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theoretical underpinnings to applications
and demonstrators
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Networks of coupled oscillators have far-reaching implications across various fields, providing
insights into a plethora of dynamics. This review offers an in-depth overview of computing with
oscillators covering computational capability, synchronization occurrence and mathematical
formalism. We discuss numerous circuit design implementations, technology choices and
applications from pattern retrieval, combinatorial optimization problems to machine learning
algorithms. We also outline perspectives to broaden the applications and mathematical
understanding of coupled oscillator dynamics.

While the vonNeumanncomputing architecture1 ismost likely topersist for
many more years, the current demands of artificial intelligence (AI)
necessitate a fundamental rethinking of how we compute, sense and com-
municate information2–5. The proliferation of electronic devices, edge
devices, sensor-based electronics, and wearables, has led to a significant
surge in raw data generation, demandingmore power, real-time processing,
and decision-making capabilities5–7. Although digital computing has revo-
lutionized various industries and bolstered economies8, the requirements of
AI computing call for a different information processing paradigm and
architecture9,10. In this evolving big data landscape, the conventional von
Neumann computing architecture with separated memory and processing
is no longer suitable11. Computing architectures must evolve to not only
enable energy efficient in-memory computations but also facilitate the
deployment of robust neural networks for the execution of AI tasks12,13 that
infer and learn interactively with the environment.

An emerging and innovative computing paradigm gaining momen-
tum is physical computing or natural computing, which relies on principles
rooted in physics14. In physical computing, physical variables are encoded
into a dynamical system that evolves in accordancewith the laws of classical
or quantummechanics15,16. This marks a departure from instruction-based
information processing, where information is encoded in logical bits of
either 0 or 1. In physical computing, information is represented as a con-
tinuous variable encoded either in amplitude, frequencyor phasedifferences
between signals17. In this paper, we focus mainly on physical computing
based on coupled oscillators with information encoded in the phase dif-
ferences between oscillators. Figure 1 illustrates the concept of physical
computing using coupled oscillators.

Physical computing is also closely intertwined with neuroscience,
particularly in the study of biological neural networks18. The rhythmic firing
(or spiking) of neurons can be described by oscillations19. Neuron

oscillations have been quantified through measurements where synchro-
nized activity of a largenumberneurons give rise tomacroscopic oscillations
that can be observed in electroencephalogram (EEG)20–22. Oscillations can
vary in amplitude and frequency but once synchronization occurs, oscilla-
tions converge and adapt to a common frequency mode23,24. Typically
neuron activity is investigated as spike change over time such as changes in
neuron membrane potential with time which are commonly emulated and
studied in spiking neural networks25–28. In contrast, physical computing
captures the collective neural activity through oscillations or the dynamics
from a single neuron to their collective29–31. While spiking activities provide
insight into individual neurons, oscillations reveal the dynamic nature of
neural activity and give insights into how spike travels across the network
and interacts with other neurons32,33. Such collective dynamics allow for the
extraction of spatial and temporal patterns34,35. Understanding the evolution
of oscillation dynamics and propagation are key to understanding cognitive
states, particularly in the context of human memory20,36,37. Furthermore,
describing neurons as oscillators offers a mathematically simple yet elegant
formulation for investigating the dynamics of collective neurons38. This
mathematical formalism avoids the need to simulate every voltage depen-
dence of each ionic current in a neuron and how this moves from one
neuron to the next.

Oscillatory neural networks (ONNs) hold promise for realizing both
physical and neuromorphic computing while enabling continuous and
analog information encoding through phase modulation39. These networks
benefit from the diverse collective dynamics of coupled oscillators, ranging
from chaotic behavior40 to synchronization41, for encoding information,
sensing and processing. The phenomenon of synchronization unveils the
stability and inherent memory of the network30. Synchronization—two or
more events occurring simultaneously—is a ubiquitous phenomenon in
nature42,43. The beauty of synchronization can be witnessed in various
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domains, from sports like synchronized swimming and diving, to musical
performances such as violinists in an orchestra playing perfectly in unison.
Huygens was the first to observe synchronization between two coupled
pendulums44. Since then, and particularly in the last century, researchers
have delved into studying the computational capabilities of dynamical
systems. Somehow, we are still unraveling the mystery of why Huygens
pendulums swung with precision. Perhaps this essence of synchronization
holds the key to our present-day computing needs. Based on their genesis,
we provide a detailed review of computing with oscillators which can be
identified into four main scientific branches that led to the physical com-
puting with oscillators that we have today.

Thefirst scientific branch is statistical physics, starting in the 1920swith
contributions from Lenz and Ising45. They introduced a mathematical
model describing the dynamics of magnetic spins on a lattice, establishing
the groundwork for understanding how local interactions between particles
can lead to global phenomena, particularly in spin systems and phase
transition inmagnets. Each spin represents a binary state (i.e.,+1 or− 1). In
ONNs, thephase of eachoscillator canbe thought of as analogous to the spin
in the Ising model. Oscillators tend to align their phases or synchronize
depending on the coupling. In-phase synchronization canbe seen as aligned
spins. The other connection between oscillators and Ising model is on the
interactions and energy landscape. The Ising model is a mathematical fra-
mework to describe phase transitions of interacting spins and can be
understood in terms of an energy landscape, where energy depends in the
configurations of spins. The system tends to evolve toward spin config-
urations that minimize energy. Similarly, coupled oscillators interact with
each other and exhibit different phase transitions (in and out of phase) as a
function of coupling strength. Such interactions can also be understood in
termsof an energy-like function.ONNs evolve toward configurationswhere
the interaction energy is minimized, leading to synchronized states. In both
spin and oscillatory systems, the energy landscape determines the stable
states. Progressing along this branch, Metropolis and Hastings devised
methods for approximating complex probability distributions46,47. Further
advancements emerged on probabilistic optimization algorithms, notably
by Kirkpatrick and Ackley, who developed simulated annealing, a widely
applied algorithm across various domains48–50.

The second branch is on neural networks that eventually entwines
with statistical physics. It all begins with McCullow and Pitts laying the
foundation of neural networks through the mathematical neuronmodel
and its basic operating principles51. The very first neural network
architecture was the perceptron by Rosenblatt and later by Minsky and
Papert to create the first computation model inspired by the human
brain neural structure52,53. Hopfield introduced recurrent neural net-
works that can store and retrieve information also known as Hopfield
neural networks (HNNs)29. Through continuous dynamics, HNNs
minimize their energy as the network updates its states, serving as an
inspiration to Hoppensteadt and Izhikevich for later developments of
oscillatory neural networks30,38,54.

The third branch is on neuron models that closely aligns with the
progress between computational neuroscience andneural networks. Taking
inspiration from biological neural networks, neuronal models have evolved
to capture the excitatory and inhibitory behavior of neurons tomimick their
action potential role. Several neuronalmodels have been developed over the
years, such as van der Pol55, Hodgkin and Huxley56, and FitzHugh and
Nagumo57,58. These models are biologically plausible and capture the non-
linear action potential neuron behavior. Synapses also play an important
role in learning and memory in neural networks. Similarly, in physical
computing, coupling elements between oscillators emulate the synaptic
potentiation and depression, which aremechanisms thatmodulate synaptic
strengths such asweakly or strongly coupled oscillators. Themerging of two
branches, namely neuronmodels and engineering computing with oscillators
is brought by the seminal works of Hoppensteadt et al.30 and Izhikevich38

that established the foundation for physical computing with oscillators.
The fourth branch is on engineering of computing with oscillators, with

the first efforts reported to implement them for computing Boolean func-
tions dating back to the 1960s59,60. However, oscillatory-based logic could
not compete with more scalable transistor-based logic and faded away
within a decade. At about the same time, Kuramoto et al.61 developed the
analytical formalism to analyze the dynamics of coupled oscillators. These
four branches started to merge in the late 80s that led to the rebirth of the
oscillatory-based physical computing. Figure 2 presents the evolution of the
research field on oscillatory neural networks covering the progress on each
of the four branches. Nowadays, the design of coupled oscillatory systems is
driven by the development of novel oscillator circuits which promise higher
scalability compared to the classical LC-based oscillators.

In recent years, researchers have started to investigate novel materials
and devices to implement oscillators and coupling elements. There are
ongoing efforts on phase transition and 2D transition metal-oxide devices
(TMO)62,63, spintronic devices64, microelectromechanical systems
(MEMS)65, optical systems66, or CMOS accelerators67–69 as potentially scal-
able solutions70,71 for applications like digital logic72,73, classification74–76,
computing convolutions62,77, or solving associative tasks30,39,67,78,79 and
combinatorial optimization problems (COP)63,80–82.

This paper presents an in-depth view on the computational prin-
ciples of coupled oscillatory systems used in various applications from
Machine Learning (ML) to COPs covering aspects from oscillator to
ONN architecture design and technology implementation. More con-
cretely, it is divided into five parts. Starting of with “Oscillatory neuron”,
we introduce some of the various implementations of oscillatory neu-
rons. Next, “ONN computing” presents the corresponding coupling
elements and the resulting dynamics that can be tailored for specific
applications. “ONN architectures and demonstrators” reports on the
state-of-the-art ONN architectures and demonstrators implemented in
various technologies as competitive solutions for the given applications,
followed by some potential challenges in “Challenges”. Finally, we dis-
cuss the possible future research directions.

Fig. 1 | Illustration of oscillatory neural networks (ONNs) and computation involving the phase measurement between oscillators. ONNs are energy-based networks
that minimize their energy as they evolve and stabilize towards ground minima.
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Oscillatory neuron
Sustained oscillations can manifest in a wide array of dynamical systems
such as mechanical, optical, electrical, biological, or chemical processes61.
Despite the diverse nature of these oscillations, they are typically mathe-
matically described as dynamical systems

dx
dt

¼ f ðxÞ 2 Rm

having a limit cycle attractor83,84, i.e., an orbit γ � Rm with period T such
that

γðtÞ ¼ γðt þ TÞ

For instance, van der Pol derived renowned oscillatory dynamics that cor-
respond to an electrical harmonic oscillator with nonlinear damping55. In
addition,Hodgkin-Huxley’sneuron is recognized for generatingoscillations
when driven by a sufficient input current56.

When computing with ONNs, the system dynamics are often reduced
to frequency and phase dynamics by considering weak coupling between
oscillators and the oscillation amplitude is ignored30,83. However, intrinsic
parameters such as waveform shape and response to perturbations impact
the collective ONN performances and can be tuned for specific
applications82,85,86, just like activation functions in neural networks.

Figure 3 shows various electrical oscillator implementations used in
ONNs. One of the simplest, yet promising oscillators for ONN is the Ring
Oscillator (RO) which consists of a closed loop of CMOS inverters in series.
ROs benefit from advanced CMOS technologies and can be integrated at a
very large scale with low energy consumption and high speed (1968 oscil-
lators demonstrated @1GHz87), although it is still unknown whether ROs
provide any computational advantages over other types of oscillators.

Another interesting CMOS oscillator is the Schmitt-based relaxation
oscillator where a Schmitt trigger alternately charges and discharges a load

capacitor through a resistor. This oscillator is generally bulkier than RO but
exhibits interesting properties when carefully tuned, such as phase binar-
ization which is particularly useful for solving COPs86,88.

Moreover, beyond-CMOS devices holding hysteresis behavior such as
transition metal oxide devices (TMO)62,63,89, volatile memristors90, RRAM91,
and ferroelectric transistors92 are intensively studied to replace Schmitt
triggers and implement more compact relaxation oscillators. A promising
TMO is vanadium dioxide (VO2) which operates at room temperature and
can transition from a semiconductor (insulating) to ametallic state by Joule
effect93,94. When the VO2 device is biased in its negative differential resis-
tance region, the circuit is unstable and produces sustained oscillations.

Spin-torque nano oscillators (STNO) are promising for ONNs as they
operate at radio frequencies from 100MHz to the GHz range and could be
integrated at a very large scale with CMOS electronics64. An STNO consists
of a magnetic tunnel junction biased by a DC current which induces a
magnetization and consequently voltage oscillations across the device95.
STNOs are very versatile as they react to various magnetic or electrical
perturbations, enabling various types of couplings and ranges96. In addition,
STNOs also possess memory in the oscillation amplitude which can be
harnessed for processing time series in real-time75.

ONN computing
ONN computing is based on the synchronization of coupled oscillators, a
phenomenon that naturally appears in biology, physics, or social
interactions97 and was first conceptualized by Winfree in the 1960s98. To
illustrate oscillator synchronization, consider a crowd of people applauding
during an event. The reader probably experienced a situation where the
initial state is quite chaotic but after a sufficient time,most of theparticipants
end up applauding in synchrony. From a coupled oscillator network per-
spective, one can model each individual as an oscillator adjusting its fre-
quency, i.e., increasing or reducing the clapping rate to get synchronized
with the neighboring crowd99. Such a phenomenon can be captured using
the followingODEwhich expresses the time derivative of oscillators’ phases
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Fig. 2 | Timeline of the ONN computing paradigm. The first oscillatory-based
computers were invented by vonNeumann andGoto in the 1950s in parallel with the
development of the perceptron by Rosenblatt52. Labeled parametron, the oscillatory
circuit was used as a majority gate to solve Boolean logic, and machines with up to
9600 parametrons were used in the early 1960s. Note that this approach has been
recently reconsidered using recent oscillator designs72,73. Inspired by neural networks
and statistical physics, ONNs emerged in the 1990s as an analog approach to

minimize some conceptual energy via gradient descent. For instance, seminal work
from Hoppensteadt and Izhikevich30 proposed to implement energy-based models
likeHopfield’s29 in hardware using analog coupled oscillators that naturally converge
to attractors, which is useful for pattern recognition. Currently, ONN design is
driven by technological progress and is applied to machine learning, image pro-
cessing, and combinatorial optimization.
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(frequencies) ϕi generally under the presumption of weak coupling as30,83:

dϕi
dt

¼ ωi þ
Xn

j¼1

KijHij ϕj � ϕi

� �
ð1Þ

with ωi being the oscillator’s free-running frequency, Kij the coupling
matrix and Hij(χ) stands for the interaction between the oscillators and is
neuron model dependent83. One of the most well-known models is the
Kuramoto model (HijðχÞ ¼ sinðχÞ), where the ODE in Eq. (1) reduces to61:

dϕi
dt

¼ ωi þ
Xn

j¼1

Kij sin ðϕj � ϕiÞ ð2Þ

The sinusoidal interaction terms are responsible for the frequency
adjustment and model the adaptation of individual i to other clapping
agents j in our example. Despite its simple expression, the Kuramotomodel
produces very complex dynamics depending on the connectivity (Kij) and
frequency distributions100. The model describes a large variety of rhythmic
behaviors101, including ONN dynamics.

The collective dynamics of coupled oscillators such as those described
inEq. (2) canbeharnessed inmanydifferentways toperformdifferent tasks.
However, most ONN developments fall into two classes depending on the
type of input/output encoding:
• Frequency-based ONN: inputs are oscillator frequencies and outputs

are the synchronization levels between oscillators.
• Phase-based ONN: oscillators have the same frequency and input/

output are encoded in-phase between oscillators.

In a frequency-based ONN (Fig. 3a), frequency-dependent input
signals are injected into the ONN that reacts to the input perturbations.
The computation outcome consists of groups of oscillators that lock in
frequency, i.e., are synchronized. This computation scheme has been
used for image processing77,78,102,103, associative memory tasks79,104, or

spoken vowel classification76,105. In the latter application, input vowels
are reduced to two frequencies fA and fB called “formants" injected into a
4-node ONN that assigns each input sample to a vowel by reading the
synchronization state of the oscillators with inputs fA and fB. Interest-
ingly, computing in the frequency domain can also skip the physical
connections between oscillators. For that purpose, Hoppenstead and
Izhikevich proposed an Oscillatory Neurocomputer106 where a time-
dependent injected signal emulates all-to-all connectivity bymodulating
the oscillator phases, and the output consists of the averaged phases after
ONN convergence. Despite the advantageous physical scaling of the
proposed ONN, generating the modulation signal which includes all
pairwise oscillator interactions is not straightforward107,108.

In the special case where oscillator frequencies are identical and cou-
pling elements are symmetric (Kij = Kji), Hoppensteadt and Izhikevich30

have shown that the ONN is a gradient system that minimizes an energy
function through time as:

dϕi
dt ¼ � ∂E

∂ϕi

E ¼ � 1
2

P
i

P
j
Kij cos ðϕi � ϕjÞ

8
<

: ð3Þ

In this regime, the inputs and outputs are encoded in-phase between
oscillators whose dynamics depend on the ONN energy and phase initi-
alization. It turns out that the ONN energy is similar to Hopfield’s energy29

and to the Ising Hamiltonian82, enabling a broad range of applications from
machine learning and image processing to combinatorial optimization17.

Thememory of a systemdescribed inEq. (1) is definedas its number of
stable phase states39 and is neuron model dependent. One can derive the
memory of a system based on a specific neuron model by finding its phase
transition function (PTF), which captures the final phase state transitions of
a system composed of two oscillatory neurons given an initial phase delay
and a coupling weight. More specifically, for a set of coupling weights
(generally ∈ [−1, 1]) and an oscillator with initial delay of Δϕinit 2 ½0; T2�,

Fig. 3 | Illustration of ONN computing paradigm and its circuit implementa-
tions. a Illustration of a frequency-based ONN. The input consists of frequency-
dependent signals fed into the ONN. The latter can have oscillators locking to a
common frequency and providing the computational result. Labels of locked and
unlocked are shown next to the oscillators. b Schematic of a phase-based ONN. The
oscillators have a uniform frequency and evolve in the phase domain, minimizing a
kind of Hopfield energy. c Two coupled oscillators implemented with various

technologies. Ring oscillators can be coupled by back-to-back inverters68 or using
transmission gates87. Relaxation oscillators consist of a hysteresis device that char-
ges/discharges a load capacitor, producing analog oscillations. The hysteresis
component can be implemented by a Schmitt trigger86,201 or beyond-CMOS devices
that have a negative differential resistance region in their I–Vcharacteristic. A partial
list of potential devices includes VO2

62,63,93,260, TaOx and TiOx oxide
89, NbOx

memristors90, PrMnO3 RRAM
91, or ferroelectric transistors92.
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one can solve Eq. (1) and obtain the final phase differences between oscil-
lators Δϕfinal. The weights represent the coupling strengths between oscil-
lators. Similarly, as inHopfield neural networks, the weights are generally in
range [−1, +1] to ensure weak coupling and due to the binary nature of
neuron states and calculated via the Hebbian learning rule. Weights cal-
culated via the Hebbian learning rule generally are within [−1, +1] and
shape the energy landscape to stable states corresponding to stored
patterns29. In Fig. 4, we plot the phase state transitions of two coupled
oscillators, representing thememory of the simplest ONN architecture.We
show that depending on the coupling strength between two oscillators and
initial phase delay (up to 50% of period) in one of the oscillators, the phase
state transition can be obtained. The phase state transitions also represent
the stored memory states of the system. Figure 4 shows the corresponding
phase transition function (PTF) for the Kuramoto model simulated in
software.

Clearly, the Kuramotomodel has two stable phase states (0° and 180°),
i.e., it has a bistate memory. The search is still on for neuron models with a
larger memory. In order to obtain the PTF at hand in hardware, one would
need to know the corresponding coupling resistances. Authors in ref. 39

have developed a formalism to map weights computed by the Hebbian
learning rule (software) to coupling resistances (hardware).

It is important to note that not all coupled oscillator networks can be
fully understood or modeled by the described Kuramoto formalism. While
the Kuramoto formalism is a very powerful, it also has its limitations, and it
is applicable to only specific types of networks. Kuramoto formalism works
particularly well for all-to-all and weakly coupled sinusoidal oscillators with
information encoded in-phase while amplitude remains constant. Such
formalism does not work well for networks with more complex topologies
(i.e., sparce, hierarchical), oscillators with varying amplitude (i.e., both
amplitude and phase), non-phase oscillators (i.e., chemical and biological),
non-sinusoidal oscillators, time-dependent delay interactions (i.e., non-
linear coupling) and high-dimensional interactions between oscillators. For
example,memory states of the coupledoscillators are influenced by the time
delay in the coupling between oscillators. Delay-coupled Kuramoto oscil-
lators extend the classic Kuramoto model by introducing time-delay
interactions. This time delay introduces a greater complexity in the system
and also leading to a richer variety of synchronized states and behaviors.

ONN architectures and demonstrators
From the theory of computing with coupled oscillators, researchers inves-
tigated how to build ONN demonstrators for meaningful applications,
starting with Wang and Terman in 1994109 who introduced the LEGION
ONN array for image segmentation, just before Hoppensteadt and
Izhikevich30,54 linked the theory of coupled oscillators to energy-based
Hopfield Neural Networks29 for associative memory applications. Another
promising areaproposes to build oscillatory Isingmachines (OIM)88 to solve
combinatorial optimizationproblems (COPs). Finally, research has recently
focused on ONNs as ML accelerators such as for convolutional neural
networks (CNN), or providing nonlinearity in reservoir computing.
Figure 5 summarizes the three classes of problems ONN can solve.

Fully coupled oscillators for associative memory
Hopfield’s work29,110 propelled novel energy-based models of neural
networks using analog phase dynamics such as phasor neural
networks111 and ONNs54,80. These typically single-layered, fully con-
nected architectures allow recurrent signal propagation with oscillating
neurons capable of performing auto-associative memory tasks or pat-
tern recognition. Although Hoppensteadt presented the first hardware
solution to implement oscillatoryHopfield networks using phase-locked
loops (PLLs)30, many challenges were still limiting the large-scale
implementation of such networks. In 2011, the first implemented ONN
with 8 analog van der Pol oscillators performing phase-based pattern

Fig. 4 | Phase transition function of the Kuramoto model as a function of cou-
pling strengths between two oscillators and initial delay. The coupling strengths
represent the weights.

Fig. 5 | Example of problems ONN can solve. a Similar to HNNs, ONNs have been
extensively studied for pattern recognition30,67,114–116. bONN synchronization can be
harnessed in various ways to solve image processing problems such as
segmentation103,109,132 or edge detection71,90,92,123. c ONN phase ordering can also

encode variable permutation and is useful to solve hard combinatorial optimization
problems such as graph coloring81,260–262 or TSP163–165. Focusing on binary phases, one
can encode COPs to ONNs and solve graph partitioning63,69,82,86 or Boolean
Satisfiability problems167–169.
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recognition was reported107. Later, building fully connected ONNs with
spin-torque oscillators was suggested to solve pattern recognition with
frequency-based computing95.

However, oscillatory Hopfield networks raised more interest recently
with novel hardware implementations. Jackson112 and Shi113 proposed to
build large-scale oscillatory Hopfield networks using PLLs as neurons, and
RRAMas synapses. Then, Jackson also showcased amixed-signal PLL-free67

ONN with 100 fully connected recurrent neurons, and lately, a fully digital
implementation onFPGAwas proposed, allowing up to 120 fully connected
neurons114. In addition, the development of novel compact and low-power
devices for neuromorphic computing offered novel solutions for efficient
phase-computing oscillatory Hopfield networks115–117.

Table 1 summarizes the various tasks, which can be solved using the
auto-associative memory (AAM) capabilities of ONNs, comparing the
coupled oscillators approaches to the most relevant algorithms based on
artificial neural networks (ANNs). These problems include but are not
limited to (multi-state) pattern recognition118–120, pattern classification121,122,
edge detection123,124, on-chip learning125,126, and sensory processing127.

Coupled oscillators array for image segmentation
Locally excitatory, globally inhibitorynetwork (LEGION)was introduced in
1994as a solution toperform image segmentationusinganarray topologyof
locally excitatory oscillators computing in-phase109,128–130 with an additional
global inhibitory neuron. The first analog implementation was proposed in
1999131 and further improved with a neuromorphic analog image seg-
mentation system in 2006132. Meanwhile, other works focused on adapted
LEGION architectures with digital implementations133–135. Lately, LEGION
motivated the development of phase-based and frequency-based ONNs for
clustering and vision tasks102,136–138 using oscillators’ array topology.

Alternative architectures for AI edge applications
In the last decades, researchers also proposed alternative topologies to
efficiently solve various AI tasks. For example, the star coupling topology
was introduced to perform phase-based static or dynamic pattern
recognition84,139. The star coupling was then derived in frequency-based
computing to also perform image processing, like pattern recognition79,
image segmentation103 and convolution operations77. Alternatively,
convolution operations can also be solved using layered networks of
oscillatory neurons62,140. The layered topology, often used in artificial
neural networks shows interest to solve classification tasks using oscil-
latory neurons64,74,105,141,142. Dutta showcased another topology with ring
architecture based on oscillatory neurons to emulate locomotion143.
Finally, recently, the random and sparse topology of reservoir com-
puting, whose neurons are typically created by time multiplexing144–146,
combined with the high nonlinearity of coupled oscillators highlighted
low-power and low-density properties to solve complex AI tasks75,147–153.
For example, reservoir computing is also a type of complex dynamical
system which transforms the input into high-dimensional representa-
tion. By time multiplexing the system can simulate the activity of mul-
tiple neurons over time allowing for reduction in hardware or
computational resources. The common link between ONNs and reser-
voir computing is on the concepts of nonlinear and temporal dynamics
for processing complex information. They are both nonlinear dynamical

systems such as in ONNs, the collective dynamics and temporal
sequences (past states) exhibits various nonlinear behaviors (phases)
such as synchronization, multistability and chaos, whereas in reservoir
computing, time multiplexing creates a sequence of states (temporal
response) and helps to exploit nonlinearity to project input data into a
high-dimensional space. Such systems are very attractive for processing
and analyzing complex information and time-dependent data154,155.
Tables 2 and 3 provide a list of notable ONN architectures and
demonstrators along with their different specifications and application
use cases.

Coupled oscillator graph for combinatorial optimization
Beingbasedon the Isingmodel,ONNsposses amajorpotential in regards to
solving hard combinatorial problems, including but not limited to NP-hard
problems17. Informally, a problem is NP-hard, if its runtime explodes as the
problem size increases. Graphpartitioning and route planning are just some
of these problems156. The author in157 has shown the corresponding for-
mulation of the Ising Hamiltonian for each NP-hard problem. Table 4
presents the (to the best of our knowledge) state-of-the-art exact and
approximate algorithms for all 21 Karp’s problems. In addition, the last
columnof that tablepresents attemptsat solving the correspondingproblem
using ONNs.

Up until now, there have been a few attempts at solving NP-hard
problems using a network of coupled oscillators. Due to its simplemapping
to hardware, the Max-Cut problem has arguably attracted the most
attention158–161. In addition, thanks to its wide range of applicability, the
traveling salesman problem has been in the spotlight as well, as the authors
in refs. 162–164have explored threeuniqueways to solve it. The last one has
been applied by the authors in ref. 165. Furthernotable instances of applying
ONNs to NP-hard problems include but are not limited to graph
coloring81,158,166,167 and 3-SAT167–169.

Challenges
Training algorithms
So far, ONNs have been trained using both existing unsupervised and
supervised learning rules. The most commonly applied unsupervised
learning rules include Hebbian, Storkey, Diederich-Opper I and II170–172. In
addition, equilibrium propagation (EP) presents a promising supervised
alternative for energy-basedmodels173. In particular, authors in refs. 121,174
apply it for classification tasks. Furthermore, in classification tasks of the
MNIST dataset175 using the Diederich-Opper II learning rule, the best-
reported results hover around 70%accuracy122. Still, this is far away from the
accuracies typical for the state-of-the-art convolutional neural networks
(CNNs)176–178. However, authors in179 have recently trained ONNs with EP
to classify reduced 8x8-pixel MNIST images with 94.1% accuracy. Given its
local update rule, EP constitutes a promising method for future ONN
training in hardware.

While EP is a supervisedalternative for energy-based systems, there are
only few supervised ONN-specific learning rules. To the best of our
knowledge, there have been two instances of learning rules designed for
ONNs up until now. First, the authors in ref. 180 have proposed a Hebbian
rule adapted to oscillators called oscillatory Hebbian rule (OHR). Further-
more, an iterative random partial update symmetric Hebbian (IRPUSH)

Table 1 | Comparison of ANNs with ONNs for various problems

Problem ANNs Processing unit ONNs

Pattern recognition Developed by Wu and He194 GPU (GeForce GTX1080) Developed by Zhang et al.118, Biswas et al.119, and Yun et al.120

Classification Developed by Byerly et al.195

(99.83% on MNIST)
GPU (GeForce
GTX1080 Tis)

Developed by Abernot and Todri-Sanial121 (~62% on MNIST), ClassONN122

(~70% on MNIST), 8 × 8 MNIST with EP179 (94.1%)

Edge detection DexiNed196 GPU (Titan XP) Developed by Kim et al.123 and Abernot et al.124

Online learning Developed by Nose et al.197 Raspberry Pi 3 Model B+ Developed by Abernot et al.125 and Luhulima et al.126

Sensory processing Developed by Jain et al.198 GPU (K40) Developed by Yang et al.127
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Table 2 | List of notable ONN architectures and demonstrators using different types of oscillator circuit, network size and
coupling weights

Year References Oscillator Network size Network type Coupling weights

1959 60 Analog LC 9600 Nearest neighbor Transformers

2000 30 Phase-lock loop 60 All-to-all Direct PLL connections

2015 112 Voltage controlled oscillator 20 All-to-all Resistors

2016 113 Phase-lock loop (PLL) and PPL-free 20 All-to-all Resistors

2018 67 Digital 100 All-to-all Resistors

2018 105 Spin-torque nano oscillator 4 All-to-all Electrical microwave loop

2019 199 Analog LC 4 All-to-all Resistors

2019 200 Analog LC 240 Tile coupling Resistors

2021 201 Schmitt-trigger oscillators 30 All-to-all Capacitors

2021 63 Analog relaxation 8 All-to-all Capacitors, resistors

2021 68 Ring oscillators 560 Hexagonal Inverter

2021 202 Schmitt-trigger oscillators 600 Intra-tile coupling Capacitors

2021 114 Phase control digital oscillator 60 All-to-all Registers

2021 62 Analog relaxation 4 All-to-all Resistors

2022 87 Ring oscillators 1968 King’s graph Transmission gates

2022 69 Analog differential 400 King’s graph Current sources with DACs

2023 86 Analog relaxation 16 All-to-all Capacitors

2023 203 Ring oscillators 48 All-to-all Transmission gates

2023 126 Phase control digital oscillator 90 All-to-all Registers

2023 123 Analog relaxation 9 All-to-all Resistors

2024 204 Analog relaxation 9 All-to-all Capacitors

2024 127 Analog relaxation 3 All-to-all Capacitors

2024 120 Bistable resistor (Biristor) 4 Nearest neighbor Capacitors

Table 3 | Complementary list of notable ONN architectures and demonstrators (as in Table 2) with respect to weight precision,
application and technology choice for implementation

Year References Weight precision Application Technology choice

1959 60 1 bit, unsigned Digital logic Transformers

2000 30 1 bit, signed Pattern recognition Off the shelf PLLs by national semiconductor

2015 112 2-bit, signed Pattern recognition TMO i.e., TaOx

2018 113 5 bit, signed Pattern recognition CMOS 28 nm

2018 67 5 bit, signed Pattern recognition Digital

2018 105 1 bit, unsigned Vowel recognition Magnetic tunnel junction

2019 199 5 bit, signed COP Discrete component, breadboard

2019 200 8 bit, signed COP Discrete components, printed circuit boards

2021 201 1 bit, unsigned COP CMOS 65 nm

2021 63 1 bit, unsigned COP VO2 phase transition nano oscillators

2021 68 1 bit, unsigned COP CMOS 65 nm

2021 202 1 bit, unsigned COP CMOS 65 nm

2021 114 4 bit, signed Pattern recognition Digital, FPGA ZynQ board

2021 62 1 bit, unsigned Pattern recognition, CNN filter VO2

2022 87 5 levels, signed COP CMOS 65 nm

2022 69 6 bit, signed COP CMOS 28 nm

2023 86 5 bit, signed COP, image processing CMOS 65 nm

2023 203 4 bit, signed COP CMOS 65 nm

2023 126 4 bit, signed Pattern recognition Digital, FPGA PYNQ board

2023 123 1 bit, unsigned Edge detection NbOx material

2024 204 1 bit, unsigned COP VO2

2024 127 1 bit, unsigned Sensory processing VO2

2024 120 1 bit, unsigned Pattern recognition n–p diode and p-n diode on SOI
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rule has been developed by authors in ref. 181. Both proposed learning rules
which expand on the classic Hebbian rule. However, there are other more
powerful learning rules that have still not been redesigned for the ONNs.
Hence, the development of training algorithms specific to ONNs will aid in
exploring their potential advantages across various AI tasks.

Scalability
Scalability remains a significant concern in the physical design and imple-
mentationofONNs for executingpractical use cases.While each technology
choice presents its own challenges, the primary limitation stems from the
polynomial increase in coupling elementswith the number of oscillators. As
the size of the ONN network grows, implementing a fully connected net-
work becomes challenging, primarily due to unwanted parasitics in the
connections. For instance, advanced CMOS technology offers a viable
platform for the design and implementation of large-scaleONNs.However,
the current ONN architecture imposes certain symmetry constraints on the
connectivity between oscillators to enable all-to-all coupling. Moreover, as
the ONN network size increases, measuring and distinguishing the phase
difference between oscillators become increasingly difficult. One potential
approach being explored to scale up ONNs is to adopt a modular design,
where a larger ONN is constructed from many smaller ONNs69,182.

Benchmarking and comparison
Presently, much of the literature benchmarks ONNs primarily on
MNIST classification for pattern retrieval and combinatorial problems
like TSP andMax-Cut121,122,163,164,183. Although some heuristics have been
developed for solving combinatorial problems, such as the traveling
salesman problem (TSP)157,163,164, and shared resources like the TSPLib
library184 provide sample instances for benchmarking and comparison
against the best-reported solutions. We firmly believe that the ONN
community will find it relevant to consolidate and develop open-source
benchmarks and libraries for evaluating different problems, enabling
community contributions and sharing. As the community expands,
setting up benchmarking contests on various problem sets will become
increasingly important. These contests will aid in advancing the scien-
tific development inONNcomputing and in understandingwhere ONN
computing can offer a competitive advantage in comparison to the
classical computing.

Variety of problems that ONN can solve
Considering theONN’s intrinsic feature as a dynamical system that exhibits
rich dynamics from synchronization to non-stable states, studying a wider
range of mathematical problems, that can exploit ONN dynamics, remains

Table 4 | Best classical algorithms for Karp’s 21 NP-complete problems156 and attempts at solving them using ONNs

Problem Exact algorithm Approximate/heuristic algorithm Attempts with ONNs

Satisfiability Chaff205, GRASP206 GSAT207, WalkSAT208 Attempted by Bashar et al.209 and Bybee
et al.210

Binary integer
programming

Cutting plane211, Branch-and-bound212 Tabu search213 –

(Maximum) Clique Developed by Robson214 Developed by Feige215 and Boppana &
Halldórsson216

Attempted by Mallick et al.217,218

(both MIS) and Ferrari et al.219

Set packing – Developed by Halldórsson et al.220 –

Vertex cover Developed by Chen et al.221 (small vertex cover) Developed by Papadimitriou & Steiglitz222 and
Karakostas223

Attempted byAl Beattie &Ochs224 andAl
Beattie et al.225 and Mallick et al.217 (MIS)

Set covering – Developed by Chvatal226 –

Feedback node set Developed by Fomin and Villanger227 Developed by Becker & Geiger228 –

Feedback arc set Developed by Lawler229 Developed by Even et al.230 –

(Un)directed
Hamiltonian cycle

Developed by Bjorklund231 – Attempted by Mallick et al.218

Traveling salesman
problem

Concorde TSP solver232 Christofides algorithm233 Attempted by Duane163, Landge et al.164,
and Mallick et al.218

3-SAT Developed by Schoning234 – Attempted by Maher et al.167, Cílasun
et al.168, and Bashar et al.169

Graph coloring
problem

Developed by Björklund et al.235 Developed by Halldórsson236 Attempted by Wu81, Wang &
Roychowdhury158, and Mallick et al.166

Clique cover Developed by Espelage et al.237 (bounded
clique-width)

DevelopedbyCerioli et al.238 (3maximumvertex
degree) and Blanchette et al.239 (planar graphs)

Attempted by Yamada & Inaba240

Exact cover DLX241 – –

Hitting set – Developed by Chvatal226 –

Steiner tree Developed by Wang242 Developed by Wu et al.243, Byrka et al.244, and
Chen and Hsieh245

–

3-dimensional
matching

– Developed by Cygan246 –

Knapsack Dynamic programming in-advance algorithm247,
Meet-in-the-middle248

Developed by Dantzig249, FPTAS250 Attempted by Watanabe et al.251

Job sequencing – Developed by Chen et al.252 (online) and
Hochbaum & Shmoys253 (offline)

–

(multiway number)
Partition

Pseudopolynomial time number partitioning254,
complete greedy algorithm255, Complete
Karmarkar-Karp algorithm256

Multifit algorithm257 Attempted by Nigg et al.258

Max-Cut – Goemans–Williamson algorithm259 Attempted by Wang et al.158, Bashar
et al.159, Steinerberger160, and Bashar
et al.161

Empty fields remark the absence of exact/approximate algorithms and/or ONN attempts to solve the problem.
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relevant. While intrinsically meant for pattern retrieval29,30, other problems
can be investigated with ONNs such as:
• Artificial intelligence and edge AI—various machine learning algo-

rithms running on the edge, such as those used in human-machine
interfaces, demand real-timedecision-making, reinforcement learning,
and incremental learning. Exploring and comprehending how ONNs
can empower such algorithms, while capitalizing on their parallel
processing and low-resource utilization71, could prove valuable for
robotic applications and edge devices that operate with limited data for
learning and decision-making.

• Secure communication—it is observed that dependingon the coupling,
an oscillator can exhibit chaotic behavior185. This characteristic can be
utilized inONNs to implement randomnumber generators and secure
communication protocols186. Furthermore, ONN’s sensitivity to initial
conditions and any perturbations can alter its stability, which can be
intentionally exploited for secure communication.

• Complex computation problems in engineering—ONN dynamics are
described throughdifferential equations that represent their behavior30.
There is interest in further adapting these differential equations to
model various physical phenomena such as fluid flow, atom interac-
tions (like Hubbard model187), heat transfer, motion and quantum-
mechanical systems (such as wave functions).

• Complex networks—ONN’s dynamics can also be exploited for
modeling large, complex networks, such as decision-making processes
in economics and finance, as well as social networks. An analysis of
ONN’s dynamics will allow to obtain statistical estimation and to
perform data analysis to predict the behavior of time-varying data.

Perspectives
ONNs draw inspiration from oscillatory neural activity in biology and
exhibit a strong connection with physics, enabling their application to
various problems such as optimization45,157,158. However, there remains a
significant potential for fruitful interactions between physics, machine
learning, andONNs,which could yieldnew insights andhardware solutions
for implementing deep learning. For instance, employing the Ising form-
alism could enable massive parallel processing188. Ultimately, one can
envision anONN IP core coexisting alongside other accelerators and image
sensors, facilitating accelerated, high-accuracy, and fast performance for
specific machine learning algorithms on edge devices with limited power
and computational resources. Here, we detail our vision on the perspectives
of future research on computing with oscillators.

Synergy between ONN and neuroscience
Theoscillatory neural dynamics observed in biological neural networks bear
many similarities toONNdynamicsandoffer valuable insights into learning
and plasticity189. For instance, the synchronization of neural clusters and
phase dynamics could provide insights into how oscillations propagate
through large networks in distinct patterns, influencing memory creation
and consolidation. Understanding how oscillatory propagation, such as
spiral or in-plane dynamics, affects the stability of ONNnetworks and their
memory states is crucial. Studies using electrophysiological recordings in
insects and humans reveal that various conditions, including noise, non-
uniformities (no two neurons are identical) and oscillation frequencies,
impact short- and long-term memory formation and performance on
cognitive tasks. Exploring whether insights from neuroscience can lead to
new learning rules for ONNs remains a path worth investigating.

Synergy between ONN and physics
The synchronization phenomenon is extensively studied across various
domains, with a substantial body of work in mathematics and physics
delving into its fundamental nature97. The Kuramoto model stands out as
oneof themost studiedmodels due to its simplicity andability to exhibit rich
dynamics in coupled complex networks61. From physics, the under-
standings of synchronization and the emergence of clusters in synchroni-
zation and chimera states can shed light not only on the stability of ONN

networksbut alsoonhow factors such asnoise, variability, nonidealities, and
synaptic schemes (from fully to sparsely coupled) impact synchronization
and cluster appearance, ultimately influencing the network’s memory and
memory capacity189,190. There arenumerousunexplored synergies stemming
from the non-trivial physics of complex networks that could further
enhance our understanding of ONN dynamics and their computing cap-
abilities, benefiting from established rigorous mathematical formalisms.

Synergy between ONN and machine learning
Currently, classification, one of themost commonly usedmachine learning
algorithms, is predominantly performed using convolutional neural net-
works (CNNs)176–178, which typically involve several layers and thousands to
millions of neuron nodes. In addition, they are normally trained using
backpropagation which makes these neural networks even more energy
inefficient191. Thus far, classification using ONNs has been accomplished
with a perceptron-type network and a limited number of neurons corre-
sponding to the size of the image pixels121,183. Although the accuracy of
ONNs is not yet sufficiently high for practical use (~70%)122, they demon-
strate the simplicity and powerful computational capabilities of ONNs by
performing classification with fewer neurons and a single fully connected
layer. Recent studies have demonstrated the utility of ONNs by employing
them as the first layer of CNNs, functioning as a filter layer for parallel
feature extraction62,124. Furthermore, there is a potential to use ONNs for
training of deep Boltzmann machines192,193. There should be additional
synergies and opportunities for exploiting ONNs in machine learning that
remain to be explored, and these will likely become apparent with further
interdisciplinary research efforts.

Technology choice for ONN implementation
The physical implementation of ONNs remains challenging, despite
numerous efforts to design them using advanced CMOS nodes, mature
CMOS nodes, novel materials and devices, optically, spintronics, among
others. Designing ONNs that are practical, useful, and capable of exploiting
their phase dynamics necessitates a detailed analysis of the benefits and costs
of each technology choice. While exploring multiple technology paths is
constructive for further maturing ONN computing, envisioning ONNs as
part of a larger system, where they can serve as either accelerator IP cores or
be embedded in many ONN IP cores as massive parallel processors, is
essential. To realize practical value from ONN computing, we believe that
investing effort inCMOS-basedONNfabrication isworthy, enablingONNs
to be integrated into large system-on-chip designs. While exploring novel
materials and devices represents a longer-term route to ONN imple-
mentation, valuable insights can be obtained from the silicon platform for
ONN computing.

Conclusion
In this review,we explore research avenues thathave shaped andmarked the
most promising frontiers in computing with oscillatory neural networks.
Initially, considered for their associative memory as an intrinsic physical
property of complex dynamical systems, the investigation of ONNs for
computing has sparked significant interest in emulating quantum analogies
using coupled oscillators. Recent years have witnessed the rapid growth of
new techniques and fresh ideas for harnessing the rich nonlinear dynamics
of ONNs.

From the perspective of diverse scientists across fields such as neu-
roscience, theoretical physics, computer scientists among others, there is a
growing interest in solving practical, everyday intractable problems. This
interest has been fueled, in part, by enthusiastic researchers like us in analog,
digital and mixed-signal circuit design. They have taken a leap of faith,
committing their efforts to expand the current body of knowledge within
this research area to engineer such computational models. The goal is to
implement complex theoretical concepts intohardware, addressingnotonly
the energy efficiency challenge of computing but also providing alternative
computing solutions for intractable problems such as NP-hard combina-
torial optimization problems.
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This review provides an overview of the current state of computing
with ONNs. In addition, it highlights exciting methods and unresolved
challenges. The use of coupled oscillators in computing holds promise as a
platform to explore fundamental many-body physics, with practical
implementations yet to be fully developed.What began as a curiosity-driven
endeavor has evolved into an influential exploration of engineered dyna-
mical computing systems that have the potential to unlock scientific dis-
coveries that were previously out of reach.

Data availability
No datasets were generated or analyzed during this study.
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