neat film, as evident in its red-shifted and highly
emissive PL, the addition of C60 requires profound modifications
of MPTA packing and relative molecular orientation for an
effective mixing, leading to significant changes in MPTA:C60

nanomorphology, as probed herein by Raman spectroscopy. It is
striking that these changes of nanomorphology occur at the
molecular scale without any measurable changes in microscopic
morphology (Supplementary Figs. 12 and 13). In addition to
morphology reorganization, the blending of C60 can result in the
formation of MPTA-C60 adducts59–61 (see chemical structure and
calculated energy levels in Fig. 4a, b), only possible in the planar
MPTA where there are no bulky side groups at the amine center
and hence the lone electron pair in the N atom can interact with
π-electrons in C60. Figure 4c, d shows the calculated Raman
spectrum of the MPTA-C60 adduct, which seems compatible with
the experimental data for the MPTA blend. In fact, both show
similar changes in Raman intensity and peak width compared to
neat MPTA. Namely, the relative quenching of peaks H and G
can be attributed to the locking of the amine bond by the
fullerene addition, and the broadening of peak E towards high
energies can be related to adduct contributions. In summary, we
find that the MPTA-C60 adduct formation is possible in
MPTA:C60 blend due to the extremely planar structure of MPTA.
When C60 is highly intermixed with MPTA in blend, the strong
intermolecular interactions of MPTA molecules are disturbed,
allowing MPTA-C60 interaction to form MPTA-C60 adduct
through lone pair–π interactions60,61. Both morphology changes
and adduct formation significantly affect the MPTA vibrational
modes, consistently with what observed from Raman
measurements.

Molecular origins of shallow and deep traps. We now turn our
investigation into the effect of donor molecular structure (twisted
NP-SA vs planar MPTA) on the formation of shallow and deep
trap states in BHJ blends using DFT simulation and energetics
measurements. We first analyze the conformation of the two
donor molecules. Figure 5a shows an analysis of molecular
potential energy as a function of structural twisting using DFT
simulations, in which the potential energy is calculated at dif-
ferent dihedral angles between the D-A building blocks—i.e.,
between selenophene (or thiophene) and alkene bond in the A
unit for NP-SA (or MPTA). Both donor molecules exhibit a
planar D-A geometry (0 dihedral angle) at the lowest potential
energy, with the chalcogen and oxygen atoms at the same side of
the structure, lowering the potential energy through their non-
covalent bond. Notice that the optimized NP-SA geometry has a
3D coordination in the amine donor unit, but a planar con-
formation between the selenophene core and the acceptor unit
(Fig. 1a). For NP-SA, a large potential energy difference
(~200 meV) is calculated for its isomer, where the dihedral angles
between the D-A building blocks is 180°. In contrast, for MPTA
the two isomers (0 and 180° dihedral angles) have a very similar
potential energy, attributed to the weaker S–O interaction in
MPTA compared to stronger Se–O interaction in NP-SA. The
HOMO and LUMO energy levels calculated for the two isomers
of MPTA are also very similar (Fig. 5b), while they are largely
different (~100 meV) for NP-SA. This holds even considering the
possible non-equilibrium configurations (20° around the local
minima), which can represent the highly intermixed blend
morphology. The HOMO level dispersion is ~70 meV for NP-SA,
but only ~30 meV for planar MPTA (see Supplementary Fig. 17).
This indicates an important intrinsic structural advantage of the
planar MPTA molecule. Even with the possible formation of
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isomers in films, no additional conformational energetic disorder
is introduced by this planar molecule, leading to narrow band-
tail-state distribution (low density of shallow traps), consistent
with the fast charge transport and fast OPD photoresponse time
at high-light levels. At this regard, it is important to point out that
selenation plays a role in the stabilization of the molecular
potential energy minimum, therefore on the propensity for the
formation of isomers. However, the changes in DOS distribution
upon creation of isomers are mainly dictated by the specific
molecular structure of different donors (i.e., planar vs twisted). In
fact, as visible in Supplementary Fig. 18, the selenated equivalent
of MPTA has a stronger potential difference between optimized
and 180° conformations similarly to NP-SA, but the difference in
HOMO and LUMO levels between isomers remains low
(~30 meV).

In order to gain further insight into the molecular origin of
trap states, we measure the energetics of neat and blend films
using ambient photoemission spectroscopy (APS)
measurements32. The measured HOMO of neat MPTA is much
shallower than that of NP-SA (5.16 eV vs 5.37 eV) (Fig. 5c). This
indicates the strong intermolecular coupling of the planar MPTA
in solid state, leading to a ~0.50 eV shallower HOMO compared
to single-molecule gas-phase DFT simulations, while measured
HOMO is consistent with the calculated value for NP-SA. Upon
blending with C60, a clear HOMO level deepening is visible for
both donors, with a much larger shift for MPTA (370 meV vs
100 meV for NP-SA). This is accompanied by a more prominent
narrowing of the density of states (DOS) in MPTA blend
(Supplementary Fig. 19). Analysis of sub-gap features from the
APS spectra32 (see the inset in Fig. 5c) clearly reveals a low
density of tail states intrinsic to the planar MPTA, which is
preserved even after blending. This low density of tail states near
the band edge (i.e., shallow trap states) is consistent with the
narrow band-tail state distribution extracted via charge extraction
transients (Fig. 1g). We attribute this low density of shallow trap
states to the smaller energetic disorder intrinsic to the highly
planar MPTA, with its potential isomer formation not introdu-
cing additional conformational energetic disorder. This low
density of shallow trap states and stronger intermolecular
coupling leads to the superior charge transport and fast
photoresponse time in MPTA:C60 OPDs when operating at
higher light levels (Fig. 1e).

The highly planar MPTA exhibits strong intermolecular
coupling in neat film forming a low-bandgap, highly-emissive
electronic state (see excimeric emission in Fig. 3b). However, the
strong disturbance induced by C60 in BHJ blend induces
significant changes in MPTA, breaking strong intermolecular
interactions between MPTA molecules and introducing a new
larger-bandgap MPTA electronic state with significantly lowered
HOMO level in the blend. As such, any residual low-bandgap
electronic states present in the blend will act as intraband deep
trap states. Along with the remaining aggregation of neat MPTA,
also the formation of a small density of MPTA-C60 adducts59–61

would result in additional energy levels. According to calculated
energetics of MPTA-C60 (Fig. 4b), the adduct exhibits a ~90 meV
shallower HOMO level compared to MPTA, which can also act as
a deep trap state in MPTA:C60 devices.

This provides a molecular origin for the slower photoresponse
times observed for MPTA:C60 devices at low light intensities, with
these states resulting in the slow photocurrent decay phase and
the strong light intensity dependence of SPV shown in Fig. 2.

Discussion
In this study, we have elucidated the molecular structure-
dependent charge trapping and its impact on OPD light-

intensity-dependent photoresponse times, which is crucial for
further developing organic molecules for targeted OPD applica-
tions. The control in the density of shallow trap states achieved in
MPTA by its highly planar molecular conformation is a key factor
for the fast charge transport and the fast photoresponse time
under standard illumination conditions (high-light intensity)
observed in MPTA:C60 devices. However, this highly planar
molecular structure leads to strong intermolecular coupling
between MPTA molecules forming a low-bandgap state. In blends
with C60, this coupling is largely disrupted, resulting in shift of
HOMO level for most MPTA molecules of several hundred meV
(see schematic in Fig. 5d). It is likely that residual low-band-gap
electronic states and the additional formation of MPTA-C60

adducts are the primary origin of deep charge trapping which
under low-light excitation conditions leads to the biphasic pho-
tocurrent transients and limited photoresponse bandwidth
observed for MPTA:C60 OPDs. No such deep trap states are
expected in NP-SA:C60 devices as C60 blending has minor impact
on NP-SA morphology and energetics due to its twisted and more
amorphous structure. Moreover, the stronger steric hindrance by
the bulky phenyl and naphthalene groups in NP-SA prevents the
amine from reacting for the formation of C60 adducts. This more
amorphous morphology, with weaker intermolecular interactions,
results in a slower photoresponse time under standard operation
conditions, making the highly planar MPTA a preferential can-
didate for high performance OPDs. However under low-light
conditions, the performance of MPTA:C60 OPDs is impeded by
deep charge trapping resulting in NP-SA:C60 OPDs yielding faster
response times for applications requiring low-light operation.

Methods
Fabrication of devices and thin films. All organic semiconductor materials were
purified via sublimation under high vacuum (<10−6 Torr) prior to use. Thin films
were fabricated via thermal evaporation under high vacuum (<10−7 Torr) at a rate
of 0.35 A/s on dried glass or quartz substrates that had been cleaned with isopropyl
alcohol (IPA) and acetone in an ultrasonic bath. The OPDs were fabricated on
ITO-coated glass substrates by sequentially depositing the hole-extraction layer
(5 nm), the organic BHJ layer of Donor:C60 (100 nm, 1:1 w/w), electron extraction
layer, Ytterbium (2 nm) and an ITO electrode (10 nm) (Supplementary Fig. 20). All
organic film layers were thermally evaporated under high vacuum (<10−7 Torr).
ITO electrodes were evaporated by magnetron sputter before the devices were
finally encapsulated with glass (98.5% transmittance). The active pixel size was
0.04 cm2. Thermal annealing post-fabrication of thin films was performed at 160 °C
over a hot plate for 3 h, followed by natural cooling to room temperature.

Transient optoelectronic measurements. The basic set-up of the transient
optoelectronic measurements for fully encapsulated devices employed in this work
used an oscilloscope (Tektronix TDS 3032B) to record the transient signal. A ring
of 12 Luxeon Star/O (LXHL-NWE8) white LEDs was applied to supply light
illuminations (see LED spectrum in Supplementary Fig. 21). The bias supply was a
Keithley 2400 source meter to provide different voltage conditions to the device.
The low-light conditions were applied via LED power control, combined with
additional Neutral Density Filters to achieve the lowest levels of light intensity. Low
current values were amplified via a low noise amplifier (DLPCA-200 - FEMTO
Current Amplifier) to be detected by the oscilloscope. All of these measurements
were controlled via computer with in-house software written in Wavemetrics
IGOR Pro software.

Steady-state optical and structural characterization. PL and Raman spectra
were measured by a Renishaw inVia Raman microscope in backscattering con-
figuration. The samples were kept under a constant nitrogen flow in a Linkam
chamber to reduce degradation effects. Laser excitation wavelengths were 514 nm
for PL and 488 nm for Raman measurements (Argon, Titanium Sapphire lasers),
with a laser spot diameter of the order of 10 µm, 25% defocused on the sample.
Diffracted light was separated by a diffraction grid (2400 lines/mm for Raman
spectra and 300 lines/mm for PL). A Si reference sample was used for spectrometer
calibration. Optimized acquisition parameters (laser power, exposure time, mea-
surement accumulation number) were kept consistent for the same experiments.
Accuracy was improved by checking the reproducibility of spectra over multiple
positions on the surface. PL background was removed from Raman spectra by
polynomial fitting. PL was also measured on encapsulated devices applying reverse
bias to the electrodes. Transmittance (T) of thin films was measured by a Shimadzu
UV-2550 UV–Vis spectrophotometer, converting it into absorbance (A) and
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removing the substrate contribution by the equation A= log(Tsubstrate/Tsample),
with the approximation of no reflectivity.

Energetic and morphological characterization. Materials HOMO energy levels
were measured for thin films on grounded ITO substrates using an APS04 pho-
toemission system (KP Technology) in ambient conditions with a 2 mm gold tip.
Reproducibility check and experimental error calculation were carried out by
measuring at multiple positions on the surface. APS data were analyzed according
to the protocol described by Baikie et al.62, extracting the HOMO from the crossing
between the linear fit of the photoemission intensity cube root and the zero
emission baseline. DOS was extracted as first derivative from photoemission cube
root spectra by software analysis. The same system was used as Kelvin probe to
measure the changes in surface potential in cycles of dark and illuminated con-
ditions (white bulb light source, with tunable intensity up to 1/5 Sun). Surface
morphology was measured by a Park NX10 AFM in tapping mode with Park
silicon PPP-NCHR tips combined with SmartScan software.

Computational methods. Simulations based on DFT were carried out using
Gaussian09 software on the Imperial College High Performance Computing ser-
vice. GaussView 6 was used as a graphical interface for result visualization. DFT
was applied at the B3LYP level with 6-311G(d,p) basis set. Small molecule donor
molecular structures were optimized to the minimum energy in gas phase and
dihedral scans were performed freezing the chosen dihedral coordinate and opti-
mizing the molecular structure at each step. Raman vibrational modes were
simulated for peak assignment of experimental data, applying a wavenumber
scaling factor of 0.97 for consistency63.

Data availability
The data supporting the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes or algorithms used to analyze the data reported in this study are available from
the corresponding authors upon reasonable request.
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