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Abstract: Glaucomatous optic neuropathies have been regarded as diseases caused by high intraocu-
lar pressure for a long time, despite the concept of vascular glaucoma dating back to von Graefe in
1854. Since then, a tremendous amount of knowledge about the ocular vasculature has been gained;
cohort studies have established new vascular risk factors for glaucoma as well as identifying protec-
tive measures acting on blood vessels. The knowledge about the physiology and pathophysiology of
the choroidal, retinal, as well as ciliary and episcleral circulation has also advanced. Only recently
have novel drugs based on that knowledge been approved for clinical use, with more to follow. This
review provides an overview of the current vascular concepts in glaucoma, ranging from novel
pathogenesis insights to promising therapeutic approaches, covering the supply of the optic nerve
head as well as the aqueous humor production and drainage system.
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1. Introduction

Glaucoma (or glaucomatous optic neuropathy, GON) refers to a group of diseases
characterized by retinal ganglion cell atrophy with corresponding visual field defects. If
unrecognized or untreated, glaucoma can lead to severe visual impairment. It is amongst
the most frequent causes of blindness in industrialized countries [1].

Elevated intraocular pressure (IOP) is the most important risk factor for glaucoma,
and lowering it is the only proven treatment to date [2–5]. Besides elevated IOP, vascular
abnormalities have been recognized as a possible cause for GON, with the concept of vas-
cular glaucoma dating back almost 170 years [6]. Those 170 years have brought along many
advances in the understanding of the vascular aspect of glaucoma: cohort studies have
established new vascular risk factors as well as identifying protective measures acting on
blood vessels. New technologies enable a more refined investigation of the ocular vascular
beds, steadily increasing our understanding of the physiology and pathophysiology. Only
recently have novel drugs based on that knowledge been approved for clinical use, with
more to follow.

This review aims to provide an overview of selected vascular aspects in glaucoma,
covering vascular risk factors in epidemiological studies as well as physiological aspects in
animal models and abnormal vascular findings in glaucoma patients.

2. Vascular Risk Factors from Cohort Studies

Several cohort studies conducted in different populations have identified vascular
risk factors for various aspects of glaucoma, but findings are inconsistent.

Low ocular perfusion pressure (OPP, either mean OPP or diastolic OPP, or both) has
been identified as a risk factor for OAG in the Los Angeles Latino Eye Study [7], the Egna-
Neumarkt Study [8], the Singapore Eye Study [9], and the Barbados Eye Study [2,10]. The
Early Manifest Glaucoma Trial identified low systolic perfusion pressure as a risk factor for
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disease progression independent of IOP [4]. Surprisingly, other studies did not confirm an
association of low systolic perfusion pressure with NTG or OAG with low IOP [8].

A recent meta-analysis found a consistent association of low perfusion pressure and
POAG but not NTG [11], even though some large epidemiologic studies were excluded
due to mode of data reporting. The Leuven Eye Study found higher mean OPP values in
glaucoma patients in a cross-sectional design [12].

An important caveat is the heterogeneity of the blood pressure (BP)-related formulas
used in different studies. A report by Barbosa-Breda et al. found differences of up to 100%
for the obtained OPP values depending on the applied formula [13]. Furthermore, ocular
perfusion pressure is commonly calculated using arterial blood pressure and IOP (see the
next section for a more detailed discussion), and its dependence on IOP was reported with
inconsistent findings [7,14].

3. Ocular Blood Supply and Ocular Perfusion Pressure

The blood supply of the ocular tissues arises from the ophthalmic artery, the first
major branch of the internal carotid artery, as it supplies the human orbit. The ocular
branches of the ophthalmic artery can be divided into the central retinal artery and the
posterior and anterior ciliary arteries [15]. The central retinal artery supplies the retina as
well as the superficial layers of the optic nerve head (ONH). The posterior ciliary arteries
divide in the long (LPCAs) and short posterior arteries (SPCAs). The former supply the
iris, the ciliary body, and the anterior choroidal tissue, whereas the latter feed the posterior
choroid and the largest part of the anterior ONH [15,16]. The anterior ciliary arteries are
responsible for supplying blood flow to the anterior uvea. Blood supply of the ONH is
complex as it can be stratified into four layers (Figure 1). The superficial nerve fiber layer
consists mainly of the axons of the retinal ganglion cells and is supplied by the inner retinal
circulation. The prelaminar region of ONH receives its blood supply from the branches of
the peripapillary choroid and from the SPCAs. The third layer is the lamina cribrosa (LC),
which is exclusively supplied by the SPCAs. The retrolaminar region located outside the
globe is nourished by both the pial vessels and the SPCAs [17].
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Figure 1. (a) Different areas of perfusion of the optic nerve head showing a superficial nerve fiber
layer, (b) prelaminar region, (c) laminar region, (d) retrolaminar region, (1) central retinal artery,
(2) central retinal vein, (3) retina, (4) choroid, (5) sclera, (6) circle of Zinn-Haller, (7) short posterior
ciliary arteries, (8) optic nerve sheath (9) subdural cavity, (10) arachnoid mater, (11) subarachnoidal
space, (12) pia mater, (13) optic nerve.
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As in any tissue of the body, arterial blood pressure drives blood through the vas-
culature, and the combined resistance of all vessels causes a pressure drop at the venous
side of the circulation (i.e., the vortex veins or the orbital veins in the case of episcleral
vessels). A major difference to most circulations, however, is the compressing force exerted
by intraocular pressure (IOP). This causes the vortex veins to behave as Starling resistors,
i.e., maintaining an intraluminal pressure slightly higher than IOP to prevent them from
collapsing. Figure 2 illustrates the effect of intraocular pressure (as an external compression
force) on the flow and transmural pressure in an intraocular vessel [18].
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Figure 2. Ocular Starling resistor. (A) Vessel flow (F) is a function of the pressure gradient (P1—P2) along the vessel divided
by the resistance. (B,C) If the vessel passes through an organ (e.g., the eye) with a low tissue pressure (e.g., IOP), the
pressure inside the vessel exceeds the pressure outside the vessel (i.e., the transmural pressure gradient) and so the vessel
remains distended. (D,E) If the tissue pressure is somewhat higher and exceeds the pressure at the lowest point inside the
vessel (i.e., at the “venous” end), that region of the vessel will begin to collapse. This will increase the resistance to flow in
that segment, thereby raising the intraluminal pressure until the transmural pressure becomes slightly positive again. (F) If
the tissue pressure becomes greater than the arterial input pressure, the vessel will collapse completely, the resistance will
be infinite, and flow through the vessel will cease. Reproduced with permission from [18].

Assuming that the venous pressure must be slightly higher than the intraocular
pressure, the ocular perfusion pressure (i.e., the pressure gradient driving blood flow) is
commonly approximated by the following formula [19]:

OPP = MAP − IOP

(MAP = mean arterial pressure).

This approximation, however, might not be accurate in clinically relevant pressure
ranges. There is some evidence suggesting that the Starling resistor behavior outlined
above may produce non-linear results, especially at low IOP values. Maepea was the first
to note that choroidal venous pressure appears to be significantly higher than IOP at low
IOP values [19].

Currently, human in vivo measurements of retinal or choroidal venous pressure are
technically not possible, despite approximations of retinal venous pressure existing with
ophthalmodynamometry [20]. Unpublished data obtained in a rabbit model, kindly pro-
vided by Reitsamer, on the relationship between IOP and choroidal venous pressure
showed that with IOP values in a normal range, choroidal venous pressure clearly deviates
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from the assumed 1:1 relationship; thus, perfusion pressure in the choroid is less than
estimated by the PP = MAP − IOP formula (Figure 3). From a clinical perspective, this is of
high relevance in normal tension glaucoma, where low (diastolic) blood pressure might
cause insufficient blood supply of the optic nerve head. Furthermore, this might cause an
overestimation of perfusion pressure in clinical studies.
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Figure 3. Relationship between intraocular pressure (IOP) and choroidal venous pressure (P choroid).
As expected by the Starling resistor effect, choroidal venous pressure slightly exceeds intraocular
pressure at medium to high IOP values. At lower IOP values, however, choroidal venous pressure
deviates from this 1:1 relationship significantly, reaching 50% at values below 10 mmHg (unpublished
observation by Reitsamer). Each dot represents a single pressure measurement, the red line represents
a curve-fit of all measurement values.

4. Regulation of Ocular Blood Flow

The arteries of the choroid, retina, ciliary body, and optic nerve head circulations are all
capable of active vascular resistance regulation, commonly termed autoregulation [21–25].
This includes adaptions to metabolic changes (metabolic autoregulation) and adaptions to
changes in transmural pressure (myogenic autoregulation), as well as neuronal autoregu-
lation, a somewhat broader term including both paracrine and neurohumoral regulatory
mechanisms [18,21,26–28]. The orbital veins, on the other hand, exhibit a passive behavior
during perfusion pressure changes [29]. A striking clinical example is the immediate
choroidal thickness increase during the Valsalva maneuver [30], resulting in increased
intraocular pressure. Passive venous behavior also implies an effect of elevated thoracic
pressure, as it occurs in obstructive sleep apnea syndrome as well as in obesity, on the
ocular circulation. Orbital veins are difficult to measure in most species with the exception
of rabbits, where a foramen in the scull allows direct cannulation [29]. Interestingly, in
this model, a linear relationship between orbital venous pressure and mean arterial blood
pressure was found.

5. Episcleral Circulation and Episcleral Venous Pressure

The episcleral circulation is of high relevance for glaucoma because of its impact
on intraocular pressure. Steady-state intraocular pressure (IOP) can be described by
the Goldmann equation as the relationship between aqueous flow, uveoscleral outflow,
outflow facility, and episcleral venous pressure (EVP) as an additive factor [31]. EVP is the
pressure that has to be overcome by fluid to leave the eye via the conventional (trabecular)
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outflow pathway and, therefore, is an important determinant of steady-state IOP. The
anatomical organization of the episcleral vessels appears to be well suited for regulation of
the pressure in the episcleral veins and thereby IOP, as the episcleral circulation is mostly
devoid of capillaries and arteries, and veins are connected through anastomoses [32,33].
More interestingly, these anastomoses are supplied by nerves, whose nerve endings stain
positively for autonomic neurotransmitters [34]. A study by Zamora and Kiel confirmed
Ascher’s original observation that the episcleral circulation responds to topical anesthetics
in a rabbit model [35]; however, this could not be replicated in humans [36]. Additional data
supporting the assumption that the EVP is not passive, but actively regulated, came from
a study investigating EVP changes during changes in body posture, where EVP changed
less than predicted by the hydrostatic water column effect [37]. To date, the functional
significance of the innervation of the episcleral circulation is only scarcely investigated,
most likely due to technical reasons. However, one study reported changes in EVP in
response to stimulation of a brain stem nucleus [38], thus indicating the possibility for
active regulation.

The therapeutic potential of the episcleral circulation was recently confirmed in an
experimental study with cromakalim prodrug 1 (CKLP1) in a mouse model. CKLP1 reduces
EVP and thereby EVP–as predicted by the Goldmann equation. This effect is additive to
other known substances acting on aqueous humor formation [39].

6. Measurement of Ocular Blood Flow

Non-invasive measurement of ocular perfusion has been the focus of intense research
interest in recent decades. A wide range of techniques all utilizing the Doppler effect have
been introduced (Table 1). The Doppler effect describes the phenomenon of change in
frequency and wavelength of a wave caused by the change in distance between the creator
and observer of the wave. For light, this causes a shift in color. The faster the creator is
moving towards the observer, the greater the blue shift, whereas sound becomes higher
in pitch. In vascularized tissue, the Doppler effect is caused by moving red blood cells
within the vessels [40]. With adequate technical equipment, the change in frequency or
wavelength can be detected and computed into parameters describing perfusion. Absolute
measurements of perfusion are only obtained if information on the vessel diameter is
provided, taking into account the Hagen–Poiseuille equation.

Ultrasound-based color Doppler imaging is the only technology that measures the
Doppler shifts in sound waves, whereas other techniques such as laser Doppler flowmetry,
laser Doppler velocimetry, and Doppler optical coherence tomography use laser light (see
Table 1).

Some of the techniques to measure perfusion of the ONH are limited to superficial
tissue, supplied by the central retinal artery, but results from an animal model suggest
that not only the superficial but also the deep ONH vascular supply is associated with
pathologic changes in glaucoma [41]. Contributions from deeper ONH layers to the signal
vary depending on the techniques, as different wavelength light sources are used [42] (see
Table 1).

The laser speckle flowgraphy (LSFG) method is based on the laser speckle phe-
nomenon. It describes an interference phenomenon occurring when a diffusing surface
(e.g., the ocular fundus) is illuminated by a coherent light source (i.e., a laser). The backscat-
tered light has the appearance of a granular pattern (i.e., the speckle pattern), which is
entirely random and can only be described statistically [43]. In the case of moving scatters
(e.g., red blood cells) within the illuminated field of view, the appearance of the speckle
pattern changes rapidly; the greater the blood velocity, the higher the rate of variation in
the speckle pattern in the vascular area and the lower the speckle contrast [44]. This enables
two-dimensional measurements of perfusion at the ONH, the retina, and the choroid.
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Table 1. Overview of different technologies to measure ocular perfusion.

Technology Principle Outcome Parameter Measurement Area Advantages Limitations Penetration Depth
(in Humans)

Laser Doppler Flowmetry
(LDF) Laser (780 nm)

Mean Velocity
Volume

Flow
100 × 100–400 × 400 µm Commercially available

Valid reproducibility [45] No absolute measurements 300–400 µm [46]

Laser Doppler Velocimetry
(LDV) Laser (675 nm) Maximal Velocity Individual retinal

arterioles/venules
Absolute measurements
Commercially available

Prone to eye movements
Complex and

time-consuming
measurements

No OHN measurements

0.5–0.8 mm [47]

Color Doppler Imaging
(CDI)

Ultrasound (Doppler with
6.5 MHz)

Peak systolic velocity (PSV)
End diastolic velocity (EDV)
Mean flow velocity (MFV)

Resistivity index (RI)

Retrobulbar arteries
(ophthalmic artery, retinal

central artery, short posterior
ciliary artery)

Commercially available

Time-consuming
Limited to retrobulbar

arteries
No absolute measurements
No measurement standard
Patient in supine position

during measurement

Retrobulbar

Doppler OCT (D-OCT) Laser (841 nm) Total volumetric RBF Retinal vessels Absolute measurement
Prone to artefacts due to eye

movement
Not commercially available

1–2 mm [47]

Laser Speckle Flowgraphy
(LSFG) Laser (808 nm) Mean blur rate

Manually set area of interest
(ONH, retinal vessels or

choroid), or MBR for each pixel

Patient and investigator
friendly

Commercially available
No absolute measurements Up to retrolaminar

region [45]
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7. Hemodynamic Alterations in Glaucoma Patients

With color Doppler imaging, reduced blood flow velocities in retrobulbar vessels
were shown in both high- and low-tension POAG patients compared with healthy control
subjects [12,48,49]. The use of laser Doppler velocimetry revealed that blood flow in the
peripapillary capillaries, nourishing the superficial nerve fiber layer of the ONH, was
reduced in patients with OAG and NTG when compared with a healthy group [50]. Results
from scanning laser Doppler flowmetry (LDF) measurements in the disc cup and the
neuroretinal rim showed significantly reduced perfusion in patients with high tension
POAG compared with healthy subjects, as well as subjects with ocular hypertension [51–53].
Further, results obtained with LDF suggested a correlation of glaucomatous damage with
reduced ONH perfusion [54].

Much attention has been given to the technology of OCT angiography [55]. However,
it should be noted that this technology is unable to measure flow or perfusion but rather
gives information about vessel density.

Studies reporting results from LSFG measurements in eyes with normal tension POAG
have been published for over a decade. Significant differences in ONH perfusion have been
shown between patients with normal tension glaucoma and healthy individuals [56,57].

All reported studies above were conducted as cross-sectional trials. Results of a
prospective, longitudinal study on structure rather than perfusion, comparing healthy
individuals with patients with preperimetric glaucoma and glaucoma patients with visual
field defects, have indicated that macular vessel density measured with OCT angiography
declined faster than the ganglion cell thickness [58]. Longitudinal data regarding ONH
perfusion in glaucoma came from a primate glaucoma model. Cull et al. performed a study
to evaluate longitudinal changes in ONH blood flow with LSFG. They showed that basal
ONH BF was strongly associated with the stage of glaucoma severity (measured by loss of
RNFLT) and report a two-phase pattern of change. During the earliest stage of glaucoma,
ONH blood flow exhibited a mild increase, after which it progressively declined with an
increasing degree of glaucoma severity. When more than 40% of the RNFLT was lost, ONH
blood flow was reduced by 25% below baseline [59]. The initial increase in ONH blood
flow was confirmed by results from a cross-sectional study in humans [60].

Until recently, only one longitudinal study reported changes in optic nerve head per-
fusion over time in humans. In 2005, Martínez et al. published results from a longitudinal
trial where they observed 49 patients with high tension POAG over 36 months. In total,
23 eyes had progressed during the study period. The authors identified increased resistiv-
ity in the ophthalmic artery and the short posterior ciliary arteries as risk factors for the
progression of glaucomatous visual field defects [61]. In 2020, a retrospective, longitudinal
study was published, which included 350 eyes of 225 POAG patients. The authors found
older age, high pulse rate, and whether the damaged quadrant was superior or temporal to
be risk factors for faster perfusion parameter deterioration. When two or more risk factors
were obtained, MT decrease preceded RNFLT decrease [62]. This finding indicates that in a
subgroup of glaucoma patients, reduced ONH perfusion is part of the pathogenesis.

8. Novel Therapeutic Approaches for the Vascular Aspects of Glaucoma

Currently, there is no established therapy specifically addressing the choroidal or
optic nerve head vasculature. Some IOP-lowering agents at least partly act through
vasoconstriction in the ciliary body vasculature [63]. One interesting observation, however,
hints towards a therapeutic potential for drugs acting on the ocular vasculature: increased
oral uptake of dietary NO donors reduced the incidence of parafoveal visual field defects
in a large cohort study [64].

Furthermore, the episcleral circulation recently emerged as a therapeutic target of
new classes of IOP-lowering drugs as well as new routes of administration of existing
drug classes.

Rho-kinase inhibitors are a novel drug class for glaucoma treatment for which FDA
approval was received in 2017 [65]. They act at least partly through increasing outflow
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facility in the conventional (trabecular) pathway [66,67]. Additionally, an EVP-lowering
effect has been shown for some Rho-kinase inhibitors in an animal model [68]. The clinical
significance of the EVP-lowering effect is not entirely clear, but a combined mechanism is
likely, as the magnitude of IOP decrease cannot be explained by either mechanism alone in
humans [69].

Another well-established drug class has an effect on the ocular vasculature. Prostaglan-
din analogs (PGAs) are an established drug class for glaucoma treatment [70], increasing
uveoscleral outflow to lower IOP. Recent studies, however, revealed that PGAs show a
different dose–response relationship depending on their route of administration (reviewed
in [71]). Current data suggest this is due to the opposing effects of prostaglandin analogs
on the uveoscleral outflow pathway as well as the episcleral venous pressure [72,73]. While
the IOP-lowering effect of topical prostaglandins appears to be limited by the opposing
effect of increasing EVP, intracameral prostaglandins seem to dodge this limitation [74]. It
is important to note that these observations are based on animal models and need further
verification in clinical trials.

In summary, both defining and treating possible vascular glaucoma triggers remain
challenging in clinical routine as well as from a scientific point of view. Emerging technolo-
gies to measure ocular perfusion (e.g., Doppler OCT or LSFG) in vivo have the potential to
further elucidate the role of the ocular perfusion in the pathophysiology of glaucoma. Fur-
thermore, current drug development utilizes obtained knowledge on the ocular vasculature
and will likely be available in clinical practice soon.
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