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Proteins are often considered the main biological element in charge of the different functions and struc-
tures of a cell. However, proteomics, the global study of all expressed proteins, often performed by mass
spectrometry, is limited by its stochastic sampling and can only quantify a limited amount of protein per
sample. Transcriptomics, which allows an exhaustive analysis of all expressed transcripts, is often used as
a surrogate. However, the transcript level does not present a high level of correlation with the corre-
sponding protein level, notably due to the existence of several post-transcriptional regulatory mecha-
nisms. In this publication, we hypothesize that the missing protein values in proteomics could be
predicted using machine learning regression methods, trained with many features extracted from tran-
scriptomics, including known translational regulatory elements such as microRNAs and circular RNAs.
After considering different machine learning algorithms applied on two different splitting strategies,
we report that random forest can predict proteins in new samples out of transcriptomics data with good
accuracy. The proposed pre-processing and model building scripts can be accessed on GitHub: https://
github.com/jochotecoa/ml_proteomics.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

For a cell to react and adapt to any variation of its environment,
including for instance the exposure to a foreign compound, a cas-
cade of events leading ultimately to the production of proteins
occurs. For that purpose, the cell usually initiates the transcription
of its genes (such as transcription factor), and the resulting tran-
scripts containing an open reading frame are translated into pro-
teins. Even though such a schematic view of molecular biology
appears straightforward, each of those steps is controlled and
affected by a myriad of factors. This complexity led to the develop-
ment of advanced technologies, named ‘‘omics”, allowing to deeply
study a particular class of biological entity: transcriptomics (char-
acterization and quantification of transcripts), proteomics (pro-
teins), metabolomics (metabolites), etc.

Among those different classes of molecules, proteins are partic-
ularly relevant, as their expression level and activity inform pro-
foundly about how the cell is functioning and reacting to its
environment, especially when those changes may pose a risk to
the integrity and functionality of the whole system, either due to
a disease or an infection. To analyze the expression of proteins in
different conditions, proteomics (mass spectrometry or MS) is usu-
ally applied. Unfortunately, its sensitivity is limited [1–3], and thus
only a small subset of proteins (with the highest abundance) can
be studied at a time. In addition, the stochastic sampling generates
missing identifications across samples, particularly for proteins
with an abundance close to the detection limit; even though work-
flows such as DIA (Data-Independent Acquisition)-MS workflow
can increase reproducibility. New technologies are not exempt of
these limitations: the latest single-cell proteomics strategies (such
as SCoPE22) and newest experimental and computational work-
flows [3] only obtain � 1000 proteins per cell on average (not
including their own limitations[4]), even though their dynamic
range allows for the quantification of 3000 distinct proteins.

Proteins are mainly translated from messenger RNAs (mRNAs),
which are much easier to analyze. Indeed, while having a shorter
half-life than proteins, mRNA transcriptomics has become over-
whelming sensitive and cost-efficient over the years with the
invention of next-generation sequencing. For these reasons, RNA-
Sequencing techniques are usually preferred to statistically study
cell changes at the molecular level. However, a given mRNA is
not an excellent proxy of its corresponding protein expression
level, which is reflected in a very low correlation between tran-
scriptomics and proteomics technologies [5–9]. While the reasons
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behind this gap can be multiple, the main factors can be catego-
rized into post-transcriptional regulation. By different mechanisms
in such regulation, the cell controls the final level of translation of
each mRNA into proteins. These factors can be either determined
by the molecules themselves (such as the transcript’s or protein’s
half-life[10]) or by the interaction with external elements.

MicroRNAs (miRNAs), short non-coding transcripts of around
22 nucleotides of length, play an important role in post-
transcriptional regulation. They can act as inhibitors of translation
[11–12] by base-pairing their seed region [13] (nucleotide 2 to 8)
to the target mRNA, usually in their 3‘ UTR region. While often con-
sidered mild individually, the interaction of multiple miRNAs (ei-
ther the same miRNA or different miRNAs) on the same 30UTR
target can have a significant effect on protein level expression
[14–15]. Considering the relatively short length of the seed region,
miRNAs can target an average of 200 different targets. Even so,
miRNAs are not the only transcripts regulating translation.

Another newly discovered category of RNAs, named circular
RNAs (circRNAs), are characterized by their circular form, which
is generated by the binding of their 5 and 3‘ end during splicing
(back-splicing) [16–17], forming the so-called back-spliced junc-
tion. Due to this particular structure, they are not easily degraded
due to the absence of transcript extremities, rendering them
immune to exonuclease activity [18]. Several functions have been
proposed for these circRNAs, including regulating miRNA activities.
It has been demonstrated that circRNAs, which can contain repeti-
tions, could present the same target regions present in miRNA tar-
gets, and sometimes several times per molecule. This leads to a
target competition [19], where circRNAs bind most miRNAs, which
gave to circRNAs the function of ‘miRNA sponges’ [20]. The post-
transcriptional regulation complexity starts to unfold once one
realizes that each transcript can be inhibited by several miRNAs,
and at the same time, each of those miRNAs can be ‘‘sponged” by
one or more circRNAs.

The final expression level of a protein results thus from the inte-
gration inside the cell of many factors related to transcripts: the
level of expression of mRNAs, the number of possible seeds with
miRNAs, the expression level of miRNAs, and the expression level
(and ‘‘sponging” capacity) of circRNAs able to capture these miR-
NAs. Many other features could also play a role in this final protein
expression level. For instance, the GC content of an mRNA has been
observed to interfere with the mRNA half-life [21], and thus the
total number of proteins formed from a single mRNA. All these
RNA elements or characteristics just mentioned could be identified
and quantified by transcriptomics with RNA-Sequencing. Since the
protein expression level is the most important factor for biological
interpretation, and considering the limited sensitivity and stochas-
tic sampling of proteomics in addition to the very low correlation
of the mRNA/protein expression level, we considered the possibil-
ity of obtaining predicted protein expression levels from the inte-
gration of as many possible features available from several
OMICs data. Although we recognized that methods such as
match-between-runs (MBR) [22], DART-ID [23], and IceR [24] have
already been developed (and their limitations[25]), including a
deep learning approach to extrapolate proteomics values from
transcriptomics values [26], none utilized a complex multiomics
strategy to approach in a novel manner the limitations of
proteomics.

The amount and complexity of the data render impossible the
task of manually integrating all these parameters. Even when
inputting such data digitally, it is not straightforward to visualize
which is the optimal manner to predict proteomics values. This
problem is characteristic of the current big data era, which in turn,
has led to the rise of algorithms that use straightforward optimiza-
tion strategies to rapidly process thousands or millions of observa-
tions. Some of those can be categorized as machine learning (ML),
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which consists of a set of computer algorithms built to automati-
cally improve their prediction with increasing volumes of data
[27]. Specifically, the algorithms focused on predicting are part of
the supervised learning algorithms, as they require a training
phase in which they are exposed to the value to be predicted (tar-
get) in conjunction with other variables associated with it (fea-
tures). Two major classes of machine learning algorithms exist:
when predicting categories or labels (qualitative values), algo-
rithms will perform a classification; while when what is predicted
are quantitative values, algorithms will perform a regression. The
improvement in the accuracy of these models can be evaluated
based on how similar the predictions are to the actual observa-
tions. The accuracy is only relevant to evaluate with new data
(testing dataset), and not with the data used to train the model
(training dataset), in order to avoid the generation of a biased
model due to overfitting.

In this manuscript, we hypothesized that using machine learn-
ing algorithms would allow us to estimate the expression level of
the protein not detected by proteomics out of all available data.
For the omics data, we made use of an in vitro dataset obtained
from primary human hepatocytes microtissues which includes 3
omics datasets obtained from the exact same samples batch:
RNA-Seq (ribo-depleted libraries), miRNA-Seq (small RNA
libraries), and proteomics (mass spectrometry). Both mRNA and
circRNAs quantification were extracted from the RNA-Seq data.
We thus assessed the accuracy of diverse machine learning predic-
tive models based on different algorithms and data-splitting
strategies with the ultimate goal to predict protein expression
value from transcriptomics and other mRNA features.
2. Methods

2.1. Dataset & features

The description of the biological samples used, in addition to
the proteomics and transcriptomics protocols followed to obtain
protein and RNA expression values, can be found in the Supple-
mentary Methods.

Proteomics expression values were set as the target to be pre-
dicted. We set as features protein properties with nominal values
extracted from UniProt that might affect their half-life. The fea-
tures were the following: protein length (Length), mass (Mass),
quantity of each amino acid (Aa_X), organism (Organism), location
on which the original gene was encoded (Gene.encoded.by), and
the database version of the protein sequence (Version..sequence.).
From those, we also derived additional features: linear density
(mass divided by length) and proportion of each amino acid based
on the protein’s length (Aa_X_prop). Finally, we added some irrel-
evant features (protein sequence version) as negative controls to
inform us of the model reliability (based on the importance these
features would be given by those models). Concerning protein sta-
bility, we included all nine features extracted from the supplemen-
tary table: R1-R7, PSI, and SD.

The expression values (in TPM) of protein-related transcripts
were added as a feature. Furthermore, we also added diverse tran-
script properties: strand, transcript length, percentage gene GC
content, CDS length, UTR length (or non-CDS length), and propor-
tion of UTR length (UTR length divided by the transcript length).
MiRNA expression was also added as a feature, linking it to the
transcript targets they could potentially regulate. For this, we used
the miRDB’s MiRNA Target Interaction (MTI) score in two features
in the ML algorithm: one feature with only miRNAs that presented
a high probability of targeting such target (‘stringent‘, score >= 80),
and another considering all possible regulations, independently of
their score (‘all‘). CircRNA expression as a feature (‘circ’) was linked
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to the proteomics values based on the miRNA sponging effect of
the former. We only utilized the expression of those circRNAs that
presented >7 targeting sites with a specific miRNA. We also added
the sponging effect of circRNAs as the feature ‘circ_score’.

Transcripts were named based on their Ensembl ID, while pro-
teins were labeled with UniProt IDs. A single UniProt protein could
be associated with more than one ENST transcript, potentially with
very different features (expression level, transcript length, etc.).
Therefore, we needed to summarize the value from all linked tran-
scripts in a single feature. As there was no clear advantage to select
a particular summary method over another, we created a feature
for each of those different methods: mean, median, minimum,
maximum, sum, and standard deviation. This approach was not
only applied to features associated with transcripts coupled to pro-
teins (and their log2-transformed values) but also to the ones asso-
ciated with miRNAs and circRNAs (and their log2-transformed
values as well). Indeed, this problem was also applicable to those
molecules (to even a greater extent) when linking them to a single
proteomics value: each transcript can be inhibited by several miR-
NAs and each of those miRNAs can be sponged by several circRNAs.
We also extended this strategy to those features that presented a
multiplicity of values for a single observation, such as the protein
stability data. The combination of all discussed variables led to a
total of 196 features.

2.2. Pre-processing

For both the pre-processing of the data and the construction of
the machine learning models, we used the R library ‘caret’ [28].

2.2.1. Creating dummy variables
Since categorical data (such as gender) cannot be inputted

directly into a model, they needed to be transformed into dummy
variables. Dummy variables are binary features that indicate the
presence (1) or absence (0) of a categorical value. In our data, the
dummy variables created were related to strand information (pos-
itive (+) or negative (�) strand) and protein version sequence
(presence or absence of versions 1 to 7).

2.2.2. Identifying (Near) Zero-Variance and correlated predictors
To identify variables with no variance (Zero-Variance or ZV) or

insignificant variance (Near Zero-Variance), we used the function
‘nzv’ (frequency ratio > 95/5, percentage unique < 10%) described
in ‘caret’ [29]. We then discarded those predictors from the dataset.
To identify correlated variables (correlation > 0.75), we used the
function ‘findCorrelation’ also from the ‘caret’ package. We dis-
carded the identified correlated predictors from the dataset. The
correlation plot was designed using the ‘corrplot’ package.

2.2.3. Centering and scaling
Centering refers to the data transformation where the means of

all features are set to a specific value (i.e., 0) while scaling refers to
the transformation where the standard deviation is also set to a
constant value (i.e., 1). These data transformations avoid a feature
importance bias due to value size or scale. No imputation was per-
formed, but instead, all observations with any missing value were
removed from the dataset.

2.2.4. Data splitting and algorithms used
The data split between the training dataset (80% of the whole

dataset) and the testing dataset (20% of the whole dataset) was
performed based on 2 different strategies: sample names and pro-
tein names. For each algorithm used, we performed recursive fea-
ture elimination using the ‘rfe’ function with (10-fold) cross-
validation (CV) resampling and the training dataset. After recursive
feature elimination, the model with the optimal subset size of vari-
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ables for each algorithmwas selected to predict the testing dataset.
As validation, we also used ‘rfe’ (10-fold cross-validation) for the
whole dataset. To split the dataset accordingly, we first generated
the 10 folds using the ‘groupKFold’ function based on the indicated
categories (samples and proteins). These folds were used as input
in the ‘folds’ parameter in the ‘rfeControl’ function.

The algorithms tested were: Boosted Tree (‘bstTree’), Random
Forest (‘rf’), Bagged Model (‘bag’), Boosted Tree (‘blackboost’), Lasso
and Elastic-Net Regularized Generalized Linear Model (‘glmnet’), k-
Nearest Neighbors (‘kknn’), Cubist (‘cubist’), and Linear Regression
(‘lm’). All algorithms were used via ‘caret’, and thus, the default
parameters used by ‘caret’ were utilized.

2.2.5. Performance based on GO terms
We selected the cardiac dataset, and subselected one sample as

testing dataset, while the model training was proceeded with the
rest of samples using the 10 features shown in the results. After
the training, we predicted the testing dataset with the resulting
random forest model, and combined the predictions with the test-
ing observations. We then extracted the GO terms associated for
each protein in the testing dataset, which we also combined with
the observations and predictions. We discarded GO terms that
were categorized in less than 10 proteins. We evaluated the R2

metrics for each of the groups of proteins associated to each GO
term. We ranked the GO term groups from best to worst perform-
ing based on R2. All the code used can be located in the following
script on GitHub: ‘script/go_terms_analysis/rsquared_on_differ
ent_go_terms.R’.

2.2.6. Imputation: A potential use of the random forest model
We also selected the cardiac dataset, but in this case including

all proteomics missing values. We subselected all Untreated
(UNTR) samples. The training dataset only contained observations
with quantified proteomics values, and the 10 features mentioned
in the results. We used the random forest algorithm for the train-
ing of the model. We then predicted the missing proteomics values
using the newly trained model. We combined the results with the
observed data, and sampled proteins with different proportions of
missing data. All code run can be found in the following script on
GitHub: ‘script/imputation/imputing cardiac values.R’.
3. Results

To assess the ability of the regression ML algorithm to estimate
the level of proteins, we produced a dataset that presented the
added value of having transcriptomics (both ribo-depleted and
small RNA libraries) and proteomics (LC/MS), all generated from
the exact same sample batches to maximize the interpretability
of the interactions. This dataset was composed of a total of 115
in vitro samples (61 cardiac and 54 hepatic). The processing of all
these samples (Methods) characterized an amount of expressed
biological entities summarized in Table 1. The total number of
expressed biological entities was 48 266 and 48 715 for the hepatic
and cardiac tissues respectively.

To assess the possibility to predict protein expression levels for
all genes using ML algorithm, we needed to assemble a list of fea-
tures, either parametric or categorical. From all the Table 1 data,
we extracted 12 features focused on the expression level of linear
transcripts, 24 features on miRNA expression, and 12 features on
circular RNA expression. We added 36 features on transcript char-
acteristics (strand, transcript length, etc.), 48 features on protein
characteristics (Protein Mass, Protein Length, etc.), 12 features on
MTI (miRNA target interaction) scores, a feature on RNA-
Sequencing depth, 6 features on circular scores (number of miRNA
binding site per circular RNA), 12 features on circular RNA expres-



Table 1
Summary table of all quantified biological entities. Total refers to all possible entities to be identified. Expressed (N) refers to the number of entities that were quantified in at least
1 sample. Constitutive (N) refers to the number of entities that were quantified in all samples. Expressed (%) and Constitutive (%) refer to the percentage of (constitutively)
expressed entities based on the total number of entities. Constitutive (% Expressed) refers to the percentage of constitutively expressed entities based on the number of expressed
entities.

Tissue Total Expressed (N) Constitutive (N) Expressed (%) Constitutive (%) Constitutive (% Expressed)

Proteomics Hepatic 1806 1806 283 100.00% 15.67% 15.67%
Proteomics Cardiac 2217 2217 247 100.00% 11.14% 11.14%
Linear transcripts Hepatic 211,939 135,655 894 64.01% 0.42% 0.66%
Linear transcripts Cardiac 211,939 136,860 933 64.58% 0.44% 0.68%
MicroRNAs Hepatic 2744 1561 280 56.89% 10.20% 17.94%
MicroRNAs Cardiac 2744 1510 250 55.03% 9.11% 16.56%
Circularized transcripts Hepatic 140,317 95,106 151 67.78% 0.11% 0.16%
Circularized transcripts Cardiac 140,317 100,416 156 71.56% 0.11% 0.16%
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sion, and 45 features on protein stability. This led to a total of 196
features on the raw dataset. Even so, some of those features might
be deemed irrelevant due to their multiplicity and inherent struc-
ture. Those features might affect machine learning processes,
depending on the algorithms’ inherent functionality, by decreasing
their accuracy [30]. To avoid their inclusion, we applied several
pre-processing filters that removed non-informative features,
which are described below.
3.1. Zero- and near zero-variance variables

Some predictors can have a unique value for all observations
(Species: Human), which can make models unstable or decrease
their fitness. Those features can be named as Zero-Variance (ZV)
variables, and they are generally removed. Similarly, Near Zero-
Variance (NZV) variables refer to features that present a value in
an overwhelming majority of observations (i.e., genes coded in
the nucleic genome vs genes coded in the mitochondrial DNA
(Table 2)). These features are generally not helpful in a cost/benefit
ratio, as the underrepresented values might have an artificially big-
ger impact, and these values may not even appear in the subpop-
Table 2
Examples of Zero- and Near Zero-Variance variables. The ‘Organism’ variable contains
a single unique value (‘Human’), thus this value has no predicting value. The ‘Gene
encoded by’ variable contains 2 possible values, of which ‘Nucleus’ represents>99% of
all observations. Even though this variable does indeed have more than a single value,
the frequency of its values renders it non-informative.

Protein ID Organism Gene encoded by

A – Sample 1 Human Nucleus
B – Sample 1 Human Nucleus
C – Sample 1 Human Nucleus
D – Sample 2 Human Nucleus
E – Sample 2 Human Nucleus
F – Sample 2 Human Nucleus
G – Sample 3 Human Mitochondrion

Table 3
Examples of ZV and NZV features with their respective frequency ratios and unique percent
(Inf: Infinite). For NZV values, they all presented a frequency ratio above 19 (95/5) and a

Feature name freqRatio

circ_min Inf
circ_min_log2 Inf
Organism Inf
strand_sd 839.433
transcript_length_sd 140.014
percentage_gene_gc_content_sd 515.167
cds_length_sd 64.757
noncds_length_sd 112.344
proportion_noncds_length_sd 336.033
Gene.encoded.by 1198.048
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ulations generated by sub-sampling strategies, generating a ZV
variable (Table 3).

Due to both ZV and NZV filters, 44 features were removed from
the dataset. Only a fewwere labeled as ZV, examples of which were
‘circ_min’ (minimum circular expression) and its log2 transformed
version ‘circ_min_log20. Some categories of variables were fre-
quently labeled as NZV: almost all features related to miRNA
scores; all maximum, median, and minimum miRNA expressions
(non-transformed, log2-transformed, stringent, and all scores);
some related to circular scores and some related to circular expres-
sion (Supplementary Table 1).
3.2. Identification of correlated variables

Having correlated predictors is generally uninformative and
sometimes detrimental to build models. For this reason, we
removed features that presented a correlation above 0.75. For each
pair of correlated features, the feature labeled as ‘highly correlated’
was the one that presented a higher correlation with the rest of the
variables. Having the target inside the dataset would imply that
the features that showed a higher correlation with the target
would get removed. To avoid this, we removed the target from
the dataset before filtering the highly correlated variables. In total,
93 features were removed due to high correlation (Supplementary
Table 2). As expected, the abundances of most amino acids were
highly correlated to each other, and to the protein mass and length.
The same results were not true for the proportion of each amino
acid, as they more accurately represent their presence indepen-
dently of the protein’s size. More surprisingly, among all non-
filtered features, we observed all possible grouping systems (min-
imum, mean, median, maximum, standard deviation, and sum of
the values they represented), with no clear predominance for any
of them, and thus none appeared to present a tendency to be the
most informative (i.e., the one with the lowest overall correlation
with all features).
ages. The metrics for all NZ features were identical, as they only reported a single value
percentage unique below 10.

percentUnique zeroVar nzv

0.004 TRUE TRUE
0.004 TRUE TRUE
0.004 TRUE TRUE
0.008 FALSE TRUE
3.494 FALSE TRUE
0.107 FALSE TRUE
2.098 FALSE TRUE
3.427 FALSE TRUE
3.693 FALSE TRUE
0.008 FALSE TRUE
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3.3. Splitting strategies

In both hepatic and cardiac datasets, the observations were part
of two distinct groups: proteins and samples. Having a random
split of our data to form both training and testing datasets would
not have enabled us to elucidate the actual accuracy of the model.
In a random splitting strategy, the training dataset was highly
probable to include most proteins and samples in their observa-
tions, rendering the data split futile. Instead, we split (and trained)
Fig. 1. Correlation plot between kept features (horizontal axis) and filtered features (verti
between the features shown based on a range of colors: from dark red (extreme nega
represent a lower absolute correlation value. (For interpretation of the references to col
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our models separately in two manners: splitting by sample and
splitting by protein (Fig. 2). This strategy was applied in the hepatic
dataset for both training and testing, and in the cardiac dataset for
validation.

3.4. Model training and testing using hepatic sample-split data

When splitting by sample, 80% of hepatic samples were used as
the training dataset, while the other 20% was used as the training
cal axis). The scale unit on the right side of the figure indicates the correlation values
tive correlation) to dark blue (extreme positive correlation), where lighter colors
our in this figure legend, the reader is referred to the web version of this article.)
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dataset. For every algorithm, the training dataset was inputted
through RFE (cross-validated with 10-fold). Out of all models
trained with different subsets of features, the one with the best
accuracy was used for the testing step (Fig. 3). In terms of root-
mean-square error (RMSE, Fig. 3A), both k-Nearest Neighbors
(‘kknn’) and Random Forest (‘rf’) showed the highest accuracies
(�1.25), the latter having a bigger deviation between training
and testing RMSE values. To evaluate these results in a more stan-
Fig. 2. Splitting strategies. For all splitting strategies, 80% of the data is used to train the
(testing dataset). A. Random splitting strategy, where the algorithm is trained and tested
trained models are tested with 20% of the samples. C. Protein-splitting strategy: the tra
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dard and informative manner, we also analyzed the R squared met-
rics (Fig. 3B). In this figure, we observed that rf and kknn also
showed the best performance (R2 close to 0.7), showing rf better
performance in this case.

After validating the aforementioned results by using RFE (10-
fold cross-validation) for the whole dataset (Supplementary Figs. 1
and 2), we selected random forest (‘rf’) as the best performing
model when splitting by sample. The optimal subset size of fea-
models (training dataset), while the other 20% is used for testing the trained models
with observations from all proteins and samples. B. Sample-splitting strategy: the

ined models are tested with 20% of the proteins.



Fig. 2 (continued)
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tures was 51 features, but after close examination of the RFE
results (Supplementary Fig. 3), we determined that subset sizes
above 10 features had a minimal impact on RMSE. The 10 features
were selected based on the ranking of feature importance reported
by the RFE analysis (Fig. 4).

3.5. Model training and testing using hepatic protein-split data

Similar to the splitting by sample strategy, a fifth of all proteins
were split to be used as the testing dataset, while the other 4 fifths
were used as the training dataset. RFE (10-fold CV) was also per-
formed with similar optimal results as in the training dataset of
the sample-splitting strategy (Fig. 5). In this case, the best RMSEs
in the testing dataset include ‘bstTree’ and ‘rf’ (�2), which almost
doubled the error shown when splitting by sample (Fig. 5A). To
understand how relevant this error increase was, we also evaluated
the R-squared values of those values (Fig. 5B). We observed that a
systematic gap existed between the training and testing steps,
leading to minimal R-squared values (R2 = 0.15 for rf).

For all the results shown above (Figs. 3 and 4), we also validated
the results using RFE with the whole dataset (no training–testing
split), where the folds or splits in the cross-validation step (10-
fold) contained exclusively a set of proteins (Supplementary Figs. 4
and 5).

3.6. Random forest model validation with a cardiac sample-split data

Random forest being the best performing model, we decided to
validate its accuracy to predict new samples using a cardiac data-
set, which was built in the same manner as the hepatic one. The
validation included using the same algorithm (rf) with the same
top 10 features (Fig. 4), and training and validating it with the car-
diac data (27602 observations). The resampling was performed via
Cross-Validation (10-fold). Using the cardiac data and the specified
model, we validated that the accuracy remained robust across dif-
ferent cell types (RMSE = 1.04, R2 = 0.75; Supplementary Fig. 6).

The only remarkable difference was the feature importance
ranking given by the RFE in the hepatic data (Fig. 4) compared to
the feature importance ranking given by the model itself with
the cardiac data (Fig. 6). In the latter, linear_density is given the
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utmost importance, and the importance of the three RNA subtypes
relate to how close they are to the protein level: mRNA level, fol-
lowed by miRNA levels, and finally circRNA levels.

Therefore, the RMSE and R-squared metrics for both cardiac and
hepatic models showed that building a random forest model using
the aforementioned features allowed to predict with high accuracy
full proteomics’ samples. Comparing the testing results between
sample- and protein-splitting, we observed that the high accuracy
was especially due to the prediction of proteins that have already
been trained on. Observing the feature importance ranking
(Fig. 6), we could observe that different biological entities pre-
sented a different relevance to the model’s accuracy, thus missing
some variables will have a minimal effect on the decided outcome.

3.7. Performance based on GO terms

Even though we obtained good substantial results for the pre-
diction of proteomics values at a sample level, these results were
an overall representation of all proteomics values, and thus did
not inform which protein groups would be better or worse pre-
dicted by our model. For this reason, we decided to stratify the pre-
dictions based on GO terms, and then evaluate their R2 metrics
when compared to their counterpart observations. The overall
metric for the testing data/sample in this experiment was
R2 � 0.82. What we observed (Fig. 7) is that there were consider-
able differences in R2 depending on the GO term the proteins were
associated to. While the 6 best-performing GO terms (inflamma-
tory response, magnesium ion binding, mitochondrial nucleoid,
unfolded protein binding, ATPase, and negative regulation of cell
growth) had near perfect results (R2 > 0.9), the worst performing
ones (ligase activity, polysomal ribosome, small ribosomal unit,
stress fiber, cell migration, and proteasome complex) showed met-
rics half the performance shown in the overall results (R2 � 0.4).

3.8. Imputation: A potential use of the random forest model

As the model showed a promising accuracy for predicting whole
replicate samples, we hypothesized that the model could also be
used for imputation of missing values for proteins that were at
least present in one of the samples of the training data. To show-



Fig. 3. Accuracy results when splitting by sample. A: The blue bar refers to the RMSE value (left vertical axis) after training the model with 80% of the samples, and the orange
bar refers to the RMSE value after testing the model with the other 20% of the samples. The gray line refers to the percentual change of RMSE (right vertical axis) between
training and testing. B: The blue bar refers to the R2 value (left vertical axis) after training the model with 80% of the samples, and the orange bar refers to the R2 value after
testing the model with the other 20% of the samples. The gray line refers to the percentual change of R2 (right vertical axis) between training and testing. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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case a possible example, we trained a random forest model with all
the Untreated samples (UNTR) and the corresponding 10 features.
The example (Table 4) showed that the proteomics values imputed
fitted the range of quantification observed in the quantified values
of the same protein, while differing from each other from sample to
sample. We also observed that in these samples, values tend to be
missing simoultaneously for samples taken at the same time.
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4. Discussion

We wanted to build a machine learning model that tightened
the gap between transcriptomics and proteomics, using the former
as a predictor of the latter. The results indicate that a random for-
est model, by using only 10 features, can predict with good accu-
racy (R2 = 0.74) proteomics values from samples in similar
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circumstances to the ones where it has been trained on. However,
predicting protein expression by training the model on other pro-
teins was highly inefficient (R2 = 0.15).

Interestingly, 7 out of the 10 features used by the model were
related to RNA expression (Fisher’s Exact Test for Count Data, p-
value = 0.0027). Out of these 7, the most important (as expected)
was mRNA expression, which is directly linked to translation,
and thus, to protein expression. Followed in feature importance
came 3 features related to miRNA expression, which is known to
inhibit translation to a vast number of coding transcripts. The least
important features related to the 3 RNA subtypes referred to circu-
lar RNA expression. Circular RNAs have been hypothesized to work
as miRNA sponges, and so even though they are involved in post-
transcriptional regulation, they have a more indirect effect. It is
postulated that most circular RNAs are by-products of faulty splic-
ing [31], and thus their regulation might just be mainly due to the
regulation of their host gene. Even so, their consistent expression
would still allow them to have an impact on post-transcriptional
regulation.

Linear density (mass of a protein divided by its length) and the
proportions of both Aspartic Acid and Methionine were the most
important features for the final random forest model. One hypoth-
esis to explain such model behavior was that these three features
(and especially linear density) helped to categorize observations
protein-wise: an observation with similar values across the three
top features could be likely categorized as a similar protein, and
thus, also presenting a close expression value. This already made
the model highly accurate when trained and tested with similar
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samples. The other features (related to the current transcript
expression level) might have helped to succinctly tune the protein
expression already observed in similar proteins during the training
step. Another hypothesis, only relevant to linear density, was
linked to the proteomics technology itself: linear density was
directly linked to protein mass, which is used (along with charge)
to identify and quantify protein in mass spectrometry; hence, its
relevance as a feature. In addition, having linear density as one of
the main features underlines the importance of the training data
for our model. A random forest model can only predict values
learned beforehand, thus we hypothesize that linear density helps
the model to find the most similar protein when predicting. Thus,
the use of this model should be to predict proteins that are already
quantified in some of the samples, limiting the effect of potential
false positives, and therefore also limiting the potential false bio-
logical significances created by false positives due to differences
that only occur at the transcriptional level.

The observed divergence between the feature importance rank-
ing in RFE and the validation model may be due to how RFE eval-
uates features while using cross-validation. At the beginning of the
process, RFE built 10 different training–testing combinations
(based on the 10 folds), and, based on the initial ranking of all
the features in each of those combinations, features were removed
from least to most important. Each feature was ranked based on
the average of all the rankings performed during the feature elim-
ination. In the validation model, instead, the feature importance
ranking represented the concrete importance of each variable for
that specific model and algorithm.



Fig. 5. Accuracy results when splitting by protein. A: The blue bar refers to the RMSE value (left vertical axis) after training the model with 80% of the proteins, and the orange
bar refers to the RMSE value after testing the model with the other 20% of the proteins. The gray line refers to the percentual change of RMSE (right vertical axis) between
training and testing. B: The blue bar refers to the R2 value (left vertical axis) after training the model with 80% of the proteins, and the orange bar refers to the R2 value after
testing the model with the other 20% of the proteins. The gray line refers to the percentual change of R2 (right vertical axis) between training and testing. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Considering the relatively high accuracy of the random forest
model to impute protein expression from a reduced subset of fea-
tures, we see an application of this proposed strategy to contribute
to compensating for the lack of depth of proteomics. Indeed, since
proteomics only allows the analysis of a subset of proteins per
sample, with usually only a partial overlap between samples (even
at the replicate level), our model would be able to predict and fill
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those values, increasing the strength of the statistical analysis of
such proteins across treatments.

However, as shown in the GO-term-performance results, the
metrics are not uniform for all categories of proteins, and this
should be taken into consideration when performing analysis with
a specific focus on a certain protein category. This difference may
be the result of three different causes: 1/ the correlation of protein
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abundance with their coding RNA levels may differ across GO cat-
egories, 2/ as different GO categories contained an unequal number
of proteins, the size of a GO category was inversely proportional to
the R2 metric (a smaller random set of values has a higher chance
of obtaining a high R2, and vice versa), 3/ GO categories with stable
2067
protein abundances (and mRNA levels) performed better than
otherwise.

An important detail to consider is that drastically different data
is generated when utilizing different methods to quantify pro-
teomics intensities: from values that correlate with absolute abun-



Table 4
Imputation of Proteomics Cardiac samples. Every row is identified with a UniProt ID, and represents a protein quantified in at least one of the untreated samples of the cardiac
dataset. Each column represents each Untreated (UNTR) sample from the cardiac dataset. On the column names, the first number represents the hour at which the sample was
taken (2 h, 8 h, etc.), while the second identifies the replicate number (002_1 was the first replicate sample taken after 2 h). The proteins (rows) are sorted by proportion of
missing data in a increasing order. Values with a dark green background were quantified by proteomics. Values with a light green background were imputed/predicted by the
random forest model.
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dance based on the MS signal of histones (also referred to as the
‘‘proteomic ruler” approach [32]), going through intensities
inferred based on the ratio of detected peptides (pertaining to each
protein) between samples (MaxLFQ [33]), to isobaric proteomics
data (TMT/iTRAQ); wherein changes in the peptide intensity from
one sample has a ripple effect on the intensities from all the co-
isolated samples [34]. In our study, the Hi3 label free method
[35] was used to quantify protein intensities, hence values from
absolute abundance methodologies are expected to perform simi-
larly. Despite that, isobaric proteomics methods should not be
entirely dismissed, as the range of values predicted by a random
forest model is highly dependent on the range of the data the
model is trained on. The compositional nature of isobaric pro-
teomics experiments results in signals that are highly batch-
dependent. Our predictions would not take the batch structure into
account, and as a result, a correction would be required. Thus, the
inability of random forest models to extrapolate does make them
an appealing option for compositional data, but simoultaneously
may be a limiting factor for absolute intensity values.

Based on the inefficient accuracy for all models tested in the
protein-splitting strategy, we hypothesize that even though we
tried to include as much information related to protein expression
as possible (transcript expression, transcript properties, protein
characteristics, and stability), predicting protein expression anew
(without ever training the model with that protein’s data) may
have required of an even more complete (i.e. RNA binding proteins,
long non-coding RNAs, transcript half-life, etc.) or different set of
features. For example, a study by Barzine et al. [26] showed
improved results (R2 = 0.51) extrapolating proteomics values while
only using gene expression data, GO terms, and UniProt keywords.
Future research should focus on either including the last two fea-
tures as features to the dataset, or improving their deep learning
model by including our (or other) post-transcriptional features.

In conclusion, after developing different machine learning mod-
els to predict proteomics values out of transcriptomics ones, we
have achieved to build a random forest model that can predict with
significant accuracy the protein expression of a new sample. Build-
ing a random forest model with the selected features can thus be
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used to predict the missing data inherent in proteomics studies,
independently of the cell’s nature. The code used for the pre-
processing of data and the model building process is available on
Github (https://github.com/jochotecoa/ml_proteomics) [36].
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