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Alternative splicing is well known to
be tissue-specific. Although several

genes have been shown to undergo
alternative splicing in adipocytes, little is
known about the mechanism that regu-
lates alternative splicing during adipo-
genesis. We recently reported that
Sam682/2 mice exhibit a lean phenotype
and are protected against diet-induced
obesity. Our genome-wide exon array
analysis in white adipose tissue (WAT)
from wild-type and Sam682/2 mice
revealed that Sam68 deficiency leads to
an abnormal splicing of the mTOR gene.
This has been shown to reduce the overall
mTOR protein content and activity
during in vitro adipose differentiation.
In Sam682/2 mice, this situation leads to
an increased energy expenditure, decreased
adipogenesis and WAT formation.

Introduction

The Src-associated in mitosis 68 kDa
protein (Sam68) is a member of the signal
transduction and activation of RNA
(STAR) family of proteins.1 The recent
identification of Sam68-interacting pro-
teins has shown that Sam68 is involved
in several signal transduction pathways
via its association with SH3- and SH2-
containing signaling molecules, suggesting
that Sam68 is an adaptor protein.1-3 The
trademark of all STAR proteins is the
presence of a single hnRNPK homology
(KH) domain known to bind RNA with
a high relative affinity.4 Sam68 has been
shown to bind to a bipartite sequence
of U(U/A)AA rich motifs.5,6 Sam68 is a
known regulator of alternative splicing.

Sam68 has been shown to regulate the
inclusion of the variable exon v5 of
CD44,7 a cell surface glycoprotein involved
in tumor invasion.7-9 Sam68 also modu-
lates the splicing of mRNAs encoding
SF2/ASF, SMN2, the proapoptotic pro-
tein Bcl-x, the cancer-related splice isoform
cyclin D1b and the neurexin 1 gene.10-13

More extensive studies have recently
defined Sam68 as major regulator of
neurogenesis,10,14 spermatogenesis,15 osteo-
genesis16 and more recently, adipogenesis.5

These studies clearly indicate that Sam68
regulates alternative splicing during cellular
differentiation.

The availability of Sam68-deficient
mice has led to the identification of some
of the physiological roles of this KH-type
RNA-binding protein. Sam682/2 mice do
not display any overt phenotype, but male
mice are infertile due to a spermatogenesis
defect, while the females have reduced
fertility due to defects in the proper
expression of gonadotropin receptor trans-
cripts in pre-ovulatory follicles in the
adult ovary.15-18 Moreover, Sam682/2

mice are protected against age-induced
osteoporosis.16 Indeed, aged Sam682/2

mice have been shown to preserve bone
density via the Sam68-dependent pro-
motion of osteoblast differentiation and
are thus protected against age-related bone
loss.16 These results suggest that Sam68 is
directly involved in mesenchymal stem cell
differentiation. The loss of Sam68 expres-
sion shifts mesenchymal stem cell differen-
tiation toward the osteogenic lineage,
instead of the adipocytic lineage. This
was confirmed by our recent demonstration
that Sam68-deficient mice are lean and
protected against diet-induced obesity.5
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Sam68 and Adipogenesis

To confirm a role for Sam68 in the
regulation of adipocyte differentiation, we
initially characterized the primary MEFs
harvested from Sam68+/+ and Sam682/2

embryos. Adipogenesis was monitored at
days 0, 4, 6 and 12 following initial
stimulation with standard adipogenic
differentiation media. As expected, we
found that primary Sam682/2 MEFs were
unable to differentiate into adipocytes,
unlike their Sam68+/+ counterparts.
Magnetic resonance imaging studies of
both Sam68+/+ and Sam682/2 aging mice
showed that Sam68 inactivation affects
mouse weight independently of food con-
sumption. We also determined the respir-
atory exchange ratio, which was found to be
similar in Sam68+/+ and Sam682/2, suggest-
ing that both mouse genotypes primarily
utilize fatty acids as an energy source. On
the other hand, we have shown that
Sam682/2 mice exhibit a higher energy
expenditure than Sam68+/+ mice, likely due
to increased physical activity, which con-
tributes to the lean phenotype. This
difference in whole body weight was more
striking when mice were fed a high-fat diet.
The latter experiment clearly showed that
Sam682/2 mice are unable to gain weight
under a high-fat diet, whereas the wild-type
littermates significantly increased in weight.
In-depth analysis of adipose tissue revealed
that Sam682/2 mice had a reduced number
of adult-derived stem cells (i.e., adipogenic
progenitors), correlating with a decrease in
the expression of pericyte markers (a-SMA
and NG2). Taken together, these results
show that Sam68 is required for normal
adipogenesis.

mTOR Splicing

Using a genome-wide exon expression
array, we found that the loss of Sam68
influences the splicing of a large number of
genes in white adipose tissue. We showed
that the splicing of the mTOR gene is
greatly influenced by the levels of Sam68.
mTOR belongs to the phosphatidylinosi-
tol 3-kinase-related protein family and is
known to regulate key cellular processes,
such as cell size, cell proliferation, cell
motility and cell survival.19 mTOR is the
catalytic subunit found in two different

complexes (mTORC1 and mTORC2).20

mTORC1 is characterized by its association
with the protein Raptor and its sensitivity
toward rapamycin, whereas mTORC2 is
characterized by the presence of the protein
Rictor and its resistance to rapamycin.19

The inhibition of mTORC1 is known to
prevent the adipogenic differentiation of
pre-adipocytes,21,22 and to downregulate fat
deposition in rodents.23,24 Moreover, the
inhibition of mTORC1 signaling in mice
leads to lean phenotypes.25-27

For the above-mentioned reasons,
we decided to investigate the Sam68-
dependent alternative splicing of mTOR
in greater detail.5 We found that the loss of
Sam68 activates the usage of an intronic
polyadenylation signal within intron 5 of
the mTOR gene. This novel isoform that
we designate as mTORi5, includes exons
1 to 5 plus a readthrough of intron 5,
thereby generating a ~1 kb mRNA
(Fig. 1A). We showed that Sam68 associ-
ates with two short UUUUA sequences
within intron 5. Mutations within each of
the two UUUUA elements of the
sequences influence Sam68 binding and
lead to an increase in mTORi5 isoform
protein level.

mTORi5

Using qRT-PCR, we observed that
mTORi5 mRNA is abundant in Sam68-
deficient 3T3-L1 cells but absent in
control 3T3-L1 cells. As mTOR intron 5
harbors an in-frame premature termina-
tion codon as well as a polyadenylation
signal, the intron retention event is
expected to lead to an mTOR protein of
~25 kDa with a large C-terminal trun-
cation. The protein predicted to be
expressed from the mTORi5 mRNA
would contain most of the N-terminal
HEAT domains, a type of protein-protein
interaction domain found in a number of
cytoplasmic proteins.28 This led us to
believe that the mTORi5 protein might
exhibit dominant-negative behavior via
its binding to a component of the
mTORC1/2 complexes, thus forming a
catalytically inactive complex. To assess
this possibility, we introduced a vector that
expresses a FLAG-tagged mTORi5 protein
in HeLa cells. We then monitored the
activity of the mTORC1/2 complexes,

using ribosomal protein S6 phospho-
specific antibodies (to detect mTORC1
activity) and AKT phospho-specific anti-
bodies (to assess mTORC2 activity).
Although the ~25 kDa FLAG-mTORi5

protein was effectively expressed in these
cells, we found that it had virtually no
influence on the levels of either ribosomal
protein S6 S240/S244 or AKT S473
phosphorylation following insulin stimu-
lation. Moreover, we were unable to detect
the mTORi5 protein in cells in which
Sam68 expression was abrogated using
N-terminal-specific commercial antibodies
that recognized the ectopic expression of
FLAG-mTORi5. These results allowed us
to rule out any dominant-negative func-
tion for the mTORi5 protein and sug-
gested that the mTORi5 mRNA or protein
might be rapidly degraded via an as yet
unidentified mechanism.

Sam68 Regulates mTOR Activity

One major effect of generating the
mTORi5 isoform is a decrease in mTOR
mRNA and protein levels. Since,
mTORC1 is essential for normal adipo-
genesis, and as depletion of the major
component of the complex, namely
mTOR, affects pre-adipocyte differentia-
tion, a deficiency in Sam68 expression
leads to a decrease in mTORC1 activity.
The overall effect of reduced mTORC1
activity is an inhibition of pre-adipocyte
differentiation (Fig. 1B). Interestingly, we
were able to pre-empt the latter phenotype
by reintroducing full-length mTOR in
Sam68-deficient 3T3-L1 cells. The latter
result indicates that Sam68 contributes
in adipogenesis by insuring the proper
splicing of intron 5 in the course of
mTOR mRNA synthesis, thus allowing
the expression of full-length mTOR.

Conclusion

Our work suggests that Sam68 is a key
regulator of alternative splicing in white
adipose tissue. Our results offer new
therapeutic opportunities for blocking
adipogenesis and diet-induced obesity,
which could prevent the long-term com-
plications related to diet-induced obesity,
one of the leading preventable causes of
death in North America.
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